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Model for Multiple Meson Production*
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A model is presented for the multiple production of mesons. It is similar to that of Lewis, Oppenheimer,
and Wouthuysen, but treats the spins and isotopic spins of the colliding nucleons as quantum mechanical
operators. To illustrate the method, detailed calculations are carried out for a symmetrical scalar meson
theory.

I. INTRODUCTION

HE recent availability of machine energies of
several Bev has given new impetus to both the

experimental' and theoretical studies of meson pro-
duction. Thus, Fermi' has proposed a model which
assumes that all mesons are emitted from a small
volume in which all the energy is concentrated. Fermi's
theory does not make use of any specific meson theory;

'instead, it assumes that in this small volume, apart
from some strict conservation laws, various states of
mesons and nucleons are all in statistical equilibrium
with each other. The whole problem is then completely
determined by the total energy, the angular momentum,
and the volume of the system.

More speci6c models that depend on particular forms
of meson theory have been discussed by Lewis, Oppen-
heimer and Wouthuysen' and by others. 4 Lewis et al. ,
make use of a Bloch-Nordsieck' type of treatment,
which pictures the physical nucleon as a composite
system composed of a core (or bare nucleon) surrounded

by a meson cloud. Furthermore, the collision of two
nucleons is assumed to consist of a sudden exchange of
spin, isotopic spin and momentum between the cores
of these two nucleons; the latter, in turn, shake o8
part of the surrounding meson clouds as radiation.
Except for the above-assumed mechanism of a sudden
collision and the neglect of certain recoil e6ects of the
emitted radiation, the Bloch-Nordsieck type of calcula-
tion is completely rigorous and can be used for arbi-
trarily large values of coupling constants. However, in
the treatment of Lewis, Oppenheimer, and Wouthuysen,
further approximations are made, which consist of
treating both the spin and isotopic spin of the nucleons
as classical vectors. Consequently, the emitted mesons
are almost uninhibited in their choice of charge; this
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makes it impossible to compare these results with the
observed charge spectrum of mesons produced by
nucleon collisions at cosmotron energies.

The purpose of this paper is to discuss a similar
model, but one in which the spin and isotopic spin of
the nucleons are treated as rigorous quantum me-
chanical operators. The model to be discussed is
closely related to the fixed extended source theory, '
which has been used recently to explain the scattering
experiments of mesons by nucleons up to about 200-
Mev incident meson energy. In these relatively low-

energy scattering phenomena the nucleon is regarded
essentially as at rest; thus, it can be represented by a
fixed core of finite size surrounded by a meson cloud.
Both the meson distribution in a physical nucleon state
and the scattering state of a physical nucleon together
with an additional meson have been explicitly calcu-
lated using an intermediate coupling method. ' '

In the problem of multiple meson production, one
deals with nucleons of very fast velocities. Nevertheless,
it is shown that the meson distributions for these
rapidly moving nucleons can be obtained directly
through a Lorentz transformation from the correspond-
ing distribution for a fixed nucleon. In a similar way,
one may obtain the state functions for a physical
nucleon with any number of free mesons. Identical
results can be obtained by working directly with the
Bloch-Nordsieck type of transformation as an alterna-
tive procedure.

The collision process between two physical nucleons is
assumed to be instantaneous and only to result in a
transfer of spin and isotopic spin between the two cores
of the nucleons. The collision is then characterized by
an S-matrix which acts only on the spin and isotopic
spin of the cores. Thus, S is a 4)(4 matrix if it involves
only spin exchange or only isotopic spin exchange; but
it is (16X16)-dimensional if both of these quantities
are involved during a collision. The matrix elements
for the production of E mesons is then given by the
S-matrix, evaluated between the initial state of two
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s Friedman, Lee, and Christian, Phys. Rev. 100, 1494 (1955).
s S. Tomonaga, Progr. Theoret. Phys. Japan 2, 6 (1947); F.
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physical nucleons and the final state of two physical
nucleons and E free mesons.

In the present paper, we shall illustrate our method
in detail for the symmetrical scalar theory. In this
theory, the production ratios of various number and
charge distribution of mesons are uniquely determined
by the coupling constant and the source size. It is in-
teresting to note that from this calculation we find
that for large coupling constants (a) each nucleon tends
to emit mesons in an isotopic spin I= a state and (b)
in two-meson production each nucleon prefers to emit
only a single meson. The more complicated case of the
symmetrical pseudoscalar meson theory and its com-
parison with experiments will be presented in a later
publication. The case of a neutral scalar theory can be
treated rigorously and is discussed in Appendix III.

II. HAMILTONIAN

We begin with a description of the system of a
nucleon at rest. The nucleon is pictured as a bare core
of finite extent surrounded by a cloud of mesons. The
interaction of such a nucleons at rest with a symmetrical
scalar meson field is given by a Hamiltonian (5=c= 1)"

ables are given by

and

rr;= i (1—6rrs/or) 'fa, (k)e'"s*s a—t(k)e 'Ps—*sJdsy (3)

a;(k) —+ za, (k) z—'= a;(k') (or'/or) i,

a,t(k) ~ za;t(k)z, —'= a,t(k') (or'/or) '*,

with k,'=k, k„'=k„,

k,'=y (l4+ var),

or ='r(or+'vk~) r

and
y= (1—v') —

&.

(4)

where a,t(k) and a;(k) are meson creation and annihila-
tion operators, respectively, x„and k„are the four-
dimensional space and momentum vectors, and or

=(k'+its)'*. The invariance of p; and pr, , Eq. (2),
demonstrates that under a Lorentz transformation
a,t(k) and a;(k) transform as

with

Hp=mp+H +g~ r;Q, U(r)d'r,

1
frr .2+ii2$ .2+ (leap

.)2]dpr
2

The g-axis is chosen to be along the direction of the
velocity. In terms of 2 any state function 4 of the
Hamiltonian (1) is related to a corresponding state for
a moving nucleon by

(6)

Here rrpp is the mechanical mass of the nucleon, U(r) is
the normalized source function for the nucleon assumed
to be at rest at the origin of the coordinate system, @;
and rr; (i=i, 2, 3) are the canonical meson field vari-
ables, r; are the usual isotopic spin operators, p is the
meson mass, and g is the coupling constant. The eigen-
states of this Hamiltonian comprise both the nucleon
bound states and the meson-nucleon scattering states
for a fixed nucleon.

The corresponding states for a nucleon in motion
with velocity n may be obtained kinematically by means
of a Lorentz transformation to the moving coordinate

system. Under such a transformation, the 4-dimen-
sional space-time coordinate x„becomes a„' (ran= 1

—4),
the canonical variables of the scalar meson fields

undergo an unitary transformation

and
(2)

where 2 is a unitary operator. In the interaction repre-
sentation, the space-time dependence of the field vari-

'p In Eq. (1), as well as in the following, we shall nse the con-
traction convention with respect to the indices i and p with i
denoting the various charge states of mesons and p the isotopic
spin states of the nucleon. A sum over i and p is required whenever
these indices appear twice (i = 1, 2, 3 and p = 1, 2).

while the Hamiltonian itself becomes H, under a
Lorentz transformation. Thus, we write

2HZ '=y(H —P. v)

where P is the momentum of the nucleon in the moving
system. On using Eq. (5), the Hamiltonian H„ in the
moving system becomes

H, =eg —'+P v+) (or —k v)a;t(k)a;(k)d'k

+gy ' t (16rrsor) 'u (k) r.fa(k, )+, at(k)], de (g)

where sp„(k) is related to the source function U(r) by

N„(k) = ~U(r) expfiy(&~ tror) s+ik,x +ik„y jdr. (9)

» Eq. (8), the zero-point energy of the meson 6eld has
been omitted.

It should be remarked that Eq. (8) is only approxi-
mately correct, since we use Eq. (4) for the expression
of 2, and this is valid only if the meson field p, obeys
the free-field equation, 'p; —ii'&, =0, as required by
Eq. (3). Nevertheless, it is of interest to note that this
approximation is identical with that obtained by the
Bloch-Nordsieck' type treatment. The Block-Nordsieck
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procedure is to start with a relativistic Hamiltonian Thus, the reduced Hamiltonian GC, becomes

H=
~

Pt(u p+P. rlsp)fd r+H +g~ PtPr tPQ d'r. '(10) whereto

By substituting for the Dirac matrices their expectation with
value among positive energy states of the free-nucleon
spinors, the relativistic Hamiltonian is replaced by

and
Ha. N. ——p v+moy

—'+ cpa, t(k)a, (k)d'k

BC„=P v+y 'Kp,

&o= rip+Du;ta;+Gr, (a,+a,t),

0= y((u —k v)F„'(k)d'k

G=g I (16z'cp)-'*m„(k)F„(k)d'k.

(16)

T=exp i a;t(k)a, (k)k rd'k .
J

The Block-Nordsieck Hamiltonian Hg. N. is directly
related to H'„, given in Eq. (8). Thus, we have

Lt„=THg. N. T ', (12)

showing the identity of these two diferent approaches.

III. STATE FUNCTION FOR PHYSICAL NUCLEON
IN MOTION

We shall use the Tomonaga intermediate-coupling
method' to describe the ground states of the Hamil-
tonian B,. In this method there is no limit to the total
number of virtual mesons which surround the bare
core, but all mesons are assumed to be in the same
orbital state F„(k).The best functional form of F„(k),
together with the probability amplitude for finding

various numbers of mesons are determined by the
variational method

~(X,(.) ~H. —~&~X,(v))=0,

with m as the rest mass of the physical nucleon and

~
cV„(v)) as the state vector of the physical nucleon with

velocity v (p=1, 2 denoting its two isotopic spin
states).

As in all calculations with the Tomonaga method,
it is only necessary to consider" a reduced Hamiltonian

3C, which can be obtained by first commuting all the

a;(k) to the right of the a;1 (k) in H„and then replacing
them by a,F„(k) and a;tF. (k) respectively, with

F„'(k)d'k = 1, . (14)

a.;= a, (k)F„(k)d'k,
l

a, t= a, t(k)F, (k)d'k.

"T.D. Lee and D. Pines, Phys. Rev. 92, 883 (1953).

+gj ')t (167r'cp) lN,„—(k)

yea, (k)ei '+a t(k)e 'P'jr, dsk. (11)

It is easy to verify that by a canonical transformation T&

The variational problem Eq. (13), then, reduces to one
of finding the ground-state wave function t K,) of Xp, 's

Xo ( X,)=~
( m, ). (17)

If we set the total momentum I'= mdiv, the state vector
~K,) becomes an eigenvector of K„with energy my.
Minimizing the energy with respect to an arbitrary
functional form F„(k), we have

IV. COLLISION PROCESSES

In the Bloch-Nordsieck type treatment of the colli-
sion of two nucleons, it is assumed that only the cores
interact. The latter, in the symmetrical scalar case,
are characterized by an isotopic spin and velocity. It
is the change of these two quantities which leads to the
emission of Inesons. Ke note that the velocity change
Av is related to the corresponding momentum change by
hv= (1—v')'Dp/rip. Thus, especially at high energy, hv
would be quite small even though hp might not be
neglected. In the following, we shall neglect the eBect
of hv on meson production.

In order to make the whole collision process charge-
independent, it is necessary to have the interaction

"Equation (17} may be obtained directly by applying the
Tomonaga method to the original Hamiltonian Hp, Eq. (1), for
a nucleon at rest. The state vector

~ fVv (v}) can then be formed by
a Lorentz transformation from ~Xv(v=0)).

gm„(k)(x, ~
r;a,

~
gt, )

F„(k)= — , (18)
(167r'cp) lLy(&p —k v)+X](K, ) a, ta,

~
K,)

where ) is the normalization factor and is independent
of the velocity v. It may be readily verified that 0 and
G are also independent of ~. Thus, as a physical nucleon
is set in motion, the distribution of various member of
mesons, as given by ~3T,,), is unchanged, while the
orbital states of the mesons are transformed according
to Eq. (18).

If the angular variables are separated out, Eq. (17)
can be reduced to two coupled differential equations
with one radial variable. Although these equations can
only be solved numerically, we shall give a simple
analytic approximation in Sec. VII that gives rigorous
solutions at both the weak-coupling and strong-
coupling limits, and yields fairly accurate results for
an intermediate range of coupling constants.



MOD EL FOR MULTI PLE M ESON PRODUCTION

between the two cores conserve the total isotopic spin,
I, for the two nucleons. In this case, the collision be-
tween the two cores can be expressed in terms of two
real phase shifts, 8~ for the triplet states and 6p for the
singlet state, since the isotopic spin of each core is —,.
The scattering matrix S is then

S=So+S~'~', (19)

where u and b denote the two colliding nucleons and
~,~' their respective Pauli isotopic spin matrices. The
complex constants Sp and S can be expressed in terms
of the phase shifts Sp and 5~ as

P = rzzyv+ ko. (23)

Thus, the variational principle gives

D'(I,I,) are determined by the variational method

B&%'( j (II ' kp v) I
II„—my —cop I%( j (I,I; k(j zj))

=0, (22)

where m is the rest mass of the physical nucleon and
orp the energy of the additional meson. In the expression
of II„, Eq. (8), we set the total momentum of the
system to be

and
4SO= 3e""+e""

g2i51 g2i50

(2o) D&(I,I.) = — N, ((j) C,("(I,I,)

The various rates of production of mesons are then
determined by the corresponding matrix elements of
the form

&final statesI 8 jinitial states).

Actually, in the expression for S, only the matrix ele-
ments of the second term, S~ ~' are relevant for
various production processes. The first term Sp, is
independent of the isotopic spin. Consequently, as
long as the e6ect due to a change of velocity is unim-
portant, it cannot contribute to the emission of mesons.

V. STATES OF A PHYSICAL NUCLEON AND
SEVERAL ADDITIONAL MESONS

In order to obtain the matrix elements of S for the
production of one or more mesons, we need not only
the state of a physical nucleon, as given in Sec. III,
but also the description of a physical nucleon and several
mesons. These states are given by the scattering states
of H„. As discussed by I.ee and Christian, ' these states
may be obtained by a variational method. We shall
summarize their method in a form that will be most
convenient for our calculation.

We consider first the states of a physical nucleon with
velocity e and one additional meson with momentum
ko in a total isotopic spin state I. The state function is
assumed to be"

e('j(I,I„ko,(j) =C,&(I,I,) '

gz" (k,ko)a„((k)d'0 IN, (z))

+D'(I, I.) I N. (~)) (21)

where
I N, ((j)) is the state vector of a physical nucleon

with velocity (j in the isotopic spin state p (p= 1, 2).
The C,p(I,I,) are the appropriate Clebsch-Gordan co-
efficients for constructing a state of total isotopic
angular momentum I and z-component I, from a
nucleon in the isotopic spin state p and a meson in the
statei (i=1, 2, 3).

The superscript (1) in 0 (zj (I,I„ko,(j) indicates it is
a state of a physical nucleon with one additional meson.
The scattering function yz"(k, ko) and the constant

X) gr'(k, k,ja;t(kjd'(: ((', (vj), (2(j

which is the same as the requirement that the scattering
states be orthogonal to the ground states. The scatter-
ing function gz" (k, ko) is given by

pL(o) k v) (up ko v) jgz" (k, ko)

t Ez"(k,k') gz" (k', ko)d'0' (25)

where

Ez"(k, k') =F„(k)F.(k')LUzv((u —k v+o)' —k' v)
+l zv(~0 —ko v)+Wzj.

The U&, Uz, and 8 & are constants depend only on the
structure of the physical nucleon at rest. They are
most conveniently given in terms of the matrix ele-

ments E, L, M, X, 0 which in turn are defined as
follows:

&&( Ia'tai
I
+(')=K4f((('+iL~ i@&'zz( I r(, Izz('')

(26)
(&.I

a"r~ I &')=M~ zt'- +iNe'z'(~. I
r~ I ~'),

and
&x, I

a;tIz, )=0&~,
I r;IN, ),

where IN, ) is the bare-nucleon isotopic spinor and

IX,) is the corresponding physical nucleon in the
reduced space given by Eq. (17). The 8@, e;;(, are the
two usual symmetric isotopic tensors. The Uz, Uz, Wz
can then be expressed for various I=-, and ~ states as

Ug
——i,

I
—(E+L)+KM '(M+N)], -

V~= E+L,
Wa= EM—'(M+N)X

and
U)=-,'I —(E—2L)+EM '(M —2N) j,
Ug= E—2L—30'
W;=EM '(M 2N)X, —

where X is defined in Eq. (18).
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where the matrix 'U~ is

(k I
'Ur

I
k') =~'(k —k')+ VrF. (k)F.(k'), (30)

with Vz given by Eq. (27). Although gz" (k, ko) can be
solved readily from Eq. (25), for pure computational
reasons it is much more convenient to transform
gz" (k, kp) to xr" (k, kp) by

gz" (k, ko) = t (k I 'Ur 'I k')xr" (k', ko)d'&' (31)

such that

l xr" (k,ko)xr" (k,kp')d'k=2(kp —kp'). (32)

From Eq. (30), it can be veriled directly that"

(I I
~;-'I k'& =P(k —1')

+L—1+(1+Vz)
—ljF„(k)F.(k'). (33)

In terms of the transformed gr" (k, kp) the matrix
elements of S can be naturally separated into two parts:
one that is dependent on momentum, and the other
part that is independent of momentum and can be
performed in the reduced space alone. To show this,
we define a state vector lt "l (I,I,) for a physical nucleon
together with a meson in the reduced space"

I&"'(I,I.)&= (1+Vr) '
X [C (I,I,)a;t

I K,&+S (I,I,) I K,&, (34)

where C;i'(I,I,) are the same Clebsch-Gordon coeS-
cients used in Eq. (21), and

n~(I,I,) = —(X, I C,"(I,I.)a;t
I X,.&. (35)

The
I K,& and a;f are the physical nucleon state vector

and the creation operator of a meson in the reduced
space. It is important to notice that lf ~ '(I,I,) is inde-
pendent of both ko and v. Furthermore, it satis6es the
orthonormal relations

(P&»(I I ) IX &=0
(36)

8"'(II ) lit
"'(I' I ')&=»z».z'

The matrix elements for production of mesons can now
be put into a productform. By , using Eqs. (21), (31),

's From the definition of Ur, it follows that (1+Ur) is always
a real and positive quantity.

We notice from Eq. (25) that while the state vector
4' ' (I,I„kp,v) obeys the ordinary orthonormal con-
dition

(@t'l(I,I kp, v)Idol(I'I ' k '
v))

=biz 5r,r, 8s(kp —kp'), (28)

the gr" (k,kp) satisfies a complicated orthogonal relation

tyz'*(k, kp) (k I
Vr

I

k'&gz'(k', kp')d'kd'k'

=P (kp —kp'), (29)

(33) and (34) we have

(vol (I,I.; k„.) I., I X,(v) &

=Gz" (ko) &0"'(I,I.) I r'I &,&, (37)
where

Gz" (ko) = Jt xz" (k' k )F (k')d'ik'

Equation (37) expresses the main advantage of intro-
ducing xz'(k, ko) and lt t" (I,I,). The first term, Gz (ko),
gives the momentum distribution of the emitted meson,
whereas the second term, (P "& (I,I,) I

r;
I K,&, is a

matrix element which can be calculated completely in
the reduced space. The explicit functional form of
Gz'(kp) is given in Appendix I. We remark here that if
the scattering amplitude, given by gz"(k, kp), has a,

resonance-like behavior at a certain energy, then the
effect of Gz (kp) is to have mesons emitted pre-
dominantly at energies close to the resonant energy.
On the other hand, if the scattering amplitude of
xr" (k,kp) is quite small, then we have"

xz"(k,ko):—&'(k- ko),

which causes the mesons to be emitted with a mo-
mentum distribution identical to F„(k). The matrix
element for production then becomes

(+oi (I,I, ; kp, v) I r; I X,(v) )
=F,(ko)(gi l (I,I,) 17',

I X,&. (38)

The above variational procedure can easily be gen-
eralized to determine the state vectors involving a
physical nucleon together with several additional
mesons. To simplify our calculations, we shall include
the eGect of rescattering only for state vectors con-
taining a physical nucleon with one meson. Thus, for
calculations of matrix elements involving one nucleon
and two additional mesons, it is only necessary to
construct an orthonormal set of functions it&" (I,I,) in
the reduced space.

14"'(I,I*))= I:E"(I,I.)a"a'I &.&

—Q &'&(IiIg) IE,;i'(IiI,)a, ta;tI Xp)1$"'(I,I,))
—(Jt,.IE;; (I,I,)a,

ta;tlat

&IOt, &g

&(normalization constant, (39)

where If"'(I,l, &
and

I X,&
are given by Eqs. (34) and

and (17).The constants E,,i'(I,I,) are again the appro-
priate Clebsch-Gordan coefficients" for constructing a

'4 We wish to point out that the condition for small scattering
amplitude xz" (k,kp) —s3(k—ko), is not equivalent to yp(k, ko)
~P(k —ko), since the former equation maintains the ortho-
norrnal relations of the state vectors +o'i(I,I, ; k,v), Eq. (28),
while the latter one is not compatible with Eq (28) excep.t in the
weak coupling limit.

"The coefficients E;;i(I,I,) and E;;i'(I,I,) are equal. Actually
there exists another way, antisymmetric in the meson indices i
and j to form a total isotopic spin l, I, from one nucleon and two
mesons. However, in the approximation where we neglect the
rescattering of mesons in a two-meson state, these two mesons
must be emitted with the same momentum distribution P'„(k).
Consequently, only the state symmetric with respect to i and j
can contribute in the production process.
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and

&y~ ~(-;,—;)I;I~&=-l~g"'(l,—:)
I I ~&,

&~ (l,--;)I. I
~&=l«"'(!,l) I "I~&,

&~ (-;,--:)I l~&=(~"'(-:,—:)I l~&,

&p (-;,—;)I.+I ~&=-i~3&a"'(-:,—:)
I

I ~&,

(&I -I tp&= &+I I
tl'»

(42)

where we represent

state of total isotopic angular momentum I and its
s-component I, from a nucleon in the isotopic spin
state p and two mesons in the states i and j, respectively.
These state vectors satisfy the following orthonormal
relations:

Q"'(I,I,) lg" (I',I,'))=err ez,s;,
(0 &" (I,I,) ly"'(I', I,'))=0,

and
(40)

The superscript (1) or (2) refers to states involving
one or two additional mesons. Similar to Eq. (38), we
have for the matrix elements

(+~"(I,I, ; k~, k2, n)
I
r, [ E,(e)&

=P, (ki)F.(k2)(|t t2'(I,I.) I.'I &.&, (41)

where 4"&(I,I„k~,k2, v) denotes the state vect'or repre-
senting a physical nucleon with velocity ~ together with
two mesons of momentum k~, k2 in a total isotopic
spin state I and I,. The effects due to rescattering of
mesons are, of course, neglected in Eq. (41).

The following simple identities concerning the matrix
elements Q'"'(l, l,) I

r; I X,& (n=1,2) in the reduced
space are very useful in our later calculations. We list
them as

Each of these two final states can be reached in
several ways, depending on which nucleon emits the
meson. The square of the matrix element, Mr, for
reaction (I) can then be expressed as

I~~ I'=
I &p+~+(k), &I sl p,p)

+(P, &+~+(k)[sl p P&I'+ I &&+~+(k), PI s[p,»
+.yr py~+(k)[s[p p)[2 (43)

where the state vectors always have the order of the
nucleons arranged such that the one to the left is moving
forward, while the one to the right is moving backwards
in the center-of-mass system. Thus, for example,
(P+m+(k), %Is[ P,P) represents the matrix element
for a final state of a proton that moves forward and emits
a positive meson with momentum k while the neutron
moves in the backward direction without emitting any
meson. Similarly, the term (P, X+m+(k) I

s
I P, P)

represents a final state with a neutron that moves
backward and emits a meson, while the proton moves
forward without any emission. From Eq. (19), these
matrix elements can be written as

(P+~+(k), xl s
I P,p)

=»&P+-+(k)
I "Ip&..P I -I» .,

(P, x+ +(l)[sip, p)
=S(plr,

l
p&+„P+~+(k) Ir, l p) „,

gv+ +(k), p[sl p,p)
44

=g(Pr+~+(k) I r, [P)+„(Plr, l p) „
(N, P+7r+(k) I

s
I P, P)

=»(&I.
I p&+.(P+~+(k) Ir+I p&-'

In Fqs. (44), we find it more instructive to represent the
state vectors as

and
r~= ', (repair-2)

VI. MATRIX ELEMENTS AND CROSS SECTIONS
and

I p).= I &.-~(~))

I &&.= I
& -2(~) &,

I
p+ '(k)).= l~ "&(l,—:;k, )),

(43)

For purposes of illustration we first consider the
collision of two protons, in the center-of-mass system,
with the emission of a single ~+ meson of momentum k.
This reaction can be written as

p+Xy~+(k).

H +v and —v are the initial velocities of the two nu-

cleons, then there are two diferent final states for this
reaction, corresponding to whether the proton or
neutron moves forward after the collision. In our
approximation, these two final states do not interfere
since the two nucleons have quite different momenta in
the initial state, and for these two states to interfere
would require an exchange of momentum equal to the
difference of their initial momenta. As we assume that
(Av/v)&(1, we imply that such a large momentum
exchange is unlikely.

I&+ '(k)).= (l)'*I+"'(l,l »&)&

+ (s)'I +"'(2,k; k, ~) &.

The subscript. &v in ( &~„means that the matrix ele-

ments must be evaluated for states containing a nu-

cleon of that velocity.
It is convenient to express the momentum depend-

ence of these matrix elements explicitly. With the use
of Eq. (37), Eq. (42) and Eq. (43), the matrix element
for reaction (I) can be written as

I
m, I'= Is(a I., I

tl'& I'(&0 &»(-;,—;)I., I ~&

~L—~3G "(k)+(l)-:G-:-"(k)3
+(l):(t"'(-:,l) I "I+&6-:-"(k)}' (46)

+identical terms but with the superscripts

&v replaced by Wv.
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P P

(-v) (+v)

P P
(-v) (+v)

S

P P
(-v) (+v)

where nz, t = —Lzzzt (k)+z'zz2t (k) j/v2 represents the
creation operator for a positive meson of momentum k.
A direct substitution of these terms into Eqs. (44) yields

&P+ +(k), 1VISIP,P&

»&PI~»+I»+. &1V[r IP) ., (4S)

(P, 1Vy +(1) lslP, P)
~&PI IP)..&1vl."IP)-.

—s&P I., IP&,„&P[., IP& ..&1vl~, [P& „. (49)

By using the weak-coupling-limit expression for IP)~,
and

I 1V)~„one can easily identify the term in Eq. (48)
with the Feynman diagram (a) in Fig. I and the two
terms in Eq. (49) with the Feynman diagrams (b) and

(c), respectively. Similarly, by exchanging &zz with

Tz, contributions due to (1V, P+~+(k) I SIP, P) and
(1V+ir+(k), Pl Sl P,P) can be identified with diagrams
(d), (e) and (f) in Fig. 1.

The expressions of matrix elements and cross sections
for other production processes may be written in a
similar way. In the following, we shall list these ex-
pressions for all single and double meson production
processes for proton-proton collision. They are, besides
reaction (I),

P N

P
S Ii

P P

(-v) (»)
P P

(-v) (»)
P P

(-v) (+ v)

(e)

FIG. 1, Feynman diagrams for reaction I'+I' —+ I'+%+sr .

The expression for the differential cross section der~

for reaction (I) is given by

dzrz
——(2') 'v, '[3IIzl'8'(pz+p2+k)

Xh (cuz+ ei+ e2 E)d'pzd—'p2d'k,

where v, is the relative velocity of the two initial
protons; p1, p~ and e~, ~2 are the 6nal momenta and
energies of the two nucleons; 8 is the total energy of
the system. In evaluating the phase space integral, we
make the following approximation suggested by Fermi. '
We assume that the meson momentum k is much smaller
than p~ or p2 since the nucleons, being heavier, tend to
have large momenta favored by the phase-space
integral. We therefore neglect the meson momentum
in the delta function for momentum conservation.
Thus, we can integrate de~ with respect to the nucleon
momenta p1 and p2 and the resulting differential cross
section in terms of the meson momentum k can be
written as

(II)

(III)

(IV)

(V)

P+P —+ P+P+w'(k),

P+P -+ P+1V+m+(kz)+zr'(k2),

P+P ~ P+P+m'(kz)+x'(k2),

P+P —+ P+P+m-+(kz)+ir (k2),

P+P -+ 1V+1V+ir+(kz)+zr+(k2). (VI)

The corresponding matrix elements for these re-
actions may be written, respectively, as

l~»l'= l&P+~'(k), Pls[P,»
+&P, P+-'(k) ls[P, »I', (5o)

l~zzzl'=
I &P+zr"(kz), 1V+~'(k2) [SIP, P)
+(P+~o(k2), 1V+~+(kz)

I s[P, P)
+&P+~+(k,)+~o(k,), 1V

I
s

I P,P)
+&P, 1V+~+(kz)+~'(4) [SIP, P&l'

+identical terms, but with the order of

P and 1V interchanged in the final states; (51)

I Mzv I'=-'I(P+ir'(kz), P+iro(k, ) I sl P, P)
+(P+zr'(k ), P+iro(k ) [SIP, P)
+vz&P+~o(k, )+~'(k,), P

I sl P,P&

+V2&P, P+ir (kz)+7r (k2) I
S [P, P) I

', (52)

lMvl'=
I
&P+zr+(kz), P+.7r (k ) I s[P, P&

+&P+~—
(k2), P+vr+(kz)

I
s

I P, P)
+(P+ +(kz)+m —

(k2), Pl sl P,P&

y&P, P+~+(kz)y~-(k, ) Is[P, P)[';

The term J'diaz z, which is the integral extended over
the direction of final nucleon momentum, is merely a
multiplicative factor, and thus will not inAuence the
relative cross sections for various production processes.

Some insight as to the meaning of these matrix ele-
ments, Eq. (43), may be obtained by a comparison
with the usual Feynman diagrams. Ke shall discuss
this relationship for small values of the coupling con-
stants. In the weak-coupling limit, the state vectors
[1V+zr+(k)&„and IP+ir+(k)&„, introduced in Eq. (45),
become

I 1v+~'(k) & ~"
I » —

&PI ~"I 1v& IP)
and

(53)IP+m-+(k)&. —+ nk+I P)„

daz ——(27r) (sp„) I

' dfIpz
I I~zl, t' I

)
X[(E )' 4~'—]:fE— ]d'1 —(47).
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and

I ~vr I'= 2 l g+~'(ki), &+~'(k2)18 I P, »
+ (X+~+(k,), X+~+(k,) ~

a
~
P, P)

+v2(Ar+m+(ki)+m+(k2), X~ 8
~
P,P)

+VZ(X, X+7r+(ki)+m+(4)
~
8~ P, P) ~' (54)

where the meaning of these matrix elements is similar
to that of the matrix elements given in Eq. (43). The
factors 2 and W2 in Eq. (52) and Eq. (54) are due to
our convention of letting both ki and k2 vary through
the entire k-domain independently, even though they
may represent momenta of two identical particles. Thus,
the normalizations of the states ~E+s+(ki)+m+(k2))
and

~
P+~'(ki)+~'(k2)) are given as

"y+~+(k,)+~+(k,) I
A'+~+(ki')+~+(k2'))

Xd'k~d'k2= 1,

t(P++'(k, )+gr'(k, ) ~
P+m'(ki')+~'(k2'))

with ki, k2 each varying through the entire k-space.
The explicit k-dependence of these matrix elements
can be obtained by using Eqs. (19), (37), and (41).
They are all tabulated in Appendix II. The cross sec-
tions for these reactions can be obtained in a similar
way as for the reaction (I). After integration over the
nucleon momenta, the expression of do for reaction (II)
is identical with Eq. (47) except for the replacement of
the subscript I by II. The corresponding expression for
any two-meson emission process [reactions (III)—
(VI)$ is given by

( t

d~=(2~) '(») '( dfl» II~I't (&—~i—~2)' —4~'g'

XLE—~i—~2$d'kid'k2. (55)

The variables ki and k2, again, vary over the entire
k-space independently, even in cases where they
represent two identical particles.

VII. NUMERICAL RESULTS AND CONCLUSIONS

In order to see the variation of these matrix elements
and cross sections with the coupling constant g, it is
necessary to perform a numerical calculation by 6rst
solving for the state of a physical nucleon

~
K,) in the

reduced space. One can then use this state function to
calculate the various matrix elements in the reduced
space together with the momentum distribution func-
tions Ga" (k), G~" (k), and F„(k).As the purpose of the
present calculations on the symmetrical scalar case is
merely to illustrate our method, instead of doing la-
borious but exact numerical calculations, we shall give
here a simple analytic approximate form of

~
K,) which,

&,)=2 C2 (~, t~, t)" +C~~i(~; ta, t)-.,a, t]~!n,), (56)
m=p

where
~
N, ) is the state vector for a bare nucleon in the

isotopic spin state p. The constants C& and C&~& obey
the following difference equations:

(2mQ —8)Cg~+GC2~ i+G(2m+3) C2„,~i =0,
L(2m+1)0 —Z)Cg~i+GC~ +G(2m+2)C2„+2=0,

'
(57)

where G and 0 have been introduced in Eq. (16).
These equations have simple solutions for very small

and very large values of G. For G«1, we obtain

Co= 1, Ci= —G/0) and P.= —3G'0, (58)

and for G»i we have

C„=L
—G/0j "/e! with 8= —G'Q. (59)

For intermediate values of G, Eq. (57) can be solved
numerically. However, in order to gain some insight,
we shall use a variational procedure and choose as
trial function

C =x""/n! (+=0, 1, ~ ~ ~, ~), (60)

which agrees with the forms of the rigorous solutions
at strong and weak coupling limits. The parameter x
is determined in a variational way. By substituting (60)
into (56) and using the definition, of E, we have for the
expression of 8 in terms of x,

E=Q( (x'+6x+3) coshx+(x'+5x+6) sinhx —3

+2(G/Q)xiL(x+3) coshx+ (x+2) sinhx]}
X((1+x)coshx+(2+x) sinhx} —'. (61)

Upon minimizing E with respect to x, we have

(x'+2x —3) cosh'x —(3x'+8x+4) sinh'x
—(2x'+6x+8) coshx sinhx+ (G/Q)x &

XL(3x'+8x—3) coshx —(Sx +12x+4) sinh'x
—(2x'+4x+8) sinhx coshx] =0, (62)

from which x can be readily obtained as a function of
G and Q. This relation is tabulated in Table I.

To obtain the explicit numerical values for the various
matrix elements, we choose for the source function (for
v=0)

and
uo(k) = 1 for co (6.21'

u, (k) =0 for ar) 6.21@.
(63)

The upper cutoff in momentum is the same as the one
used in the symmetrical pseudoscalar case~ in order to

however, does give rigorous solutions at both strong
and weak limits.

According to Eq. (17),
~
X,) is determined by

Ko
i ot, )= (E+no) i ot, ),

with E=ns —mp. From consideration of invariance, the
state vector

~
X,) must be of the form
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TAax, z I. Various matrix elements in the reduced space. '

x —+0
0.02
0.05
0.1
0.2
04
0.6
0.8
1
3

—x&
—0.148—0.247—0.382—0.627—1.019—1.234—1,340—1.417—2.019—x&

g'/4'

2.06x
0.045
0.126
0.301
0.811
2.139
3.137
3.699
4.136
8.397
2.06x

0.925
0.826
0.615
0.515
0.332
0.255
0.225
0.215
0.259

2(2x/3)i
0.214
0.304
0.367
0.402
0.395
0.379
0.371
0.368
0.405
V2/3

8 ")(4,l) I » ( +&

4(x/3)i
0.301
0.426
0.453
0.475
0.311
0.166
0.072
0.018—0.029—1/ (3x&)

8 (»(l, s) I T3I +&

—2 (10xs/3) 1
—0.067—0.145—0.244—0.341—0.351—0.317—0.242—0.203—0.134—v2/(3x)

8 ")($.2) I »I (p&

—4 (2x'/3) i
—0.06].—0.141—0.240—0.351—0.391—0.331—0.218—0, 136
+0.015

A/(3x')

a Other matrix elements may be obtained by using the following identities:

8 "'(2 2) I 2 (Tl+&T2) I
6') = -(~/2)(0 &"(5 4) I » I +).

Q (1)(y —&) 4(T1 $T2) I +)=$Q (l)(~ $) I T3I +)&
8 ('&(k —4) Ik(T1 -T2) I (p& =8 &')(0 0) I T3l +)

9")(k~5) I s (Tl+&T2) I +)= —(/2) 8 "'(k.s) I TS I +)

N'I:(. -') I+&=&+I I5'&.

the scattering state of m mesons for I= 2 has a 90' phase
shift at zero incident kinetic energy, ~=@. This means
the nucleon-meson system has a bound isobaric state
of I=s for gs/4s)4. 7." We calculate the functional
form Gcs(k) and Gcs(k) in a system where v=0. These
functions for gs/4s =4.1 are plotted in Fig. 2 together
with Fs(k). The corresponding functions for n/0 can
be obtained through a I orentz transformation by

fit the experimental scattering data of + mesons.
Furthermore, as a matter of expediency, we shall
neglect the term X in Eq. (18) for F„(k). The function
F„(k), then, becomes

F„(k)~ N, (k)/[coke(ce —k v)], (64)

with the proportionality constant so chosen as to make
F„(k) still normalized according to Eq. (14). By using
(63) and (64) and the definition of G and 0, we find G."(k')( ')'=G"(k) ' (I=ah),

F„(k') (cJ)'= Fs (k) (cu) k.

(67)
gs/4n = (2.06) (G/0)'. (65) and

In, the weak-coupling limit, both Gk"(k) and Gc"(k)
become identical with F„(k).However for large coupling
constants as shown by Fig. (2), G,*"(k) tends to make the
energy of the mesons emitted in the I= 2 state lie close
to the low resonance energy, while no such eGect is
shown by Gk" (k) for the I= ststate. Furthermore, for
cu(4, Gcs(k) is always smaller than Gce(k). Because of
the over-all energy conservation, mesons with very

0.5

3

Fin. 2. The functions 4xkco
~
Gtc(cd) (c, 4nks&

~

Gio(~)(' and
4xkco~to(c0) ~' ccs cg for g'/4cr=4. 1.

'7 For g2/47r &4.7, the state functions discussed in Sec. V have
to be generalized to contain the isobar state.

g'/4s =4.7, (66)

'6%e limit ourselves in the present discussion only to single
and double meson production processes.

The detailed values of various matrix elements for
various values of x, hence also of g'/4n, are listed in
Table I. From Table I, we see that the relative magni-
tudes of these matrix elements diGer violently for large
values of coupling constant as compared to their values
from the weak-coupling formulas. In particular, we
notice that for very large values of coupling constants,
only matrix elements of the type (X, ~

r;~ X,, ) and
git" (—,',I,) ~

r;~K,) approach finite constants, while the
rest all become extremely small and approach zero in
the limit. This means, physically, that for large values
of the coupling constant the inQuence of these matrix
elements is to have each nucleon prefer the emission
of zero or one meson, with the meson emitted in the
I=-,' states. " Another interesting feature is that for
weak coupling the probability amplitude for two-
meson production is proportional to g' while the proba-
bility amplitude for one-meson production is propor-
portional to g. However, for large coupling constant
both these probabilities approach constant values as
limits.

Next, we consider the eGects due to the momentum
distribution functions of the emitted mesons. Using the
explicit expression of xr" (k,k ), derived in Appendix I,
we notice that at
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high values of kinetic energy are not allowed. Conse-
quently, for large values of the coupling constant this
effect of G;"(k), together with the phase space integral
is to enhance even more the probability for emitting
mesons into a state with I=—,

' as compared to I= 2.
In conclusion, we remark that although a test of the

validity of our model can only be given by applying it
to the symmetrical pseudoscalar theory, the results
found above for a symmetrical scalar case seem to
indicate that for large values of coupling constant the
behavior of this model for multiple meson production
does resemble, in a general way, those observed
experimentally. '
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X [O,i,+mr+ (-', 8,,) (n—,)],
where
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f Fop(k)
(Fp') = d'k. (A.7)

APPENDIX I

We discuss in this appendix the detailed solution of
the scattering integral equation. It is most convenient
to discuss these functions in the system where v=0;
then the corresponding functions for v/0 are given by G.(k) = xr" (k', k)F.(k')dok'. (A.S)

We choose Xz'(k, kp) to be the solution with an incoming
wave, as it will be used in final state wave functions.

Let G.(k) be defined as

Ki (ki ik2 )(~1~2 ) Ki (kiik2)(~1~2) i

P.(k') (~')'*=Fp(k)~'*,

XI (kl ik2 ) (&1 op2 ) XI (klk2) (p11op2)

(A.1)
According to Eq. (37), G„(k) represents the orbital
momentum distribution of the emitted meson. From Eq.
(A.6), we have for @=0,

where k, p1 are related to k', op' by a Lorentz trans-
formation. All functions with superscript or subscript 0
are referred to the system with v=0.

The integral equation for gr'(k, kp) may be written as

(ply pop)XI (k, kp) =
~

Xi (k,k )Xi (k,kp)d k (A.4)

with

xio(k, k') =-', ti', IFp(k)Fp(k') (p1+p&') y(aiFo(k)Fo(k').

The constants 0',~ and S~ are given as

81=2[1—(1—Ur)(1+Vi) '],
gr = —0+20(1—Uz) (1+Vr)

+(2UIQ 0+Wr)(1+Vi) '—(A.5)

(cei.—pop)pro(k, kp) =
) Pro(k, k')gzo(k', kp)d'k', (A.2)

where

Er'(k, k') = —,'AzFp(k)Fo(k') (p1+p1')+BIFp(k)Fo(k').

The constants A~, 81, are related to Ui, t/'I, 8'I given
in Eq. (27), by

A I ——2UI,

&I= Vr& o+Wr

Upon using Eqs. (25), (31), and
integral equation for xz'(k, kp)

Go(k) =Po(k)[1—-'t2', ][D '(k)] ' (A 9)

The corresponding expression for v/0 is

G„(k') =P„(k')[1—-'Q, i][DI"(k')]-' (A.10)

where Dz'(k')=Dz'(k), with k' related to k by a
Lorentz transformation.

We remark that Dz'(k) is actually the denominator
for the scattering amplitude. Thus, if the solution has
a resonance behavior at a certain meson energy kp then
for k near ko

(Dr'(k)
~ ~ 1.&&1.

Consequently, the effect of Gp(k) is to have the meson
emitted with energy near the resonance energy. Dro(k)
may be expressed in terms of the Al and Bl used in
the original integral equation (A.2), for 1I io(k, kp). Sub-
stitution of (A.3) and (A.5) into (A.6) gives

Dr'(ko) = (iyv, )- [1—A, —(Ai~o+ai)(Po')
+ (-', A I)'(1+~—n) (Po')]+24~2ko~oF o'(ko)

X [A I pop+Br+ (-.,'A 1)2(0—pi)]. (A.11)

By using the solution of
~
X,) as discussed in Sec.

VII, we 6nd that if
(A.12)g2/42r =4.7,

then the real part of Dro(k) =0 for k=0.
This implies that for g2/42r &4.7 the system has a

stable isobar state for I= ~.
The functions Gio(k) for g2/42I=4. 1 are plotted in

Fig. 2. We remark that for g'/42I (4.7 there is no bound
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state for I=-,'. Thus the scattering function x,*'(k,kp)
forms a complete set and we have

On the other hand for I= ~, because of the existence of
the ground state of the nucleon, the scattering function
xkP(k, kp) does not form a complete set. Consequently,

"IG,o(k) Isdse &1.

APPENDIX II

We list in this section the explicit k-dependence of
various matrix elements used in Eqs. (46), (50)—(54).
Those not listed can be obtained by interchanging +t&

and —
t& or (and) by interchanging kt and ks.

(P+~+(k), Xi Si P,P&

=2s&&lr-I&p&9'"'(p sz) Ir+I &p&Gi'(k) (A 13)

&P, 2v+~+(k) IHIP, P)=s(&II v, i &P&

xC(-:)kQ & &(-;,—;)I., I ~&G; (k)
+(l)'&4 "&(l,—:)

I I
6')G. "(k)], (A.14)

(P+ '(k), PlglP, P&=s&~l "I~)
x C(l)'4"'(l l) I I

(p&Gi" (k)
—(l)'(4 "'(l,l) I I

6'&G "(k)» (A 15)

&P+~+(kt), ~+~P(ks) IHIP, P&

xC(-:):8& &(-;,——;)I,I6&G.,
—(k,)

+(-:)"&4"&(-',—-')
i -I 6)(:.-"(k.)], (A.«)

&P+7r'(ks), X+pr+(kt)
I
g

I
P, P)

=sC(-:)'&p&"(-:,—;)I „I(P&G, (k,)
—(s)'&0 "&(z,z) I vsl (p)(.k" (ks)]
x C(.)'8 & &(-;,—;)I., I

6'&Gi- (k,)
+(l)'(&"'(l l) I

(P+~+(k,)+~P(k,), XisiP, P)
=2s&~i.

I
6 &P.(kt)P. (ks)

x(-,')'&o&'&(-;,—;)
I +I +), (A.fg)

&P, 1&f+~+(kt)+~'(kp)
I

&
I
P) P)

= —s«pi,
i

&P)P „(k,)P „(k,)
x(s)ig "'(sz,z) I vpi &P&, (A.»)

(P+7r'(kt) P+vr'(ks)
I
S

I
P P)

=sC(-;)-:(if "&(l,l) I "Ie&G,. (k,)—

x C(-:):g& &(-;,—;)I., I ~&G;
—(k,)

—(s)'8"'(z, z) lrsl &P&(:i "(ks)], (A 2o)

&P+~P(k,)y~P(k, ), PI Si P,P)
=s&&p

+2(1/15)'&0"&(zk)
I vsl &P&], (A 21)

+g (16z'o&) lCa(k)+at(k)]up(k)d'l's. (A.24)

It is well~known that this Hamiltonian can be trans-
formed into a diagonal form/by a unitary matrix Up

given by

Up=expIg~I (16z'o&) kCa(k) —at(k)]up(k)d'k . (A.25)

The state for a physical nucleon at rest then becomes

l&(~=0))=Up 'l~&, (A.26)

where
I e) is the state for a bare nucleon. By using the

Lorentz transformation 2, given by Eq. (4), we find
that the state vector for a physical nucleon in motion
with velocity v is

i 1V(v) )= U„—'
I n), . (A.27)

V,, =exp g 16m'o) 'y ' o)—k. v

xCa(k)-at(1)]dpi' .

Similarly, the state for a physical nucleon moving with
velocity v together with m mesons of momentum
kt, k is given by"

Ie&"&(k k v))
= U '(m!) 'at(kt)at(ks) a"(k~) in). (A.28)

In a neutral scalar case, the physical nucleon is
characterized by its velocity alone. Thus, during the

The normalization of the state vector !+&~&(k& k; v)) is

(4'& &(k& ~ ~ k; v)!%&~&(kq' ~ ~ ~ k '; v))dak& ~ dsk = t

vrith k& k each independently varying over the entire k-space.

&X+ +(k ), 1&f+ +(k )IIIP, P)
=sC(-:)i&~&"(l,!)I "I~&G-:4k )
—(s)'&0 "&(z,z) I vsl (p&G:"(kt)]
xC(-,')'&p& (-;,—,) I., I

6 &Gi- (k,)
—(-')'&p"'(-' —',) i

v. s i
(I')Gk

—"(ks)], (A.22)

P y~+(k, )+~+(ks), XI Si P,P&

=-2s&xi.
I
6&P„(k,)P„(k,)

x (x)k&p"'(-,',—,')
I pl (P). (A.23)

APPENDIX III

VVe discuss in this appendix the complete solution of
multiple meson production for the case of neutral
scalar theory. The Hamiltonian Ho for a nucleon at
rest is

Hp ——t&tp+ o&a t (k)a(k) d'k
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(Po= IP (v')
I &(v) &

I'

Upon using (A.27) and (A.28) we find

(A.30)

collision, only the velocity of the nucleon can change
from v to v'. The corresponding probability for emitting
m mesons with momenta k&, k due to this velocity
change is

(P (kt. . k )= l(%'& &(kt. k; v')lE(v))l', (A29)

while the probability (Po for no-meson emission is given
by

tP (ki. k ) =g2™6'o(ml)-'IIf'(k, ),

f(k) = (16~'co) &j(&u —k v)
—'(1 s—')'*

—(a)—k v') —'(1—v")&].

It is easy to verify that the total probability is

(Po= exp —g'~ f'(k)d'k (A.31) . )t O'~(k& k~)d'kg d'k~=1.
OJ
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We study those restrictions upon the branching ratios of diferent decay modes of Z+, A. , and 8' imposed
by the invariant property of a system composed of nucleons, pions, hyperons, and heavy mesons under
the Wigner time reversal. These restrictions give, in fact, upper and lower limits on the various branching
ratios. Later, we use a more or less specific model of hyperons and 8 mesons in order to get other possible
restrictions on the branching ratios. These results are model-dependent, and subsequently provide a possible
test of the model we have chosen.

I. INTRODUCTION

T is known experimentally that the Z+ decays
~ - according to two diGerent modes:

g+ (Q 116 Mev).—+ n+7r+

It is likewise supposed that A' and 0' have an alternative
decay mode besides the ordinary one, although so far
there is no conclusive experimental evidence for the
alternate modes:

~ p+T
(Q 37 Mev),~ n+7ro

(Q 220 Mev).
-+ pro+a-o

First we shall study those restrictions' upon the
branching ratios of diGerent decay modes of Z+, A', and
0' imposed by the invariant property of a system com-
posed of nucleons, pions, hyperons, and heavy mesons
under the Wigner time reversal. These restrictions give,
in fact, upper and lower limits on the various branching

' This possibility was erst suggested to the author by K. M'
Watson. Also see K. M. Watson, Phys. Rev. 95, 228 (1954}.

ratios. Since the limitations upon the branching ratios
thus obtained prove so weak (see Tables I and II), we
later adopt a more or less specific model of hyperons and
0 mesons. This will give us other possible restrictions on
the branching ratios of various decays. These results
are model-dependent, and subsequently provide a
possible test of the model we choose.

II. RESTRICTIONS ON BRANCHING RATIOS OF
DECAYS IMPOSED BY THE INVARIANT

PROPERTY UNDER THE WIGNER
TIME REVERSAL

I et us take, for example, the decay of a A' into a
proton and a x, or a neutron and a m'. For a given
value of the spin and parity' of the A', the relative
angular momentum / between a pion and a nucleon after
the decay is fixed. YVe have, then, only two different
final states, namely, a (Pp. ) and an (e,mo) state with
the specified j and l. Or we can use two states with
definite isotopic spin values T=—,'and T= —', instead of
(p,n ) and (m, m').

The reaction matrix E and the scattering (or decay)
matrix T are given by

K= U+V A. ,
E IIO.

' This is the intrinsic parity of a cV relative to the intrinsic parity
of a nucleon.


