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Effective-Range Approach to the Low-Energy p-Wave Pion-Nucleon Interaction
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The theory of p-wave pion-nucleon scattering is reexamined using the formalism recently proposed by
one of the authors (F.E.L.). On the basis of the cut-off Yukawa theory without nuclear recoil it is found,
for not too high values of the coupling constant, that: (a) For each p-wave phase shift a certain function
of the cotangent should be approximately linear at low energies and should extrapolate to the Born approxi-
mation at zero total energy. The value of the renormalized unrationalized coupling constant determined
in this way from experiment is fe= 0.08. A special feature of the predicted energy dependence of the phase
shifts is that 833 is positive and the other P phase shifts are negative. (b) The so-called "crossing theorem"
requires a relation between the four P phase shifts, so that in addition to the coupling constant only two
further constants are needed to completely specify the low-energy behavior. (c) The direction of the energy
variation in the (3,3) state is such that a resonance will occur for a sufficiently large cut-off io,„.Rough
estimates indicate that co, =6 will produce a resonance at the energy required by experiment. It is argued
that the results (a) and (b) are very probably also consequences of a relativistic theory but that (c) may
not be.

I. INTRODUCTION

'HE ability of the Yukawa theory to describe
quantitatively the pion-nucleon interaction is

still uncertain. The recent discovery of new particles,
the hyperons and E-mesons, makes it unlikely that
this theory can be valid in the multi-Bev energy region,
but there still remains an interesting and important
question: Can a theory of the Yukawa type quantita-
tively correlate experiments in the sub-Bev region,
below the threshold for production of "curious" parti-
cles? Recently, it has been shown' that a crude static
model of the pion-nucleon inteiaction, based on the
Yukawa idea, is quite powerful in correlating certain
experiments; however, the relation of the model to a
true theory has been obscure. One of the main purposes
of this paper and the one following (which will be
concerned with photomeson production) is to show
that the most important predictions of the model are
actually independent of its details and thus may also
be predictions of a "true" theory.

The results to be presented are based on a new set of
equations' which can be applied both to the static model
and to the relativistic Yukawa theory, and which
exhibit the low-energy properties of both in a clear and
useful way. Some new and quite general predictions
about p-wave pion-nucleon scattering have been
achieved without explicit solution of the equations,
and the second purpose of this paper is to report these
new predictions.

Throughout the first six sections of this paper,
arguments and derivations will be given in terms of the
static model. The simplification achieved by eliminating
antinucleons and recoil is enormous. In Sec. II, a new
and simplified derivation of the equations for meson
scattering is presented. In Sec. III, those properties of

' G. F. Chew, Phys. Rev. 95, 1669 (1954).'F. E. Low, Phys. Rev. 97, 1392 (1955). Closely related
equations have also been derived by Lehmann, Symanzik, and
Zimmerman, Nuovo cimento I, 1 (1955).

the scattering are discussed which can be deduced
without explicit solution of the equations. Section IV
deals with the equations in what might be called the
"one-meson approximation. " In Sec. V, an eGective-
range treatment of the scattering problem is presented.
Section VI deals with certain total-cross-section sum
rules, including a sum rule for the renormalization
constants of the theory. Finally, in Sec. VII, we discuss
the possible extension of our results to more complicated
cases such as the relativistic pseudoscalar theory.

where

and

H =Ho+HI,

Hr =Qs &s"'as+ I'd" tao',

Ho=Ps &ataaooi,

(2)

(3)

Vito'=if'„&&oi(er lr/v2~oo)rjgv(k). (4)

Here aj,t and aj, are, respectively, creation and annihi-
lation operators for single mesons, coo ——(1+k')&, er is
the nucleon spin vector, and zI, is the 4th component
of the nucleon isotopic spin operator. In our notation,
the meson quantum numbers are all described by a
single symbol (k) which includes the three components
of momentum and the isotopic spin. Also, f&„l&o' is the
rationalized but unrenormalized coupling constant.

The Hamiltonian (1) has a complete set of eigenstates
0 „.These states include the four single-nucleon states

G. C. Kick, Revs. Modern Phys. 2?, 339 (1955).
4 We take A=c= p.=1;p, is the meson rest mass.

IL DERIVATION OF THE SCATTERING EQUATIONS

We present here a much simpler derivation of the
scattering equations than is given in reference 2. We
follow a method suggested by Wick' which unfortu-
nately applies to the fixed-source theory only. For a
derivation of the appropriate expression when nucleon
recoil is to be included, see reference 2.

We take as our Hamiltonian'
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%p (we suppress the spin and isotopic spin indices),
the one-meson states +„ two-meson states, etc. We
are of course particularly interested in the one-meson
states with outgoing waves, 4,(+). These are solutions
of the Schrodinger equation

wave solution appears explicitly:

with
(H —E,)%,+t&=0,

Eq= Ep+o&q,

=+ i—&+
H Eq+ie H Eq ie

=+,t-& —2~id (H—E,)V,&PÃp.

, V (o)@,

where Eo is the single-nucleon energy. Following Wick,
we set

+ i+i —a t+p+&(+&

where

Substitution of (11) into (10) clearly leads to the
desired result (9).

The total cross section for mesons of momentum
and isotopic spin q is then

(H—E,)x&+& = —(H—E,)a,%p.

ttH p, a,t)=co,a, t

f&r,aqt j= Vq"',

(H Eq)aq@'—p= Uq 4'p

2x
o,=—g 8 (E.—E,) ( T, (tt) (

',Now (12)

and
where t&q= q/cpq is the incident meson velocity.

It will be seen by (9) that for E,=E, the quantity
Tq(rt) is the conventional T matrix of scattering theory,
but for Eq/E„ this is no longer the case. Tq(rt) remains
everywhere closely related to the energy-conserving T
matrix at energy E„, since it depends on the variable q
only in a trivial way. In contrast, the conventional T
matrix usually depends on its two indices in a non-
factorable way and its values off and on the energy
shell are not simply related. The trivial dependence of
Tq(n) on the variable q is an important simplification
achieved by the present method of calculation.

In order to investigate the properties of T,(p), we
note that since%'~( —) can be written

so that

and
(H E )X(+&= U «&@

Dividing through by (H —E,), we have

X(+)— y (o)@,
II—E,—i e

where the —ie is inserted to produce outgoing waves
in &t&+&.' The reader will recall that 1/(a —ie) =P(1/a)
+isa (a), ' where P (1/a) stands for the Cauchy principal
value. We rewrite Eq. (7) as:

y (0)@,
H —Es+ie

+„(—) =a„tCO— (13)
1

x'+& = —2 &)(+ ', V "'Irp), (8) it follows that
~ E„—E,—ie

where the 4„(—' are the complete orthonormal set of
incoming wave eigenstates. We assume in writing Kq.
(8) that there are no bound states.

The next problem is to relate the result (8) to the
scattering matrix. Wick~ has been able to show that the
S-matrix is directly related to the coefFicient of 0 „(—)

in the sum in (8) by the equation

(qt~Stq)=o q 2qri8(E, E„)T,(n), — —(9)

where Tq(qt)= (4' t &, Vq«'%p).
The following simple proof of (9) was kindly com-

municated to us by B. S. de Witt. The starting point
is a well-known formula for the S-matrix:

&nl~l q&= (+-'-',+."')
Now rewrite 4', (+) so that the corresponding incoming

' B. Lippmann and J. Schwinger, Phys. Rev. 79, 469 (1950).
P P. A. M. Dirac, The PrinciPles of Quantum mechanics (Oxford

University Press, New York, 1947), third edition, p. 198.
q G. C. Wick, kevs. Modern Phys. 27, 339 (1955}.

T,(P) = (a„t+p,V,&P&@p)

V„«&e„v,«&op
~

(14)
& H Eo+ie — )

= (@p,V,&P&a„%p)

—
i 4o, V„"' V,"'4'p i, (15)
&t' 1

H —E„—

where we have made use of the fact that V,(" and a„
commute.

Let us normalize H (by subtracting the nucleon
self-energy) so that

II%'0= Q,

II%„=co„%'„,

etc. The annihilation operator a„may be eliminated
from the first term of (15) by making use of its com-
mutator with the Hamiltonian:

L&m» j=~.a.+V'"'-
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Thus,

OI

so that

La~H —Ha~ —o)„a„—V~(s) t]+()= 0

(H+o)„)a„%()=—V„(s)%(),

p) I
4, V (o)t U, '"4'e

I

H o)& se

1
U' (())

H+o)p
U„(')% ~I.

)
Finally, since U„(')&= —V„('), we have

u~+p= — U~(P) ~% p,
H+o)~

and Eq. (15) becomes

(19)

(20)

Thus, if indices corresponding to initial and final
nucleon states are as usual suppressed, Eq. (22) may
be re-expressed as

T„t(e)T,(ri) T,'(I)T,(rs)
T.(p)= Z—, +

E~ o)y Ze Es+(dp
(25)

a form of the equation which exhibits clearly its most
important general properties.

III. GENERAL PROPERTIES OF THE EQUATION

A. Unitarity of the S-Matrix

We begin by examining the well-known requirement
that the scattering matrix shall be unitary. From the
relation (9), it follows that the unitarity condition
S~S=1 is equivalent to the following statement:

(p) —
I
+ V (0) U (0)

H o)& se

+U' (e)

H+o) ~

V„(') @() I. (21)

T~ t (q) T, (p) =—2z i +„()(E„—o) v) T„t(n) Tv (ri), (26)

when co„=co,=co. If one takes the conjugate transpose
of (25) to obtain T„t(q), the only change to occur on
the right-hand side is the replacement of —ie in the
first denominator by +is. Then, since

T, (rs) = (+.(—),V,(')+s), (23)

already introduced in Eq. (9), and the complex conju-
gate matrix element,

T,*(ts)= (V (o)@()@ (—))
= (+s V (())t@ (—))

(+s U' (())+ (—))

Even more notational simplification results if we con-
sider (22) to be an operator equation with respect to
the nucleon spin and isotopic spin variables. To illus-
trate how this works out, we write these variables
explicitly in a typical matrix element. Take a final
state P, initial state n, and 4 intermediate states N„r,
p=1, - 4. Then

Z,&~l v.(') l,»&,v I U, (')
I &

= —Z,&~l T.(~) I~&*&~ I T, (N) I-&
= —&r&8I T"(~& l»&v I T, (N) I ~&

= —WIT.t( )T,( ) &.

We may write Eq. (21) in a somewhat more familiar
form by reintroducing the complete orthonormal set of
states%' &

—):

Ta(p) =Z (+o,V "''P ' ')(P ' ' U '"+o)((E.—~n —se)

(@ V (s)@ (—))(@„(—) V (o)@ )((E„+o)„) (22)

Although Eq. (22) is strongly reminiscent of second-
order perturbation theory, it is an exact result. The
difference from perturbation theory lies, of course, in
the use of initial, intermediate, and final states which
are exact eigenstates of the total Hamiltonian H rather
than of the free Hamiltonian Hp.

A more compact writing of (22) evidently is achieved

by the use of the matrix element,

= 2m id(E —o)),
Es o)—1e E—~—o)+se

B. Crossing Theorem

Gell-Mann and Goldberger' have pointed out an
important symmetry possessed by theories of the
Yukawa type. In terms of Feynman diagrams for
meson-nucleon scattering, one may express this sym-
metry by saying that for any given diagram, another
must exist which is obtained from the first by exchang-
ing the incoming and outgoing meson lines. This
exchange is not a simple time reversal because the
nucleon line is not inverted.

In the present formulation of the theory this "crossing
symmetry, " as it is sometimes called, can be simply
expressed in terms of a certain matrix function of a
complex variable, s, which, we de6ne by

T.'(~)T,(~) T,t(N) T,(~)-
t. (Z)= —2 +

E —8 EN,+Z
(27)

8 M. Gell-Mann and M. L. Goldberger, in Proceedings of the
Iiolrth Annla/ Rochester Conference on High Energy 1VNclear
Physics (University of Rochester Press, Rochester, 1954).

the unitarity condition (26) is evidently satisfied by
any matrix function satisfying (25). It would seem,
therefore, that one novel feature of (25), the quadratic
rather than linear dependence on T of the right-hand

. side, is largely a reflection of the unitarity requirement.
The second term of the right-hand side, however, has
nothing to do with unitarity. Its presence has rather
to do with a second and a quite diferent general
property of the theory, which we discuss next.
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Note that t,„(z) is a Hermitian matrix function of s in
the sense that

Note further that the dependence on both p and g is
now trivial. Only the dependence on z is unknown.

Clearly, the limit of t,„(z) as s approaches the
positive real axis from above (s—+&a„+is) is T,(p); but
for an expression of the crossing symmetry we must
keep the functional dependence on p and s separate.
The symmetry is expressed by the relation

D. Behavior at In6nity

It is clear from inspection of (27) that as z—+~,
t,„(z) behaves like 1/z. It is an interesting but not very
useful fact that the coefficient of 1/s at infinity is a
multiple of the residue at the origin which is inde-
pendent of q and p and of the nucleon variables. The
proof of this relation is given by reference back to
Eq. (22). As z (or &o~) approaches infinity, the de-
pendence on the energy eigenvalue E„ in the denomi-
nator is removed. and closure may be applied to evaluate
the sum over states, giving

and it becomes apparent that the reason for the second
term in (27) is precisely to satisfy (28).

C. Pole of the Function f,, „(z) at the Origin

It is helpful to get clearly in mind the nature and
location of the singularities of the function t,„(s) This.
is possible from inspection of (27) because the energy
eigenvalues of the Hamiltonian, E„, are known even
though the eigenfunctions are not.

The lowest eigenvalue (after the self-energy sub-
traction) is zero, belonging to the four zero-meson
states. These states, then give rise to a simple pole at
s=0, with residue E,„= LT„(10)T,( 0)

—T,l(0)T„(0)).
This statement is an analog of the Kroll-Ruderman
theorem' and provides a method for measuring the
coupling constant by scattering experiments. The point
is that T, (0) contains the zero-meson wave functions
only in a matrix element,

(4's& &,a.,r,%'s&e&),

which for reasons of invariance must be a q-, 0.-, and
P-independent multiple, say Z, of the matrix element

where I and ut& are normalized Pauli spinors ("bare-
nucleon" wave functions). If we now der&e f&„&

——Zf&,&'s&

and call fl, &
the renormalized (rationalized) coupling

constant, it follows that

T,(0)= V„

where Vs is obtained from V, 's& by replacing f&„&is& by
f&,&. The function t,„(s) in the neighborhood of s=0 is
therefore completely determined by the renormalized
coupling constant and vice versa. Since our theory is a
finite one, we are of course free to define the coupling
constant in the most convenient way. The present
definition coincides with those previously given by
Chew" and Lee"; most important, it is also appropriate
(in the sense of the Kroll-Ruderman theorem) to the
calculation of threshold photomeson production.

' N. M. Kroll and M. A. Rnderman, Phys. Rev. 93, 233 (1954).
+ G. F. Chew, Phys. Rev. 94, 1748 (1954)."T.D. Lee, Phys. Rev. 95, 1329 (1954).

which is to be compared to the residue at the origin,

It.,„=—LV, V $.

By using the standard commutation properties of the
r's and r's, these two coefficients are easily shown to
differ only by a factor which is independent of p and q
as well as of the nucleon spin and isotopic spin, but
the factor is not unity. The point is that here one is
dealing essentially with matrix elements of 0-, or z,
rather than the product r,7., as in the preceding section.

E. Location of Branch Points and Cuts

R,„r" F,„(x') G x'

x' —z

ss( )
29

x'+z

where F,„(x)and G,~(x) are weighting functions defined
for x&~ 1.Evidently the functions F~„and G,„are given
by the jurnp in the function t~„going across the real
axis in the right and left half-planes, respectively. ~e

From the form of (27) it is clear that, in addition to
the pole at the origin, all the other singularities of (27)
also lie along the real axis. The next lowest eigenvalue
of the energy corresponds to a single meson at rest;
then there is a continuous distribution in energy of
one-meson states up to +De. At an energy equal to
two meson rest masses, a continuous distribution of
two-meson states begins, and so on, for all higher
numbers of mesons. It follows that, because of the
one-meson states, the function t,„(s)has a branch point
at z=1 and a cut along the real axis for z&1. The
two-meson states produce a branch point at z=2 and
a cut for z) 2, etc. The "crossed" terms in (27) obvi-
ously produce similar singularities in the left half-plane.

It will now be shown that the conditions listed under
A, B, C, D, E, above, together with the factorability of
the T matrix which is implied by Eq. (9), are com-
pletely equivalent to Eq. (27). Consider the condition
that except for a simple pole of residue R„, at the
origin all the singularities of t,~(z) are confined to
branch points with cuts running along the real axis for
z)+1 and z( —1. If ts~(s) goes like 1/s at infinity,
it may be expanded in the form
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have, in fact,

2siF„(x)= lim t,„(s)—lim t,„(s)

for g~&1, and

(30)

states of total angular momentum and isotopic spin.
In the subscript u= (2I,2J), I is the total isotopic spin
and J the total angular momentum.

The new functions h (s) are simply related to phase
shifts. Application of the unitarity condition shows that

2siG, „(x)= lim t,„()s —lim t,„(s), (31)
z~x+i e

where x is still ~&1. Now, if we define T,(p) as the
limit of i~( s) as s +o—i„+i& and further impose the
reality condition, t,~( )s= I~,t(s*), then (30) leads to

1
~-(~.)= P'. (P.) 2'—(v)1-.=-'

2~i
(30')

Imposing the crossing relation (28) allows (31) to be
written

G-( .) = .LT.(v) —T.'(P)1-.=-'
27ri

(31')

Finally the unitarity condition (26) transforms Eq.
(29) via (30') and (31') into our original Eq. (27) for
the special case co„=co,. The latter restriction is of no
consequence, however, since we have noted before
that one may move off the energy shell at will.

To summarize, if it is possible to 6nd a Hermitian
matrix function, t,~( ),swhich has a simple pole at the
origin of residue R,„, goes to zero like 1/s at ~, has
otherwise only branch points and cuts along the real
axis for s& 1 and s &1, and which satisfies unitarity as
well as the crossing relation, then one has a solution of
Eq. (27). Unfortunately, the formulation of the uni-
tarity condition involves multimeson (two-meson and
higher) states and cannot be written down on the basis
of a priori arguments in terms of t,~(s). However, if
multimeson states are neglected, as in the next section,
then the above conditions form a practical basis for
solving the scattering problem.

llm h„(s)=e" &"' sill(5 (p))/p'5'(p) (34)
Z~Qy+'4 e

h. (s) = P A.php( —s), (35)

where
1/9 —8/9 16/9

A= —2/9 7/9 4/9 .
4/9 4/9 1/9

(36)

The condition that t,„(s) be a Hermitian matrix
function of s implies that h (s) is a real function of s in
the sense that h, (s*)=h *(s).The boundary condition
at infinity is that h, behave like 1/s, while at the origin
h should have a simple pole of residue 3, where

—4
X =-'f' —1

2.
(37)

Here f' is the nonrationalized coupling constant. We
may at this point mention two useful properties of the
crossing matrix A p.

where the 8 (p) are real and identical with the con-
ventionally de6ned phase shifts for co„&~2. It is well
known that the scattering phase shifts of the (1,3) and
(3,1) states are equal in this theory, so we henceforth
confine our attention to the three functions h~ ——h~~,

h2 ——hg3 ——h3g, and h3 ——h33.
The conditions on the function f,„(s) given in the

preceding section may be translated into conditions on
the functions h (s). In addition to unitarity, which is
expressed by (34), we have the crossing relation

IV. ONE-MESON APPROXIMATION
Zp A-pApe=&-~, (38)

~-(s) = —s(V)s(p), Z &-(P,c)h.(s), (32)
(4(u (o,) l

where
&i=l ~ .( I)( q),
I'i3=3 ."L3P a—(» p)(» q) j,
I'3i=(&..—s . ,)(» 1)(» q),

-P33=(4.—s . .)L31 q —(» p)(» q)3.

(33)

The P 's are projection operators for the four eigen-

If we assume that the inelastic cross sections are
small compared to the elastic ones (for all values of
the energy) then, as a first approximation, the contri-
butions of multimeson states to the unitarity condition
(26) may be neglected. In this case it is convenient to
re-express the conditions on the matrix 3,„in terms of
phase shifts.

We set

(2) Qp A p)ip= —li . (39)

Finally, we require that all other singularities of h

be confined to two branch points at s= &1, with cuts
along the real axis to %~. This set of conditions is
equivalent to the following equations for h (&o):

h. ((o) =—+— d~,p's'(p)
GO 71 ~ COy M Z6

Ihp(~.) I'
+RA p (4o)

p M&+M

g-(s) =—Lh-(s) 3-' (41)

I.et us eliminate the pole at the origin by introducing
a new (real) function
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for op„& 1. The crossing relation becomes

3 1 1
Z &-k

gs(s) g-(—s)

where

—1/9 2/9 8/9
8= 8/9 -7/9 8/9 . (44)

8/9 2/9 —1/9,

Finally, consider the location of the singularities of

g (s). Clearly, just as for h (s), there are branch points
at s=&1 with cuts along the real axis to &~. If
h (s) has no zeros, these will be the only singularities
of g (s).

With f' suKciently small, there are certainly no
zeros in js (s). For this case, the boundary conditions
on g (s), together with the nature of its singularities,
imply that this function may be written

s l-" F.(x') G„(x')
g.(s) =1—— ~ dx' +

x s x+s
where F (x) and G (x) are real weighting functions
defined for x)~1. The functions F (x) and G (x) are
power series in f', whose coefficients are continuous
differentiable functions of the variable x. Since F (x)
gives the jump in g (s) in going across the real axis for
s~&1, the erst of the two weighting functions is com-
pletely determined by the unitarity condition (42):

The final condition to be satisfied is the crossing relation
(43), which is just sufhcient to determine the second
weighting function G (x). Thus, for values of f' which
are such that the power series for J'G (x)dx/(x+s)
converges, we have

l's (s)

X./s

s l doI, Psv'(P) s pd Pko'v'(P)
(47)

where

,"(p)
G-(~n) =p' II-(~.).

M&

For larger values of f', the function that replaces
J'H (P)dko~P's'/(ko~+s)a&~s in (47) must be determined

The boundary condition at s=0 is now that g (0)=1.
Furthermore, g behaves like a constant at infinity.
The unitarity condition (34) implies that

lI, p'
lim g. (s) — lim g.(s)= —2i v'(p), (42)

Z~rsly+ 'L 8 Z~COy

by analytic continuation. We have been unable to do
this for the symmetric pseudoscalar theory. "

It will be seen that in the region of convergence of
J'G (x)dx/(x+s) there can be no zeros of h (s), so that
the sign of the phase shifts must be the same as that
of their Born approximations.

It has been pointed out by Castillejo, Dalitz, and
Dyson" that (47) is probably not the only solution of
(40). The extra solutions found by them, however, are
not analytic continuations of the perturbation theory
power series, as is our expression (47). If one assumes
that the solution of the original field theoretic problem
is unique and is the analytic continuation of the power
series, then it is clear that our solution is the only one
of physical interest.

G. Salzman has solved Eq. (40) by a numerical
method which he will discuss in detail in a forthcoming
paper. Here we concentrate on features of the solutio~
which may be deduced from general considerations.

It should be noted that the real part of g is essentially
the cotangent of the phase shift. More precisely,

~-p'~'(p)
Reg. (ko„)= COtb. (kd,)

[the imaginary part of g (ko~) is fixed by (42)). It
seems natural in relating theory to experiment to
discuss as the primary experimental quantity the
right-hand side of (48). One is then led, by analogy to
the corresponding situation in nucleon-nucleon scat-
tering theory, to what might be called an "effective-
range" treatment of pion-nucleon scattering.

V. EFFECTIVE-RANGE APPROXIMATION

We consider

k dko„psv'(p)
Reg (ko)=1—co, —P

'

t 7i M& CO& CO

1 tdko~ H (ko„)+-,p"'(p) (49)
7l Ij M& ko&+kd

The effective range approximation is based on the
weak dependence of Reg (kd) on the ~ occurring in the
denominators of the integrands in (49). Neglect of this
dependence seems reasonable u priori for values of kd

which are small compared to co, , the maximum energy
electively allowed by the cutoff factor v(p), provided
only that 8'

(km~) maintains the type of smoothness
indicated by the first few terms of the power series.
One mould suppose the error incurred to be of the order
ko/a&, , which may not be excessive for pion kinetic

"It has been kindly pointed out to us by Dr. T. D. I.ee that
an exact solution of the one-meson approximation can be obtained
for the charged scalar theory, in which case one finds essentailly
P~= —X~, and the problem of analytic continuation becomes
trivial.

ks Castillejo, Dalitz, and Dyson, Phys. Rev. 101, 453 (1956).
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energies less than 200 Mev, since co, is in the neighbor-
hood of 1 Bev. Explicit calculation of the first integral
in (49) verifies this conjecture.

Referring back to (48), we see that the combination

1
I' (co )=—$1—r, to +E (o sj, (53)

the new quantity I' (coo) will be of the following form:

X P cot5 /&o„

can be written in the form

p' 1 3
r (co )=—cotb (co„)——+—(o„+ —2 &o,

(0~ co~ 2 +1

p (p 1 1 co&) 1 co&

X (
—l'og +——(+——

co~s &~ co„—p 2 sr ) 4 3sr
(52)

One can show" that to an accuracy of order 1/co

"S, J. Lindenbaum and L. C. L. Yuan, Phys. Rev. I00, 306
{&955).

's R. Serber and T. D. Lee (private communication). See also
Friedman, Lee, and Christian, Phys. Rev. 100, 1494 (1955).

'6A proof of this statement will be given in a forthcoming
review article by G. F. Chew, EacycloPcdsa of Physics PSpringer-
Verlag, Berlin (to be published)g, Vol. 43.

1—cor (co),

where s (co) is almost a constant for small &o. The
eGective-range approximation corresponds to a com-
plete neglect of the energy dependence of r (co). It can
be tested experimentally by plotting (ps/co) coQ (a)
against co. According to (50) and (51), one should find
a straight line with intercept at zero energy equal to

'. Lindenbaum and Yuan' have made such a plot
for ass (where, for reasons to be discussed in Sec. VII,
~o„has been replaced by co„*=~o~+p'/2M, 3II being the
nucleon mass). The expected linear dependence has
been found and the intercept leads to a value for the
renormalized (un rationalized) coupling constant of
fs=0.08.

The effective-range approximation that r (&o) =r (0)
for co&&~,„may seem superficially equivalent to the
statement that an expansion of r (co) in powers of co

has a radius of convergence &co,„.Such is not the
case, of course, because the branch points in g (z) at
s=~1 give a radius of convergence equal to 1. Serber
and Lee" have pointed out that the part of g (z) which
is not analytic at z= +1 can be isolated and evaluated,
and one may extend their approach to separate also
the part which is most singular at s= —1. The reason
that the eGective-range approximation works is that
the remaining part of g (z), which has no singularity
in the low-energy region, is larger than the nonanalytic
parts by a factor of order ~, .

If the experimental data were su%.ciently accurate to
warrant the effort, one could improve the coupling
constant determination by correcting for the small
terms which cannot be extrapolated from the physical
region (io) 1) to the point co=0. The recipe turns out
to be the following: Introduce a quantity

where the coefficient I' should be smaller than r by a
factor of order 1/co,„.That is, I', (M~) is an almost
linear function in the low-energy region and extrapolates
to the value) —' at ~„=0.

Note that there is no point in making the above
refinement unless the extrapolation is at least quadratic,
because the term in (53) proportional to P is pre-
sumably of the same order as the modifications made
by formula (52) to the original effective-range approxi-
mation. Existing experimental data probably do not
warrant the refined extrapolation procedure.

Plots for bi~, 8~3, and 83~ should of course lead to the
same value of f', but unfortunately the experimental
information on these phase shifts is only that they are
small compared to b». Our theory definitely predicts
that they should all be negative for not too large
values of f', and the first few terms of the power series
for H suggests strongly that the phase shifts should
be small.

The crossing relation (43) makes a prediction about
the coefficients of the term proportional to co in an
expansion of g about co=0. When translated into a
statement about the effective range r (0), the prediction
is that

—1+sr
(54)

where x is an unknown parameter.
In the following section, it will be proved that for

the (3,3) state the coeKcient of the linear term is
negative definite, that is to say, that r3 is positive
definite. One might say, then, that the theory "predicts"
a resonance in the 33 state provided the coupling is
suKciently strong. Estimates based on the power series
for II suggest that resonance will indeed occur at the
right energy with the known value of f' if the cutoff
energy co, is in the neighborhood of 6.

It actually can be shown from the form of the
complete scattering equation, that is, the equation
before the multi-meson terms are dropped, that the
neglected terms will not interfere with the effective-
range approach. If anything the energy dependence of
integrals over the multi-meson states will be weaker
than that of the one-meson terms considered in this
section. The value of the eQ'ective ranges for a given
cutoff is of course altered, but the relation (54), which
depends only on the crossing symmetry, is preserved.

VI. TOTAL CROSS SECTION SUM RULES

Returning to the general problem, we now wish to
point out some important relations involving total cross
sections which may be derived in the static model



p —WA VE PION —NUCLEON INTERACTION

(hl Tl~&= 2 4b*(P)T.(P)4.(q),

if the standard normalization

Z.A*(q)4.(q) =~b. (57)

is employed. The total cross section for the state e is

2Ã
o.=—P 8 (E.—ro.)T,t(n) T.(n), (58)

where an expectation with respect to the initial nucleon
state is understood. One may also write down the
equation for (b I

T
I a& corresponding to (25):

without any approximation. The basis of these relations
is formula (12) for the total cross section, or rather a
generalization of (12) which we now write down.

The notation employed so far can accommodate
arbitrary initial and 6nal nucleon spin.—isotopic-spin
states. The meson states, however, must be such that
the linear momentum and isotopic variable are well
dined. If we wish to consider a more general set of
one-meson states, say @,(q), then the quantity which
describes the scattering from state u to state e is

T.(n) =g, T,(n)y. (q), (55)

while that to another state b, of the same set, is

P,WP,*.j With no distinction between a and u*, (60)
reduces to

(~l Tl~&=(~l T'I~&

q'"(q.) 1" dq~ ~.(E)
(61)

"o e'(qE) qz' q—.' i—e

a result which is almost identical with the well-known
dispersion relation. '~ Apart from the cut-og factor, it
diGers from the usual dispersion relation in that P,
may be an arbitrary real (in this representation) state.
If all important contributions to the integral come below
co, , the cutoff factors are unimportant. It is interesting
that a result so close to the dispersion relation is
obtained, because the latter is a consequence of causality
and with an extended source the static model is' of
course not causal.

A second special initial state of particular interest is
one which is an eigenstate of total angular momentum
and total isotopic spin. This can occur only in the (3,3)
case for the kind of states we have considered, where
for example p, may be chosen as a positive meson with
its orbital angular momentum up, The nucleon must
then be a proton with its spin up. P,* then corresponds
to a negative meson with orbital angular momentum
down. For this special case, (60) shows that the quantity
hs(co) defined by Eqs. (32) and (33) is given by

Tbt (n) T.(n) T ~t (n) Tb*(n)
ZITI~)= —2 . +-

En M~ se E~+Co~
(59)

Xs 1 p" dE o~(E) o (E)
hs(ro) =—+ +, (62)

M 12Ã ~ i q&e (qE) E ro ze E+Ql—
where a* and b~ refer to states which are the complex
conjugates of p, and pb, respectively.

For the special case b=a and the same initia} and
final nucleon states, it is clear that (58) allows (59) to
be rewritten in terms of total cross sections. One finds
easily that

1 q,' (qe,) t" dE
(~I Tl~) =(~l T'I ~&

——
2'E re~ Ii i q@'v (q@)

o,(E) o.*(E)
X +, (60)

E bo~ se E+rog,

where q& is the momentum of a meson of energy E. The
operator T' represents the zero-meson part of the sum
over states in (59). It is also the zero-energy limit of T.
The notation o, (E) means the total cross section for an
incident meson whose energy is E but whose other
variables (isotopic spin and angular momentum) are
those of the state a.

We concentrate here on two special cases of (60)
although other applications may also be interesting.
The first case is when p, and p * represent the same
state of the incident meson. A neutral meson with
well-dined linear momentum is the simplest example
of this situation. LNote that for a charged meson,

where o.+ is the total cross section for the state p, and
o that for g,*. This result shows among other things
that the quantity r3, defined in connection with the
eQ'ective-range discussion, is certainly positive. Com-
parison with (51) and (41) leads to

1 I" dE
r j'= —

~ L +(E)+ (E)j, (63)
(4~)'~ i Eqzv'(qz)

a relation which may be used to determine r3 experi-
mentally if the appropriate parts of the total cross
section can be isolated. It should be noted that accord-
ing to (63) the contribution to rs from each type of
state (n=1, 2, etc.) is individually positive. Thus the
one-meson approximation probably requires an unneces-
sarily high cut-off energy to produce the required value
of f3.

We now derive a di6erent type of sum rule to obtain
a relation between the renormalized and unrenormalized
coupling constants. Consider the expectation of the
operator O-,r,o-,7,= j. taken with respect to a single-
nucleon state. If the latter is normalized, the expected
value is of course unity. Starting with this apparently
trivial fact and using the completeness of the set of

rr R. KarPlns and M. A. Ruderman, Phys. Rev. 98, 771 (1955);
Goldberger, Miyasawa, and Oehme, Phys. Rev. 99, 979 (1955).
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states +„&—', we obtain the following:

1= (%o,aoro a, ro%o)

=2(+o, "8-'-')(+-'-', "Po)
(64)

(65)

f (o) (@o P io)+ {—l)(@ {—) P' (o)@o) (66)
iqo(q)

—'

(2m.)'-

2' q= t f,{oiJ-s
n qsp'(q)

(67)

where an expectation with respect to the nucleon state
is understood. Next multiply (67) by (f„')' and separate
the n=0 terms from the sum. The result is

2COq

(f'")'=f'+ E „T,'( )&,( );
"&o q'o'(q)

(68)

finally, we employ (58) to introduce the total cross
section and find

1 ~dna, (E)
(f (o))s f s+

m" qgo'(qx)
(69)

The result (69) demonstrates that (f„o)')f,', a fact
already shown by Lee." It also gives in principle a
method for measuring experimentally the unrenormal-
ized coupling constant. Note that the cross section
involved could be that for a neutral pion or it could be
the average for positive and negative pions. The target
may be either a neutron or a proton.

VII. CONCLUSIONS AND POSSIBLE EXTENSION
OF RESULTS

We summarize here the results of the preceding
sections which we feel are the most significant:

(a) The function p'/~~ cot5 should be approximately
linear at low energies and should extrapolate to ) ' at
~=0. Here ) tt ———(8/3) f', Xts ——)tot ———(2/3) f', )F33

=(4/3)f' This imp. lies among other things that the
p-wave phase shifts maintain the sign of the Born
approximation, that is, 633 is positive and all the others
are negative.

(b) The effective ranges for the various p-states,
defined by (50) and (51), are not completely inde-
pendent but must obey the relation (54).

(c) The effective range in the (3,3) state is certainly
positive, so that a resonance will occur in this state if
the coupling is sufficiently strong.

These results have been derived on the basis of a
theory which completely neglects relativistic sects.
The question naturally arises as to whether they will

be maintained when nucleon recoil and nucleon pair
formation, as well as the effects of other particles, are
taken into account. It is not possible to give an unquali-
fied answer to this question, but recent and independent
investigations of the relativistic theory, based on such

general requirements as Lorenz invariance, give some
indications as to the validity of the statements (a)—(c).

In the first place, it has been rigorously demonstrated
for the relativistic Yukawa theory that the p-wave
scattering amplitude approaches the renormalized Born
approximation in the limit coq —&0, where

co *=co + (q'/2M)+O(1/M') (70)

' W. TIIirring, private communication."R.Oehme, Phys. Rev. 100, L%3 (1955).~ F. Low (to be published).

if M is the nucleon mass. That the functional form of
the individual phase shifts is as given in statement (a)
has not really been proved but seems extremely likely
to us in view of recent work by Thirring" and Oehme. "
These authors have shown or have promised to show
that the first derivatives of the scattering amplitude
with respect to sin8 and cos8, evaluated at 0=0, have
an analytic form which corresponds to condition (E)
of Sec. III above. Conditions (A) and (B), which
correspond to unitarity and crossing, respectively, are
certainly general. Condition (C) is the zero-energy
limit theorem which, as stated above, has been proved
to be general. At low energies it seems legitimate to
neglect orbital angular momenta higher than one, in
which case the Thirring-Oehme amplitude derivatives
can be identified to order 1/M with the p-wave ampli-
tude alone, and one seems almost to have reproduced
the equations of the cut-oG theory from a general point
of view. The difhculty of course is that at high energies
orbital angular momenta larger than one certainly
contribute, and high energies are important under the
integrals which occur in the scattering equations.

One cannot, then, make clear-cut statements about
the behavior of the p-wave amplitude in the entire
complex plane. It is hard to imagine, however, a form
for the amplitude which diGers at low energies from
that in statement (a) above and still manages to be
unitary, to satisfy the Thirring-Oehme equations and
to approach the correct zero-energy limit.

Statement (b), which connects the various P-wave
effective ranges, is not rigorously true in the relativistic
case because s-wave and p-wave amplitudes occur
together in the term linear in the energy when the
appropriate covariant expansion about zero energy is
made. "However, the s-wave amplitudes experimentally
are suKciently small so that Eq. (54) remains a good
approximation.

We do not have confidence that statement (c) above,
although known experimentally to be correct, is neces-
sarily a consequence of the relativistic Vukawa theory
because it depends sensitively on the behavior of the
scattering at high energies.

In conclusion we should like to emphasize a distinc-
tion between two classes of meson phenomena: those
that depend only on low-energy matrix elements (in
the sense of this paper) and those whose calculation
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requires a knowledge of high-energy matrix elements,
An example of the former is the theorem that the zero
energy limit of the p-wave effective range extrapolation
measures the same coupling constant as the zero-energy
limit of the photomeson production amplitude (accord-
ing to the Kroll-Ruderman theorem). On the other
hand the problem of theoretically evaluating the
effective range falls in the latter class. Formula (49),
for example, shows clearly that the value of r3 depends
on high-energy phenomena.

We have made no serious attempt in this paper to
calculate the effective ranges. Presumably the (3,3)
effective range could be matched by an appropriate
choice of the cut-oG energy, whatever method of approx-
imation were used, and the dominant role played by
the (3,3) state at low energies guarantees the success
of any approach which produces the correct value for
r3. The question naturally arises as to whether one
should expect to be able to calculate r3 and other
quantities which involve integrals over high virtual
energies with the conventional relativistic form of the
Vukawa theory, which has no adjustable cut-off pa-
rameter. We think the answer is no, because this theory

does not take account of the existence of hyperons and
E-particles which interact strongly with the pion-
nucleon system. Both the cutoG and the local forms
of the Yuicawa theory are incorrect (or at least incom-
plete) in the Bev energy region.

Our zero-energy results hold for both theories and we
believe they will probably hold in future theories,
although this last statement is of course little more than
a guess. We also believe that the linear extrapolation
of the cotangent of the phase shifts will be maintained
because this is essentially a statement of ignorance:
the more important are high-energy phenomena, the
more nearly constant is the effective-range integral.

We hope to show in the paper on photomeson
production, which follows, that many aspects of this
latter process fall in the first (low virtual energy) class
of phenomena. The same is true for Compton scattering
by protons and probably for the nuclear force problem.
Phenomena which belong to the second class presum-
ably include s-wave scattering, +' decay, the charge
and current density of nucleons, as well as the funda-
mental questions concerning the nature and interactions
of curious particles.
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The problem of photomeson production is re-examined using the static model of the pion-nucleon inter-
action. It is shown that an important part of the low-energy matrix element can be exactly expressed as a
function of the scattering phase shifts and the static nucleon magnetic moments. It is argued that the
remainder is quite accurately given by the usual Born approximation. Corrections to this result, within the
framework of the "one-meson" approximation, are considered.

I. INTRODUCTION

~HE purpose of this paper is to extend the
theoretical approach of the preceding paper' on

meson-nucleon scattering to the problem of photomeson
production. Extensive use of the notation and results
of the scattering paper is necessary, and we shall assume
the reader to be familiar with these. The most im-

portant conclusion of the present paper is that once the
scattering phase shifts are known at a given energy,
either experimentally or theoretically, the corresponding
photomeson production cross sections can almost unam-
biguously be predicted.

As in I, the bulk of our discussion will be in terms of
the static model, but it may be argued that the im-

portant results are probably more general. We begin
in Sec. II of this paper by splitting the photomeson

' G. F. Chew and F. E. Low, preceding paper )Phys. Rev. 101,
1570 (1956)],hereinafter referred to as I,

production amplitude into three parts, one of which
may be written down in an explicit and exact form.
Equations satisfied by the other two parts are then
derived. Section III deals with these two equations in
the one-meson approximation. In Sec. IV, a simple and
quite accurate approximation to the total amplitude is
proposed, and finally Sec. V compares the simple
theoretical amplitude with experiment.

II. PHOTOMESON EQUATIONS

A derivation of the integral equations which we shall

apply to photomeson production has already been
published. ' We give here a new derivation which is
analogous to that presented in I for scattering. All
notations will be the same as in I.

The matrix element for absorption of a photon of

type k by a single nucleon, with emission of a meson

' F. E. Low, Phys. Rev. 97, 1392 (1955).


