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requires a knowledge of high-energy matrix elements,
An example of the former is the theorem that the zero
energy limit of the p-wave effective range extrapolation
measures the same coupling constant as the zero-energy
limit of the photomeson production amplitude (accord-
ing to the Kroll-Ruderman theorem). On the other
hand the problem of theoretically evaluating the
effective range falls in the latter class. Formula (49),
for example, shows clearly that the value of r3 depends
on high-energy phenomena.

We have made no serious attempt in this paper to
calculate the effective ranges. Presumably the (3,3)
effective range could be matched by an appropriate
choice of the cut-oG energy, whatever method of approx-
imation were used, and the dominant role played by
the (3,3) state at low energies guarantees the success
of any approach which produces the correct value for
r3. The question naturally arises as to whether one
should expect to be able to calculate r3 and other
quantities which involve integrals over high virtual
energies with the conventional relativistic form of the
Vukawa theory, which has no adjustable cut-off pa-
rameter. We think the answer is no, because this theory

does not take account of the existence of hyperons and
E-particles which interact strongly with the pion-
nucleon system. Both the cutoG and the local forms
of the Yuicawa theory are incorrect (or at least incom-
plete) in the Bev energy region.

Our zero-energy results hold for both theories and we
believe they will probably hold in future theories,
although this last statement is of course little more than
a guess. We also believe that the linear extrapolation
of the cotangent of the phase shifts will be maintained
because this is essentially a statement of ignorance:
the more important are high-energy phenomena, the
more nearly constant is the effective-range integral.

We hope to show in the paper on photomeson
production, which follows, that many aspects of this
latter process fall in the first (low virtual energy) class
of phenomena. The same is true for Compton scattering
by protons and probably for the nuclear force problem.
Phenomena which belong to the second class presum-
ably include s-wave scattering, +' decay, the charge
and current density of nucleons, as well as the funda-
mental questions concerning the nature and interactions
of curious particles.
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The problem of photomeson production is re-examined using the static model of the pion-nucleon inter-
action. It is shown that an important part of the low-energy matrix element can be exactly expressed as a
function of the scattering phase shifts and the static nucleon magnetic moments. It is argued that the
remainder is quite accurately given by the usual Born approximation. Corrections to this result, within the
framework of the "one-meson" approximation, are considered.

I. INTRODUCTION

~HE purpose of this paper is to extend the
theoretical approach of the preceding paper' on

meson-nucleon scattering to the problem of photomeson
production. Extensive use of the notation and results
of the scattering paper is necessary, and we shall assume
the reader to be familiar with these. The most im-

portant conclusion of the present paper is that once the
scattering phase shifts are known at a given energy,
either experimentally or theoretically, the corresponding
photomeson production cross sections can almost unam-
biguously be predicted.

As in I, the bulk of our discussion will be in terms of
the static model, but it may be argued that the im-

portant results are probably more general. We begin
in Sec. II of this paper by splitting the photomeson

' G. F. Chew and F. E. Low, preceding paper )Phys. Rev. 101,
1570 (1956)],hereinafter referred to as I,

production amplitude into three parts, one of which
may be written down in an explicit and exact form.
Equations satisfied by the other two parts are then
derived. Section III deals with these two equations in
the one-meson approximation. In Sec. IV, a simple and
quite accurate approximation to the total amplitude is
proposed, and finally Sec. V compares the simple
theoretical amplitude with experiment.

II. PHOTOMESON EQUATIONS

A derivation of the integral equations which we shall

apply to photomeson production has already been
published. ' We give here a new derivation which is
analogous to that presented in I for scattering. All
notations will be the same as in I.

The matrix element for absorption of a photon of

type k by a single nucleon, with emission of a meson

' F. E. Low, Phys. Rev. 97, 1392 (1955).
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of type q, is

SC&, (&t)=i 4'o&—i, d&(—j Ai,)eo ~.
(

Here the single index k refers to the momentum k as
well as to the polarization a of the incident photon, and

Ai(r) = ee'~ '
(2k)'*

(2)

is the electromagnetic vector potential associated with
the absorption of the incident photon. The symbol j
means the total current density operator for the meson-
nucleon system.

The conventional way of writing the current density
operator j makes a distinction between component
parts which are called "meson current, " "nucleon
current, " and "interaction current" according to
whether they depend on meson variables alone (i.e., on
qi, &oo, &oo, the components of the meson field), on
nucleon variables alone (i.e., &r and ~), or on both. For
example the conventional meson current operator is

j m= e(pi+Fo—po+Fi), — (3)

if e is the electronic charge. However, one of the essential
features of the approach to be employed in this paper
is the use of a representation in which the basis functions
are eigenstates of the complete meson-nucleon Hamil-
tonian. These basis functions depend on the nucleon and
meson variables in a nonfactorable way, so the conven-
tional manner of decomposing the current is not appro-
priate. We use instead a decomposition which empha-
sizes the distinction between the ground state %'0 of the
meson-nucleon system, which corresponds to the physi-
cal ("clothed" ) nucleon, and excited states which
contain one or more real mesons.

We divide the current density operator into three
parts:

1=jr+ js+j~.
The first two terms, jv+je, are defined to be inde-
pendent of meson variables (i.e., to commute with the
a, 's and a,t's) but to have the same matrix elements as
the total j between single Physicat nucleon states. That
ls,

(+o Lji+jej+o)= (+o 8'o) (5)

and evidently (4'o, j 4'o)=0. The subscripts V and S
refer to the isotopic spin character of the respective
current densities, V standing for vector and S for
scalar. It should be noted that if all currents are asso-
ciated with the n.-meson field (i.e., j= j~) then je——0.
It is, however, an experimental fact that the current
density of the meson-nucleon system is not an isotopic
vector (the neutron and proton charges and magnetic
moments are eat equal and opposite), so we include je
in our theory. The relativistic theory' shows that even
in our static limit it is as correct to keep j~ as to keep j~.

The two terms j& and j& are completely determined
by the above properties and so, therefore, is j . Note
that j„is not equal to the conventional meson current
operator j~. Vnless this fact is kept in mind, the results
obtained below may seem puzzling.

A strong motivation for making this particular de-
composition of the current density is that it is possible
to express the photoproduction due to j~ in terms of
meson scattering amplitudes and single nucleon mag-
netic moments. We demonstrate this result immedi-
ately: From the definition of jz, it follows that
J'dejve'"' must be a polar vector function of k and &r

and proportional to 7-3. Finally, since divj& ——0, we must
have

where F(0) is normalized to unity. The constant A
must then be chosen to match the observed difference
of proton and neutron static magnetic moments:

f,"' t p —tx
2

where we have used the definition of charge renor-
malization given in Sec. (III-C) of I, together with the
defining property of jz, i.e., that it have the correct
one-nucleon expectation. The function F(k) is a linear
combination of the proton and neutron form factors
such as have been discussed in connection with electron-
proton scattering. '

The contribution of j~ to the photomeson matrix
element (1) may now be written as follows:

A ~o—
Seiv(q) =

i e, &
—i, i&rXk eF(k')+o

~

(2k) &

1 pp ti~ ((o„i '* F—(k')
(e,&-i,V„&oie,), (g)f„2 0 k) e(k)

where V„&oi is the quantity defined by (I-4) for a meson
index p corresponding to momentum kXe and isotopic
variable 3. We now recognize that the matrix element
occurring in (8) is precisely that for pion scattering from
the state p to the state &t introduced in (I-9). Thus the
final expression may be written

1 pp —ti~F(k') (&o„q *

T„(q),
f, 2 v(k) & k )

which says that j& effectively generates neutral mesons
of momentum kXe which are then scattered by the
nucleon. The extremely simple result (9) must be
regarded, we believe, as fortuitous. The general theory

'R. Hofstadter and R. %. McAllister, Phys. Rev. 98, 217
(1955).
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of scattering does require a certain connection between
the photomeson amplitude and the scattering amplitude
(e.g. , the phases of the corresponding partial waves
must be the same), but no such detailed result as (9)
can be inferred entirely from general principles.

We now turn out attention to the other parts of the
current as written in (4). Because js is independent of
isotopic spin its contribution to the photomeson matrix
element will not be as simply related as that of j& to
the scattering amplitude. We must treat js (as well as
j ) by a diferent approach. Consider

sponding to m=0 may be evaluated explicitly. In fact,

t

r,t(o)x, (o) x, t(o)r (o)

odo GOq

1 'Lo'(k')(, 8) pp+ p)v=—U„ G(k'), (14)
&o, (2k)& 2

where G(k') is a nuclear form factor normalized to unity
at &=0.

We consider finally the contribution from j:
xss(q)=~ @,&—), I dv( js As—)ep ~.) (10) Xs (q)=~ @,& ), )"dv( —j. As)+p ~.

We substitute for +,& ) the expression (I-13) and then
shift the creation operator acting on 4'0 from left to
right. The shift is possible because by definition j8
commutes with a,.

Repetition of the same procedure as used above for
Xos(q) leads to an equation for X& (q) similar to (12)
but with an additional term due to the failure of j to
commute with a, :

xs (q)=~ a,t— U, "' +o, dv( —jsAs)+p
~P o)o+ so

= —
i e„U,&»

Q)g

+~ +o, dv( —js Aa)o,+o (. (11))

(+p, U, &')%„& ))~ e„& ', ~dv( —js As)+o
~

~
~

E~ cog z6

) eo, dv( js Ag)e—-' '.
1
(e-' -) U &o)t~p)

r t(&)x&s(N) xA, t(+)r (+)

E~ Gdg ZC

(12)

where

(13)

As in the scattering problem, the terms in (12) corre-

The annihilation operator may be eliminated from the
second term of (11) by using the identity (l-19) and
the result may then be written in a compact form by
introducing the complete set of eigenfunctions +„& ' of
the pion-nucleon problem:

Xs (q)=j eo, &I,„(—j. Ag)dv +p
I

r,t(e)xs (n) xI. t(e) ro(e)+, (16)
Mp

—so 8 +o)p

where now there is no contribution to the sum for v=0
because of the defining property that the matrix ele-
ments of j between single-nucleon states shall vanish.
The expectation of the commutator in (16) will now be
calculated explicitly. Note that since j& and jz are
defined so as to commute with u, we may just as wel. l

calculate the commutator for the complete current j
and it is convenient now to use the conventional division
of j into meson current, nucleon current and interaction
current.

The meson current j~ is unambiguously defined by
Eq. (3). The nucleon current is perhaps not so well
defined in the static model, but it commutes with a,
in any case and need not concern us here. All its eGects
are included in jy and jq. The interaction current
depends on both nucleon and meson variables and in the
static model is somewhat ambiguous. ' The most reliable
guide to the correct interaction current in the static
model is given by starting with the relativistic theory
(where there is no interaction current and no ambiguity)
and examining the photoproduction matrix element in
the zero-energy limit. Comparison term by term with
the corresponding limit for the static model then shows
what contribution we must get from the interaction
current of the latter. The result agrees with that given
by the nonrigorous approach of this section, which we
make entirely within the framework of the static model.

The interaction energy density of the nucleon-meson
system is proportional to the gradient of the meson
field. It is well known that gauge invariance requires

4 R. H. Capps and R. 6. Sachs, Phys. Rev. 96, 540 (1954).
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that when the electromagnetic held is included in the
problem this gradient must be replaced by V —ieA
when acting on the charged meson field q. If the cut-off
factor v (p) is set equal to unity, this substitution suffices
to guarantee gauge invariance and evidently gives rise
to an interaction energy,

dv( —j;„2 A2)=e,f, '
(Tqpqi —Tipq)qq A2, (17)

with all fields evaluated at the position of the nucleon.
If the cut-off factor is retained, gauge invariance
requires additional terms in the interaction energy.
These terms, however, are not well defined and seem
to have no counterpart in the relativistic theory. Fur-
thermore, reasonable estimates of the size of such terms
indicate that they are unimportant for photoproduction
at low energies.

In order to evaluate the first term of (16), the com-
mutator of aq with (17) is needed and is easily found to
be

ef iq)

a„dp( 1;„, A—2) = (T2~ql Tltiq2)l1 e. (18')
(4kprq)'

Finally, the ordinary meson current j~ gives the fol-
lowing contribution to the commutator in (16):

g a
a„~ dp( —jM Al, ) =2ie„di

(4kprq)' ~

Xe'&"—'& '(8,1222—8„221). (19)

We need the matrix elements of (18) and (19) between
single-nucleon states. The result for (18) is simply to
change the unrenormalized coupling constant f„(0) to
the renormalized f„. For (19), we first eliminate the
meson operators by using the identity (I-19) and then
after some simple manipulations obtain

%p, a, d'e( —jM A2)

2e,f„qq (q —k)q e
(T2821 T1522)

(4kpi,)& (k—q)'+ p2
(20)

Inspection of Eq. (16) reveals that the sum over
states 22 produces only P-wave mesons, by virtue of the
q dependence of Tq(22). It follows that all partial waves
except those for l= i are completely given by the first
term of (16). We shall call this term BC2&P&(q) (it coin-
cides with the usual renormalized Born approximation),
which by (18) and (20) has the value,

e,f„
t

e (q—k)q e
~k (q) (T2fiql Tif122) 'I 0 ' e 2

(4~qk)' ~ (q—k)'+~'
(21)

To recapitulate, the total photoproduction matrix
element has been split into three terms:

X&(q)=X2 (q)+Be& (q)+X,& (q).

For the first term, an explicit formula has been given
in Eq. (9) in terms of quantities which may be experi-
mentally determined independently of photoproduction
measurements. The second term is determined by
Eqs. (12) and (14) and corresponds to what Watson'
calls a nucleon recoil eGect. To the extent that neutron
and proton magnetic moments are very roughly equal
and opposite, this term tends to be small. In addition,
since the current responsible is independent of isotopic
spin, it cannot produce a final state of isotopic spin 3/2.
Both these terms of course produce only p-wave mesons
and correspond to magnetic dipole transitions. The
third term is determined by Eqs. (21) and (22). It
produces a large s-wave (electric dipole) but in addition
all higher partial waves.

III. ONE-MESON APPROXIMATION'

In this section, the two Eqs. (12) and (22) for the
production amplitudes generated by jz and j, respec-
tively, will be discussed in the same approximation as
used in Sec. IV of the scattering paper. That is, multi-
meson terms (n)1) will be dropped. As before, this
approximation does not destroy any of the funda-
mental symmetries of the theory. It is valid if multiple
meson production is small.

A.

I.et us begin with Eq. (12). To eliminate angular
and isotopic spin dependence, we note that only states
with I=—,'can be produced by BC . Furthermore, the
production is magnetic dipole and so leads only to
p-states of total angular momentum 2 or 2. Thus we set

where

n (q)G(k')
se&s(q) = T, p PJMps(u&q),

(4kp1 )'
I'~=e qe y E.=3y q —e qe p.

(23)

Equation (12), with neglect of multimeson terms, then

' N. M. Kroll and M. A. Ruderman, Phys. Rev. 93, 233 (1954).' K. M. Watson, Phys. Rev. 95, 228 (1954).
~The considerations of this section are unavoidably com-

plicated because of the many degrees of freedom in the photo-
production problem. The essential results are summarized in Secs.
IV and V, so readers who wish to avoid the proliferation of super-
scripts and subscripts should skip Sec. III, or at least postpone
its reading.

The Kroll-Ruderman result' is contained in the e a

part of (21), which is pure s-wave. Equation (16) may
may then be rewritten

T,t(22)Beg, (22) x2 t(l)T, (22)
t3-'. (q) =~."'(q) —2 +

E~ Q)q z6 +n+ Piq

(22)
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becomes

YJ 1 t." kiq*(&u„)Mg (cu„)
Mg (co,) =—+— dM„p'8'(p)

COg %' JI CO~ COq Z6

MJi ki J(My)
+QCgg, (25)

where
pi+y~ (—4/3) 7=1/2

7~=f.
2 E 2/3 ] J=3/2

~-1/3 4/3&
!CJJ'

E 2/3 1/3)
(27)

and hi+(&v„) is defined by (I-32) and (I-34).
It is useful now as before to introduce a function of

a complex variable. Ke define the real analytic function
Mgs(z) by the following properties:

(A) The limit of M~s(z) as z +cv~+ie —is Mgs(~„)
=Rq (co~) e"iq(a&„), w'here Sic is the scattering phase
shift for isotopic spin —,

' and angular momentum J at
energy co„and E&8 is real.

(B) Qg Cgg Mg s(z)=Mgs( z). —
(C) Mgs(z) has a simple pole at the origin of residue

yq. LNote that Pq C~~ yg y~, so that——(—C) is con-
sistent with (B).j

(D) At infinity Mz (z) goes like 1/z.
(E) Mgs(z) has branch points at z=+1, with cuts

out to & 00 along the positive and negative real axes.
There are no other singularities.

Using arguments analogous to those of Sec. (III-D)
in the preceding paper, we may write

()
(28)

X+Z

1 !" Fg (x) Gg x-
Mgs(z) =—+— dx +

7l $ S S

where Fg (x) and Gq (x) are real weighting functions
related to the jump in M&~ in going across the positive
and negative real axes, respectively. In particular,

2zFzs(~ ) Mzs(~~+is) Mzs(~~ ze) (29)—
which by condition (A) above leads to

Fj ((vy) =RJ (My) sinbiJ((oy) ~ (30)

Use of the crossing condition (B) leads in a similar way
to

Ggs((a, ) =Pg. Cg~.Rg s(co„) sinb, g ((o„). (31)

If the relation (I-30) is again recalled, one sees that we
have now produced Eq. (25) exactly. Thus (25) is
equivalent to the conditions (A) to (E) above and
satisfaction of these conditions solves our problem.

All conditions except the crossing condition (B) are
immediately satisQ. ed by the choice,

1 Z
" p'iI'(p) Eg ((o )

M ps(z) =— 1+— ' da)
J , (32)

Z gig(Z) 7I i (d& M&+Z

We turn now to Eq. (22) for the photoproduction
amplitude generated by j and begin by separating out
the p-wave part of the inhomogeneous term, Kzio'(q):

e„f,
SCI, &'~(q) = (r2~ 1 ~l~r2) {FM(k,q) (~X q) (kX e)

(4~,k) &

+FQ(k,q)E(a')(~ &)+(» 1)(~')j)

where
+non p-wave terms, (33)

3 2 1—u' (1+v~
F~(k,q) = — log l

8kq N N' (1—~&

1 cog

Fu(k, q) =———Fir(k, q),
k' k'

n= 2qk/((o, '+k').

(34)

(35)

(36)

The two functions J&'~ and Fq correspond respectively
to magnetic dipole and electric quadrupole transitions.
As has been noted before, the non p-wave parts of the
photoproduction amplitude are given exactly by
XI, 'OI(q). That is to say, if (33) is substituted into Eq.
(22) it is only the p-wave part which need concern us.
Furthermore, the separation into magnetic dipole and
electric quadrupole parts corresponds to a distinction
between an antisymmetric tensor, e;k, —e;k, , and a
symmetric tensor, e,k, +e,k;, a distinction which is
maintained in the sum over states of Eq. (22). We
therefore can obtain uncoupled equations for the sepa-
rate magnetic dipole and electric quadrupole ampli-
tudes.

The electric quadrupole amplitude contains only
angular momentum ~ but both —,

' and —,
' isotopic spins.

The magnetic dipole on the other hand contains all
four states. In analogy to (23), we write

KI,~(q) =non P-wave part of %i&0' (q)

+ QF M (k,q)
(4a)qk)& =i

z
+ [(q.e)(ir ir+ (q ir)(e e)]

(4(v,k) l

XP &rQr (k,q), (37)

where giz(z) has been defined by (I-41), and Kzs(a&~)
is a real function as yet undetermined. The weighting
function Egs(&o„) must be chosen so as to satisfy the
crossing condition. Expanding in a power series and
keeping only the 6rst term, we find

8 (1iZ,s( „)=-f'! I+O(f).
3 Eii

The problem of finding a general expression for Egs(~„)
has not been solved.
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where the I' 's are defined by Eq. (I-33) for an initial
momentum IrXe and initial charge state 3, and where

=1 n r 1P(7—&) 37q7 3) E(7—&) —v@3 37q7 3. (38)

00

Qr (k,q) =~rFo(k, q)+ d~-.p'i'(p)

The first sum in (37) evidently contains the magnetic
dipole terms, the second the electric quadrupole. The
Q 's and M 's are functions of the magnitudes of k and
q. As in the scattering case %~3 ——3f3~, so for the
magnetic dipole part of the problem we may confine
our attention to the three functions M'~ =M ~~,
Mg ——Mrg ——Mii, Mg =Mug .

Substituting (37) into (22) yields the following
equations for the M 's and Q 's:

BQ
i has no poles in the complex plane.m-I

)Q+
(D) goes like 1jz at ~.

8M

(E)
8Q has branch points at z=&1, with cuts

along the positive and negative real axis
bM to &~, and no other singularities.

& r (z)

The proof that the analytic functions so defined
satisfy Eqs. (39) and (41) follows the by now familiar
pattern and will not be repeated here. The satisfaction
of all the conditions except (8) is trivial, as usual. We
find

kza*(~ )Qr (k,p) Qr *(k,p)kz a(~„)—P &rr
CO~ GDq

—Z6

X (39) &z~ I'" p'p'(p) Fo(k,p) Grzz(k, p)
'

7z &i +&a da)„gz +, (43)
zrgrs(z) ~ i co„. ~„—z ar~+z

where Czz is the same matrix as defined by Eq. (27),
a

(2l
(40)

p'v'(p) Fir(k, p) G~ (k,p)
da)~ ( +,(44)

erg~(z) & i (o„a),—z a)„+z

00

M- (»q)= 5-F~(»q)+ ~d~.p-'~'(p)

and kza(co„) is defined by (I-32) and (I-34). Similarly, where the unknown functions Goz and G~ are to be
the equation for 3f is determined to satisfy the crossing theorem, condition

(13)
If one expands Go and Gpr in a power series in f',

one finds for the first-order terms:

k *(&o„)M (k,p) Mp *(k,p)kp(cu„)+P A.p
co~ Mq i6 p My+Mq

(41) and
G (k,p)= rpF (k,p)—jo(f')
G -(k,p) =f-F-(k,p)+0(f'),

where A,p is the matrix defined by (I-36) and

( 4/3 iS-='f
I

-2I3 I.( 1r'3 ) (42)

As in the case of K~P(q), it is clear that Eqs. (39)
and (41) serve to define analytic functions whose
limits on the positive real axis are the meson production
amplitudes.

We thus introduce the five real analytic functions
8Qz (z) and BM (z), where the dependence on the
photon energy k has been suppressed. These have the
following properties:

8Qz (z) + rlzFq(k, q)
(A) Lim.+*' 8M (z) + $ Fzz(k, q)
and

Qz (k,q)

M. (k,q)

Qr (k,q) expLic„(~,))
has the same phase as

M (k,q) expLib ((u,)j
(I1) E'&-Q'. ()=-~Q"(- ),

QpA pbMp (z)=8M (—z).

where
t'Oq
E —i

General expressions for G@7 and G~ have not bee~
obtained.

IV. SIMPLE APPROXIMATION FOR THE COMPLETE
PHOTOPRODUCTION AMPLITUDE

We have now presented a recipe for evaluation of the
photoproduction amplitude according to the static
model in the one-meson approximation. In this section,
we wish to point out that certain parts of this amplitude
are independent of the details of our model and thus
stand on a particularly firm basis. Fortunately these
parts also happen to be the dominant ones, so that it is
possible to write down a relatively simple and reliable
formula for the total amplitude.

The first of the simple parts is of course Kl, v(q), given
by Eq. (9), which actually is more general than the
one-meson approximation. This result is made even
simpler if only the 3—3 part of the scattering amplitude
is"retained. Our motivation 'for omitting the "small"
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where g„=2.78 and g„=—1.91 are the nucleon mag-
netic moments in units of the nuclear magneton.

The second of the simple terms is 3C&(", given by Eq.
(20), which we rewrite here for convenience:

—Z8„„(7 3vq
—rgv'3P~ "'(q) =

(4e~,k) & E 2 )
Le (q—k))(q e)-

X ea—2
(k—q)'+~'

(46)

We now wish to argue that the sum of (45) and (46)
in the low-energy region (k & 2@) is a good first approxi-
mation to the total amplitude. Let us recall the terms
omitted.

First there is Xs as given by Eq. (12). The principal
justification for its omission is that the coefFicient

s(p~+piv), which occurs in this term, is five times
smaller than —', (pp —piv), which occurs in Xv; also the
resonant 3—3 state does not occur in Xs at all. Quanti-
tative estimates based on a power-series evaluation of
Eq. (32) bear out these qualitative arguments. Neglect
of BCs causes an error of 20% in the P-wave amplitude
near threshold (k= p) and less than 10% near resonance
(k=2'). An experimental measurement which might
somehow select the p-wave photoproduction amplitude
produced by the isotopic scalar part of the current
would of course not tolerate neglect of X',~.

We found in Sec. III that Ki (q) could be written in
the form

54, (q)=X&&s~(q)+ (P F 8M (k,q)
(4e~,k) l

+sL(q')(~ k)+(q k)(~')) Z I'IRAQ'(k q)&
1=(

where the projection operators P and Pz are dined
by (38) and the preceding sentence. Here 5M and BQ
stand for magnetic dipole and electric quadrupole
respectively.

' G. Salzman, Phys. Rev. 99, 619 (1955).

phase shifts is twofold: (1) Other terms which we
propose to neglect here (e.g. , from BM ) contribute
about as much to the nonresonant states as does Xi,v(q).
(2) Of the p-wave phase shifts, only 8» is known experi-
mentally. In addition, we shall set the form factor
F(k') in Eq. (7) equal to unity, since both theory' and
the Stanford experiments' indicate a variation of only

20% over the energy region which we shall consider.
Thus we have from (7) and from (I-32) and (I-34):

e f, (g„—g~)
5~' '(q) = , I ~(5. —l ~ )

(4(v,k)' 0 4Mf' )
e"» sinb33

X[2q (kXe) —ia qX(kXa)), (45)
q8

Our proposal, then, is to neglect 83II and 8Q. This
neglect is made on an entirely diferent basis from that
of Ks. Consider bM as given by Eq. (44) and compare
to the corresponding term in 3C&&", which by Eq. (41)
is $ F~. It is to be expected that the unknown part of
(44) which is proportional to Gsr is of the same order
as the known part which is proportional to F~. Thus
we may compare b3I to K&&" by comparing

1
t
" Psv'(P) Fsr(k, P)

de&
g~(edq) r Ij i (dy My Ms ze

(47)

to Fsr(k, q). The integral in (47) is only logarithmically
dependent on the cut-oG energy, co,„, so one may say
that the ratio of 8M to Kiis' is ~li $g (ei,)) ', which
is always small except for the (3,3) state near resonance.
An estimate of bM33 near resonance based on a power
series evaluation of Eq. (44) shows that this term,
while not necessarily negligible compared to the (3,3)
part of K~ &", is never more than 20% of Kq v

as given by Eq. (45). Entirely similar considerations
also justify the neglect of 8Q . The physical reason
behind the smallness of these correction terms to BCI, (')

might be stated as follows: Kl, &" itself represents the
absorption of the incident photon by a virtual pion
(already present) in the field of the physical nucleon.
For reasons of kinematics and the uncertainty prin-
ciple, this absorption takes place on the average at a
large distance, of the order p ', from the origin and the
meson has a good chance to escape without further
interaction. Thus the terms RV and 8Q which repre-
sent the secondary scattering of these mesons are small.
This situation is to be contrasted to the absorption of
the photon by the nucleon magnetic moment. This
mechanism produces mesons much closer to the origin,
and these mesons then undergo strong secondary scat-
tering. Mathematically the diGerence shows up in the
fact that the integral in (47) has only a logarithmic
cut-oG dependence while the corresponding integrals in
K~ and K~ are linearly dependent on co, .

It is unfortunately the case that although BC&&') is
large compared to 8M and 8Q (except in the 3—3 state),
and quite comparable to BC~, there is an enormous
coherence in the various parts of 3@~('), which conspires
to suppress the effects of this term in most experi-
mental measurements. For example, X~&0) gives no
contribution whatsoever to neutral photoproduction.
Even for charged photopions, the observable eGects of
K&&'& (except for the s-wave) are disappointingly small.
The s—p interference, for example, vanishes completely
and the p' terms are largely canceled by s—d and s—s
interference. Thus the non s-wave parts of KI,&",

although fully as large as K~, are hard to find experi-
mentally.

In spite of these experimental difBculties the ad-
vantages of keeping only K&&o) and K~ are great. These
terms depend neither on the cutoff nor the one-meson
approximation. KI,&" certainly is correct even in a
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relativistic theory and BC~ has such a general appearance
that we would be surprised to find it much altered by a
relativistic treatment. Even if the accuracy of the
experimental information requires the inclusion of other
terms, one feels confident that terms corresponding to
SC~&'& and K~ must be present in nature and must be
important. In the following section, therefore, we shall
compare the sum of (45) and (46) to experiment.

Our approach ideally would be to obtain, from the
experimental information, amplitudes in the sense of
Watson' and then to compare these experimental am-
plitudes with theory. Such a procedure would circum-
vent the difficulties due to cancellations mentioned
above. Unfortunately the accuracy of the data does
not yet permit a complete analysis, so we shall be
forced to compromise. The spirit of our approach
however will be a comparison of amplitudes, not of
cross sections.

A word may be in order at this point to relate the
results of this paper to earlier and less complete results
reported by one of the authors. "Formulas (6) and (6')
of the earlier paper are almost equivalent to the sum
of Eqs. (45) and (46) above. The differences are: (1)The
terms proportional to M~ in the earlier work represent
the sum of the 3—3 part of Kv plus hM33 . An attempt
was made by Salzman" to calculate 8M» but it is now
believed that only the order of magnitude of the result
is reliable. Salzman also calculated X,~, but by less
reliable methods than used here, and got somewhat
too small a value. (2) The terms in the earlier paper
proportional to E2 correspond to 8Q3, here. Again
Salzman's estimate is only good for an order of mag-
nitude and possibly for sign. At the time of the earlier
work it was expected that 8M33 and 8Q33 would be
very important and GC~ a minor term, and although
calculations gave just the opposite result there was
great reluctance to omit terms which had been expected
to dominate. Nevertheless, the numerical calculations
reported in the earlier paper correspond to small values
for 8&33~ and 8Q33 and to a value for 3'.v, which is not
seriously wrong. The success of the previous comparison
to experiment is therefore comparable to what we
achieve here.

V. COMPARISON WITH EXPERIMENT

A. Charged s-Wave Amylitude at Threshold
and the Couyling Constant

It was first pointed out by Kroll and Ruderman' that
the s-wave amplitude for charged photomeson pro-
duction at threshold (q=0) is very simply related to
the renormalized coupling constant. Their result is
represented by the first term in the bracket of formula

K. M. Watson, Phys. Rev. 98, 234 (1955}.' G. F. Chew, Phys. Rev. 94, 1748 (1954}."F. Salzman (private communication).

f'= 0.073&0.007, (49)

a result in satisfactory agreement with that obtained
in the preceding paper from measurements of pion-
nucleon scattering.

B. Neutral p-Wave Amplitude

Since 3C~~" vanishes for neutral production, one has
a direct test of Kv in the neutral P-wave amplitude.
Furthermore, it is known experimentally that the
neutral s-wave amplitude is small, so that the total
cross section is a good measure of the p-wave amplitude.
Finally, we note that the neglect of the small p-phase
shifts should be least important at the energy of the
3—3 resonance, and so make our first test of formula (45)
by asking what value of the coefficient

(50)

which occurs in (45) is needed to reproduce the meas-
ured total neutral production cross section at a photon
lab energy of 325 Mev, where b» ——90'. Using California
Institute of Technology data, "we find

Cp =0.050&0.003,

while the theoretical value, using f as given by (49), is

Cp ——0.06%0.01.

It is known from phenomenological analyses' that an
amplitude of the form (45) leads to the correct energy
dependence for the total neutral cross section. A simple
and direct check of this point can be made by noting
that Eq. (9) implies the following relation between the
total neutral photomeson cross section 0-~ p and the
total neutral-to-neutral scattering cross section Op p at

'~ G. Bernardini (private communication),
"D.C. Oakley and R. L. Walker, Phys. Rev. (to be published).

(46) which for charged photomeson production becomes

ze „e„
aV2 0 e,

(4(u,k) l

the plus, sign going with positive mesons and the minus
with negative. Kroll and Ruderman also showed that
the first-order relativistic corrections to (48), i.e., terms
of order 1/M where M is the nucleon mass, are equal
for positive and negative production. One thus may
obtain the experimental amplitude corresponding to
(48) correct to order 1/3P by using as a basis the average
of the positive and negative production cross sections
at threshold. Using data from both hydrogen and
deuterium targets and making appropriate corrections
for Coulomb effects, Bernardini" finds that the value of
the coupling constant needed to fit the threshold experi-
ments is
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the same energy: asymmetry is somewhat smaller than that predicted,
but the discrepancy could easily be due to the neglect
of the small phase shifts and 8Q .

Koester and Mills" have recently verified this relation
quantitatively for energies up to the resonance.

The angular distribution of neutral photopions on the
other hand is not so well described by (45) which leads
to the familiar energy-independent form, 2+3 sins8.
Deviations from this distribution due to 8Q and to the
J=~ magnetic dipole transitions will be much more
important, because of interference, than the corre-
sponding deviations in the total cross section, where
interference terms cancel out.

C. Charged p-Wave Amplitude

At the 3—3 resonance energy, formulas (45) and (46)
predict that the total charged cross section is very
closely the sum of the contribution from (45), which is
p-wave, and the first part of (46), which is s-wave and
known from the threshold measurement as discussed
above. Interference terms drop out. We may thus test
the charged p-wave predicted by (45) if we subtract
the s-wave part from the measured total cross section
at 325-Mev photon lab energy. Combining in this way
the California Institute of Technology measurement of
the resonance cross section with the Illinois measure-
ment of the threshold cross section, we 6nd that the
value of the coefficient Cs deffned by (50) should be
0.046. As noted above the theoretical value is 0.06. The
sign of the charged p-wave amplitude is checked by the
asymmetry in the angular distribution at energies below
the 3—3 resonance. The interference between (45) and
the s-wave part of (46) should produce preferentially
backward positive photopions, and such an asymmetry
actually is observed. The magnitude of the observed

"L.J. Koester and F. Mills, Phys. Rev. (to be published).

D. Nonthreshold Part of KI, &')

It will be noticed that we have as yet made no test
of the second part of Xs &s&, which contains s,p and higher
partial waves; in fact we have ignored any contributions
which this term might make to the charged cross section.
Explicit calculation shows that these contributions are
almost everywhere small, even though the amplitude
itself is large. The reasons for this unusual situation
are as follows: (1) The low-energy p part of this term
does not interfere with the main s-wave term for
unpolarized target nucleons. (2) interference of the s
and d parts with the main s-wave term almost cancels
out the square of the p-wave except very near threshold.
Here a negative term is of some importance. Relative
to the main s-wave contribution one Ands

sin'8

2k4 Li —(q/k) cos8is
(52)

The negative term actually determines the q' de-
pendence near threshold but it is unimportant for q &1.
If the excitation function can be accurately measured
a minimum in the square of the matrix element should
be found 10—15 Mev above threshold. Bernardini" has
assumed the form (52) in determining the coupling
constant.

Another manifestation of the second part of X~&0~ is
its interference with X,~ which leads to a term with
angular dependence ~sin'0 and phase-shift dependence
~sin833 cos833, This term has its maximum near b33 45'
and thus should shift the maximum in the charged total
cross section down in energy relative to the neutral.
Such a shift has been experimentally observed, although
its magnitude is too small to allow a quantitative test
of the theory.


