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Anomalous Magnetic Moment of the Nucleon and the Pion-Nucleon Scattering*
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The anomalous magnetic moment of the nucleon is calculated using the method developed by Chew and
Low. The static model is used, i.e., recoil and nucleon pair creation are omitted. The anomalous moments
are expressed exactly in terms of the renormalized coupling constant and pion-nucleon scattering cross
sections. The result shows a satisfactory agreement for the magnetic moment arising from the pion current.
The contribution from the nucleon current, however, turns out to be too large. It is concluded that the
Sachs' mirror condition cannot be satisfied with the simple static model.

l. INTRODUCTION part of p„comes from the pion current. Theoretically,
however, all calculations have given too large values
for p, This is characteristic of the pseudoscalar pion
theory, for in this theory virtual pions of high energy
are important and they have small magnetic moments.
The large value of p„ therefore requires a large amount
of dissociation probability, which also makes p, , large.

2. FORMULATION OF THE PROBLEM

The problem to be worked out is the evaluation of
the expectation values of the magnetic moment oper-
ators in the physical one-proton state. In order to
express the magnetic moment operators, it is convenient
to describe the pion field in terms of spherical waves
instead of the more conventional plane waves. Only
P-waves need be considered since they alone interact
with the nucleon in the static model. With the intro-
duction of creation and annihilation operators aA„

and a~, for positive, bj,,
* and bI,, for negative, and

c~,
* and cI,, for neutral pions with momentum k and

magnetic quantum number m, the magnetic moment
operator can be expressed as'

5K=5Kt+5Ks+5Ks,

8
5Kr Q (ak, l ak, l ak, —r ak, —1 ~k, l ~k, l

2 19 COIt;

+4r*bkr+a, k, r*4,, r* rtka*&kr*— , ,

&k, r&k, k+&k, r&—k, r), -—
5Ks ——(e/4M) r s(r s,

5Ks ——(e/4M) o p.

Here coA, is the energy of the pion with momentum k,
and M is the nucleon mass. The expectation values are
to be taken in the nucleon state with spin pointing in
the s-direction. The expectation values of OR~ and OR2

are equal but have opposite sign for proton and neutron,
and those of OR& are equal for both. Therefore, only the
proton moment need be calculated.

The Hamiltonian of the pion-nucleon system is
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HE theory of Chew and Low' for the P-wave
pion-nucleon interaction has proved successful

for the scattering and photoproduction of pions. ' The
coupling constant was determined with some accuracy
and the approximate value of the cut-off momentum
was also obtained. It is the purpose of this paper to
determine whether these constants are also capable of
explaining the anomalous magnetic moments of the
nucleons. It is found that the Chew-Low theory applied
to this problem allows one to express the nucleon
moments in terms of the renormalized coupling constant
and the total cross section for pion-nucleon scattering.

In this paper, arguments are given in terms of the
static model with a 6xed nucleon. This presupposes
that the magnetic moment anomaly is a low-energy
phenomenon, meaning that the major contribution
comes from virtual pions of small momenta. This may
be the case for the part coming from the pion current
since pions of low energy carry large orbital magnetic
moments. The bare proton is assumed to have unit
nuclear magneton, and the interaction current is
omitted completely. This is the model discussed by
Sachs. '

The anomalous magnetic moments consist of two
parts, which are, for the sake of convenience, called
vector and scalar parts. The former has the same
magnitude but opposite sign for proton and neutron.
It comes from the pion current and the 73 part of the
nucleon charge, which form vectors in isotopic space.
The scalar part is the same for both proton and neutron
and comes from the isotopic scalar part of the nucleon

charge. Experimentally the scalar part p, , is very small

(0.06) compared with the vector part tt„(1.85). The
smallness of p, leads us to suppose that the nucleon
current contributes little to the anomaly and the largest
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Hp p—01k(Gk, m, 11k, wa+bk, wa bk, ~+Ck, ~ Ck ~)1

V=— P (-,I.+ +(~k, ,+bk, 1*)
p (6qrE)-** k (200k)*'

+Tp~ (1ak1+, bk1*),+r o~(1ak1*,+bk1),

+r o (ak 1 +bk 1)7+(1/v2)l T+oa(11k, p+bk, p )

+T—oa(11k, 0 +bk, p)+Tao'(ck, 1+—ck, 1)

+rao (ck, 1*+c11)7,+ raoa(ck, 0*+ck, 0)) &

where E is the radius of a very large sphere introduced
to make the wave functions discrete. Ke write these
expressions simply as

V= Z.f~(d.)d.+G*(d.)d.*7,

where d* and d are creation and annihilation operators,
and p stands for the magnetic quantum number qn and
the charge quantum number as well as the momentum p.

The anomalous moments are defined by

jav= P1+Ika) Ps =gay

and

(Id.*d.*=(I G(d.) (d.)
H+01~

+G(d.) (d.)
H+pqq H+01„+010

Thus we can write (4) as

&I G(d.) I ~)(~ IG*(d.) I &

(I d.*d.i)=2
(I-'-+~.)'

(ld.*d.*l)=E-
n 10&+010

(I G(d.) I ~&(~ IG(d.) I &

E„+00„

& I G(d.) I ~&&~l G(d.) I &

(IG*(d„)lqa&(NIG*(d,) I)
(I d.d.

l
&=Z—

n 01&+010, +n+10q

(I G*(d.) I ~&(~ I
G*(d.) I &

(10)

(12)

where I) is the proton state with spin up. These are
expressed in terms of nuclear magnetons. ——,'for p2
and p3 are the normal moments of the proton.

3. EXPECTATION VALUES OF THE BILINEAR
QUANTITIES IN THE PION OPERATOR

For the evaluation of (I SK1 I), we need quantities like

(I d*d I) & I d*d*l & & I
dd

I & (4)

These quantities can be transformed according to the
method of Chew and Low. '

Let us normalize H so that

Hl)=o.

From the commutation of H and d„,

[H,d„7= 01,d, G*(d„), — —

and using (5),

where
I ra& are the complete orthonormal set of incoming

wave eigenstates. These equations are exact, although
they resemble the results of the second-order pertur-
bation theory.

The matrix element

T,(n) =(qalG(d, ) I) (13)

is related to the scattering matrix. ' For E„=01„T„(qa)
is equal to the transition matrix element of the process
in which a pion of type p is scattered by a proton into
the state e. The use of the spherical wave for the
incoming particle is somewhat unfamiliar to us. The
relation to the more conventional expression using a
plane wave can be obtained by means of transformation
functions. If T(k,qa) is the conventional matrix element
for the incident pion with momentum k and Tk, (qa)

is the one used in this paper, then,

Similarly,

-*(d.) I &

H+01„

z

(6) Tk(ra) =—(6qrR)& COSOTk, p(qa)

sinO.
+ Pe' Tk, 1(qa)+e ' Tk, 1(qa)7, (14)

v2

In the same way we have

d.d. l) =
H+01n+01q H+01q

1
+G*(d.) -*(d.) I),

H+Mn

where 0, 4 are the polar angles of the vector k.
It is more convenient to express the T matrix in

terms of four independent elements, T,;(b; qa), corre-
sponding to four eigenstates of total isotopic spin a/2
and total angular momentum j/2. k is the momentum
of the incoming pion. Tk(n) and T;; are simply related
by the familiar Clebsch-Gordan coefficients. With this



1566 H. M I YA ZA WA

notation we have

In this summation we separate the term v=0 corre-
sponding to the nucleon state. The matrix element

is equal to
fo&o I

-~- I)

f(ups ~ u),

where f is the renormalized coupling constant and up

and I are normalized Pauli spinors. Thus

l&uIG*(&~, i)l&I' f'

(En+~a) p 3vE ppa

We assume that there is no bound state except the
nucleon state. The remaining term is

1 1
LI T„(k,u) I'

9 n&p (E„+~„)'

& I
G(~i)

I
u&&~l G*(~i)

I &

=&
I
G(~i) Iu&&ul G(b- ) I &

= pl:I T»(u) I'+21 T»l'+2l T»l'+4f T»l'],

(IG(a,) ln&&elG*(a i) I)

=&IG(~-i) lu&&ulG(bi) I&=p(IT»l'+21 T»l'),

& I
G(bi) Iu&&ul G*(bi)

I &

(15)
=(IG*(~-i) lu&(ulG*(») I)= p(l T» I'+2

I
T»l'),

G(b-i) lu&&ulG*(b i) I&

=
& I

G*(~i) Iu&(~ I
G*(b- ) I &

=
I
T I',

(IG(~i) IN&&ulG*(~i) I&

=p(2I T»l'+4I T»l'+
I
T»l'+2I Tiil'),

&IG(~-) lu&&NIG*(~-i) l&=p(2IT»l'+ ITp I')

The arguments of T;, are omitted in these equations.
Consider the term a~, ~*a~, ~ as an example.

&IG(~k. i) lu&&NIG*(~. , ) I&

(E.+~a)'

where vq ——k/&oL. Using (14) and (13), we get

12m'R
a+(k) = P b(E„~I—) cosO(nlG(Gy p) I&

'VA;k'

sinO
+ I ~"&ulG(~~, i) I&+~ "&ulG(~., -i) I&]

v2

We average this quantity over the direction of k in
order to get the cross section for an unpolarized proton.
Observing that G(ai, i) =G*(b~, i), etc., and using (15),
we obtain

0)A;R

o+(k) =4v' P 8 (E„—(ug)L2 I T„(k,n)
I
'+

I
T„l']

k'

We write this as

~'(k) =
p L2~»(k)+~»(k)]

Similarly, the total cross section for negative pions is

(k) =-pL2 pp(k)+4 (k)+ pi(k)+2 (k)],

where

o„(k)=12 'Rvga(E—„—(o1,) I
T,, (k,e) I' (17)

is the cross sections due to the pure state of isotopic
spin i/2 and angular momentum j/2. Below the
threshold ot' pion production (two pions in the final
state) o.;; takes the simple form

12'
o;, (k) = sin'b;;,

k2

where the 6;, are the usual phase shifts.
In order to compare (16) with (17), we 6rst observe

that
I T;;(k,m) I' depends on k only in a trivial way,

namely

k4 ~)
I
T' (k,u) I'=——

I T', (i,N) I'
CO A; t

Thus (17) can be written as

The summation

+2
I
T» I'+2

I
T» I'+4I T» I'].

p.;,(k) =12~'R Q b(k„—k)
I
T;, (l,e) I',

/4 (18)

"&p (E~+~A)
(16)

where the relation

k '+p'=E„'.

can be expressed in terms of the cross sections. The
total cross section for positive pions of momentum k

incident on a proton is

2'
~'(k) =—2 b(E-—~.) I T.(u) I',

kb(E„col,) =cvA8(k„—k)—

has been used. Multiplying (18) by

(v= 1, 2)
12v'R ((oi+(op) "(ogpp(
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and integrating over k, we obtain TABLE I. Values of I33 for various cutoffs E.

1 lt
t

0.;;(k)dk IT;;(l,e)i'

(tPt+tPk) tPk n&' (tPt+~n)
(19)

I33(2.1; K)

0.13
0.2T

2MI33(2.2; X)

0.32
0.45

2MI33(3.1; K)

0.50
0.68

Inserting (15) and (19) into (10), (11), (12), we have
the required expectation values:

f' 1 k4 1

(I ak, i*ak, ii) =— +—
I Mt3(k)+2M3t

P 37lR MIc 9

+2Mia+4Mii],

The first term in (21) is equal to the result of the
lowest-order perturbation calculation but with the
renormalized coupling constant. This result is exact.
No approximation is involved except the static approxi-
mation which was introduced in the first stage.

(I ak i ak, i I) =-, (M33+2Mt3))

(I bk, i bk, il) = 3 (M»+2M»),

(I bk, ,*b,, -iI)=M»~

f' 1 k4 1
(i ck, i*ck, ii) =— +—(2Mgk+4M3t

p,
' 6mR o)I,' 9

+Mi3+2Mii),

(Ic,, i*c,, ti&=-', (2M33+Mst),

1 k4

(I a, ,*b, ,*i)=(I a, ,b,
p,
' 6+R o)I,3

(20)

4. NUMERICAL VALUES

In order to calculate the integral I;;, we must know
the 0;; which are not directly observed by experiment.
However, a very simple situation prevails, at least for
low-energy scattering. It has been predicted by theory
and con6rmed by experiments that cr33 is the dominant
cross section:

&33++011) 0 13) 0 31

This relation holds for pion energies up to about 250
Mev. We simply assume that all ~; s are zero except
033, since the high-energy part contributes little to the
integral. In this case

+p L5&t3 (k)+&3t+&t3+2&it], 033 g& ) 011) 013) 031=3 + (22)

(I ak, -i*bk. i*i
& =(I ak, -ibk, il &

= 3 9'»+&»),

where

1 k4 r a,)(l)dl.
M, , (k) =

12' ~R ook" (tpk+tdt) tpt

1 k'
t a;;(l)dl

Ã, , (k) =
12' R &pk " (tdk+ptt)tpt

The summation over k can be replaced by an integral,
using the formula

R t.
dk.

Errors involved in this approximation will be discussed
in Sec. 6.

Calculations are made in the barycentric system.
That is, 0(k) is defined as the total cross section for
pions with momentum k in the barycentric system.
Some values of I;; for various cutoAs E are shown in
Table I.

The magnetic moment due to the pion current is
calculated with f'/4m=0 08. .

pt ——1.36+0.36= 1.72 (E=5ttt),

tt t——1.80+0.50= 2.30 (E= 6ttt) .

The 6rst numbers in these equations represent the 6rst
term in (21) and the second numbers are the remaining
terms.

The scalar part of the magnetic moment, p,„can be
evaluated in the same way as in Sec. 3. By the conser-
vation of the total angular momentum,

2M f' 8M xk4
ttt —— — (imtti&= ——— dk

e 4' 3' P ~ 07Ic

Thus we have for the anomalous magnetic moment due
to the pion current (expressed in the units of nuclear 5. MAGNETIC MOMENTS DUE TO PROTON CHARGE

magneton):

with
+pL4P33(E) —2Pai —2Pi3+4Pii], (21)

P,,(K) = 2MI I;;(2,2; E)+I;,(3,1;E)],
1

I

o.;,(k)ltdkdl
I;&(Ik,v; E)=

ntktdt" (tpk+tpt)

203=I3 (upton)3= 2 P'pion)aq

where J~;,„ is the angular momentum of the pion field

only and is given by

(Ipion) 3 Qk (ak, i ak, i+bk, i bk, i+ck, i ck, i
—ak, i ak, i—bkibk, i ck, i, ck i)
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The scalar part of the anomalous moment is, therefore, The sign was chosen to be positive for reasons of
continuity. 4 The anomalous moment is, therefore,»= —

&I V.'-)sl)=&(—&I~»i*o»il) —&It»t*f»il&
c»i c»il)+(Io» —i is» —il&

+(I fi» —,*b»-tl &+& I c»,*c»—,I)).

@2=—0.18.

This method of calculation is quite different from
that used in'Sec. 3 and the early part of this section.
However, we can check the consistency of both calcu-
lations. Since (I Tsl& is equal to (Io., l& in the static
model, we have, from (24),

All expectation values were calculated in (20). Thus

f' 2 t. l's'

dk+ pl 4I.ss(E) —3I.»—2I.»7, (23)
42r sl'p J cps

4m p' fo.+
ass=-,'(I (o,—1) I

&= —— ' dfs—= —0.36. (28)
, 8J„with I,,(E)=I,;(2,1;E).

ps ———0.78+0.28= —0.50 (E=6p).

Again we use the simplified assumption (22) and obtain This value is consistent with (24) obtained by the
different method. We note that in this expression, ps is
rather insensitive to the cutoff if experimental values
are used for 0+. Of course, p, 3 is cutoG-dependent if
theoretical values are used instead.

The same method is not applicable for the evaluation
of p, 2. However, this quantity can be calculated in a
different way. From the definition of the renormalized
coupling constant, we have

fo(l rs~s I)=f(~rsvp~) =f,
so that

&3fT3 = 0

The relation between the renormalized and unrenormal-
ized coupling constant was given by Chew and Low.
We reproduce their derivation here for use later,

By using the relation between Ts(ss) and the total
cross section,

fosses 1—rs fo'
& I

r (tsk) I rs&&rs I r+ (ek) I &

~kp, 2 )s 4Golt, p,
ks t +t)

cQ.=Z I2'»+(~) I'=
2+coI, ~ co~

Therefore
1—rs p' 1

o.+(k)
2(dk.

2 2x'~ Goy

Similarly,

fD'( )=i'+
~

dk.

(23)

Adding these two equations:

p' r o (k)+o+(k)—
f2 f2+ dk.

2' ~ My

(27)

Inserting numerical values, we have

fps/42r =0.19.

The cutoff was chosen as E=6p. The integral is,
however, insensitive to the cutoff.

f0.08' ~

&lrsosl)= —=
I I

=0.6S.
fo (019j

p,,= 1.54,
212

p, ,= —0.35,
= —0.50,
= —0.36

(E=5p)
(E=6p,),
(E=5p)
(E=6p)

LEq (28)3

Experimental values are given by

p, = 1.85, IM, = —0.06.

We see that p, fj.ts with experimental value if the cuto8
is chosen between 5p, and 6p. This is satisfactory since
from scattering experiments Chew and Low estimated
that E should be about 6p. The scalar part, p„however,
is more than six times larger than the experimental
value.

The calculations were done using the following
approximations:

(1) Use of the static model (that is, recoil and
nucleon pair creation are neglected and all integrals
over momenta of the virtual pions are cut off at E).

(2) An assumption about the magnetic moment
operators. They are assumed to be given by Eqs. (1),
(2), and (3).

(3) Three-three states are dominant. More exactly,
it is assumed that

which means that
I33))ling) Ig3) Iai,

o'ss(~) f o'ti, o is, o'si

dk))~ dk.
I (d Ic

(27)

4We argue in this way. Suppose that all uantities are the
function of I and the cutoG E. When k=O, ( roars~ l='1 and fp
must be equal to f. When E is increased, f0 changes continuously
and changes sign only after it becomes zero or infinite. However,
from the Eq. (27) we see that neither case can happen.

6. DISCUSSION OF THE RESULTS

Summing up the results, the anomalous magnetic
moments are as follows:
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we have a rough estimate for

f0'' 1 $30' 0'

dk= —
) (ij=11,13, 31).

G) Ic

Comparing this with —',J'o+dk/co',

t'&~ j t'&ss
' —dk

~

—dk=0. 19 (ij =11)13, 31).
GO GO

This means that I~~, I~3, and I3~ are about one-fifth of
I33. Therefore the neglect of these integrals causes an
error of a few percent for trr and an error of about 10%%uo

for p3.
The expression (26) for ps does not involve the

assumption (3), and is not critically dependent upon
the cutoff. This result is six times larger than the actual
value. We can conclude that Sachs' mirror condition,
which requires that p, = —0.06, is never satis6ed in the
simple model which assumes (1) and (2).

Turning to the assumption (2), the expression (1)
for the magnetic moment due to the pion current is
exact and free from ambiguity so long as nucleon recoil
is neglected. This is no longer true, however, for the
part coming from the nucleon current. There is some
ambiguity in defining the interaction current in the
static approximation, although we have neglected it
completely. We also assumed that the bare-proton
magnetic moment is one nuclear magneton, which is
not true if nucleon pair creation and other eGects are
taken into account. Under these circumstances the
values of p, 2 and p3 obtained here cannot be takeri too
seriously.

The calculations are otherwise exact. All higher order
eGects are included in the cross-section term and the
renormalization of the coupling constant.

Of these, the assumption (3) was made only for ease
in computation. We have detailed information about
the phase shifts at low energies and more accurate
evaluation of the integrals I;, is, of course, possible.
Although the dominance of the three-three state is not
true for higher energies, the assumption (27) should be
fairly good since the high-energy part is not important
due to the factor 1/&oe'. The error involved in this
assumption could be estimated in the following way.
Since

3& —
&+= sa(2&rs+&tt),

We should point out that the correction terms to the
second-order results, given by the second term in (21)
and (23), are in the right direction although not
suKciently large. When three-three states are dominant,
the correction terms are both positive. It increases p, ~,

decreases p3 and makes them nearer to the experimental
values. This fact can be understood in the following
way: the proton with spin up likes to form a state of
i=2 and j=2 with a virtual positive pion of m=1.
A virtual negative pion of m= —1 must be emitted in
order to balance the total angular momentum and
charge. This state makes a large contribution to p~ but
does not contribute to p3. The predominance of this
virtual state agrees favorabIy with the experimental
fact that p3 is very small compared to p, &. This con-
sideration bears some relation to the model proposed
by Sugawara, ' who introduced a ~

—
~ isobar state

explicitly in order to explain the magnetic moment
anomaly.

The good agreement of p~ with the experimental value
suggests that the adoption of the static model is
admissible for the pion part of the anomalous magnetic
moment. The nucleon current is, however, a relativistic
phenomenon and the present calculation is not sufhcient
for this purpose.

In this paper no interaction was assumed between
pions. Holladay' obtained good. results for nucleon
anomalous moments by assuming a strong correlation
between pions. The conclusions in this paper would not
hold if there were strong forces between pions.

Note added in proof. G. Sandri LP—hys. Rev. 101,
1616 (1956)j has pointed out that the conservation of
strangeness allows the virtual emission of E+ by the
nucleons while the emission of E—is forbidden. This
has the consequence that the E-particles contribute
to p, , but not to p, . The discrepancy in the value of p, ,
in this paper could be removed by introducing a pseudo-
scalar E-particle which would give a positive contribu-
tion to p,
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