ELECTRON LOSSES AND X-RAY ABSORPTION SPECTRA

additional photoejection from the outer shells to the
bands, so also in the case of the electron absorption
we may expect excitations of the outer shell electrons.
This could possibly explain some of the cases where
there is a correlation between the fine structure and
the characteristic spectra but no apparent energy
dependence on the lattice.

In order to have a complete theory of the charac-
teristic energy losses in terms of the band picture,
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more information concerning the densities of states is
necessary.
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The cellular method has been applied to a calculation of the cohesive energy of metallic potassium. The
crystal potential is taken from a self-consistent field with exchange for the potassium ion. An approximate
exchange interaction between the valence and the core electrons was included. The cohesive energy was
found to be 18.5 or 19.3 cal/mole according as Pines’ or Wigner’s expression for the correlation energy is used,
and the effective mass to be 869, of the free-electron mass. The experimental value is 22.6 cal/mole.

INTRODUCTION

HE cohesive energy of potassium was first cal-
culated by Gorin! who used the cellular method.
Unlike previous calculations for lithium and sodium by
Wigner and Seitz? and by Seitz,? Gorin did not obtain
reasonable agreement with experiment, but found a
value considerably too small. Gorin attributed the fail-
ure to the supposed greater importance of the electron
interaction, i.e., correlation between valence and core
electrons. The subject has since been taken up again by
Kuhn and Van Vleck* and by Brooks® who use the
“quantum defect method” which avoids explicit use of
a potential, but rather makes use of knowledge of the
energy levels of the free potassium atom, determined by
atomic spectroscopy. These authors find much better
agreement ; in particular Brooks finds a cohesive energy
which differs from the experimental value by only 0.4
cal/mole neglecting the Coulomb interactions of the
valence electrons—a discrepancy probably well within
both the experimental and theoretical uncertainties.
The basic assumption of the Wigner-Seitz method is
that the atomic polyhedron can be replaced by a sphere
of equal volume. Each atomic cell is regarded as elec-
trically neutral, so that the valence electron moves in
the field of the corresponding positive ion. In this
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approximation, the cohesive energy is essentially the
difference of two quantities: first, the boundary cor-
rection due to the fact that the wave function of the
ground state of the valence electron is flat at the surface
of the atomic sphere. Hence there is a decrease in the
kinetic energy of the ground-state wave function, and
at the same time, the valence electron is forced back
into the ion core to a certain extent, i.e., into a region of
more negative potential energy. The second quantity
is the kinetic energy of the electron distribution, occa-
sioned by the fact that only one electron of each spin
can be in a given state. This kinetic or Fermi energy
can be calculated by the method of Bardeen® (which has
been extended by Silverman”) where it is determined by
the effective mass of the electrons. The contribution
from the Coulomb interaction of the valence electrons is
considered to be that for a free-electron gas, diminished
by the exchange and correlation holes. The net . effect
of the Coulomb interaction turns out to be small. This
surprising result has been explained by Bohm and
Pines® as a consequence of the screening effect of the
rest of the electron distribution on the field of any
single electron. '

We have repeated Gorin’s calculation with some im-
provements. The potential of the K ion is taken from a
self-consistent field with exchange calculated by
Hartree and Hartree.® (The K* ion field used by Gorin
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did not include exchange.) Second, we have used
approximate values for the exchange interaction
between valence and core electrons, estimated from the
Hartree-Fock equations by means of approximate wave
functions. Different exchange interactions are used for
s- and p-like states. The value of the cohesive energy
obtained, 18.5 or 19.3 cal/mole, according as Pines’
or Wigner’s expression for the correlation energy is used;
is a marked improvement over Gorin’s result of 6
cal/mole. Although there is still considerable discrep-
ancy between this value and the experimental result of
22.6 cal/mole,!° the agreement is reasonable considering
the remaining uncertainties. These uncertainties in-
volve: (1) the exact form of the exchange interaction
for the valence electron, (2) increased correlation be-
tween valence and core electrons over the situation
prevailing in the free atom, arising from the compression
of the valence electron distribution, (3) polarization of
the ion core by the valence electron, (4) deviation of the
Coulomb interactions of the valence electrons from the
values predicted by the free-electron approximation,
(5) terms in the kinetic energy proportional to %%, and
(6) relativistic corrections. It is hoped to consider these
topics in a later investigation.

METHOD OF CALCULATION

Approximate wave functions for states of s- and p-
like symmetry were obtained from the orthogonalized
plane waves!! of lowest energy for the type of state
considered. These functions were used to compute
approximate exchange interactions between core and
valence electrons. The s-state exchange interaction was
included as an inhomogenous term in the wave equation
for the I'y state; and the p-state interaction was inserted,
as a potential, into the equation for the p-like functions
involved in the effective mass calculation. It can be
shown!? that an exchange interaction can be included
in the calculation of the effective mass without change
in Bardeen’s formula. The difference in the two ex-
change interactions is significant.’®

Using this exchange potential and the previously
mentioned Coulomb potential from the Hartree field,’
the wave equation was integrated for the observed
lattice spacing (r,=4.84 Bohr units), subject to the
boundary condition that the wave function have zero
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radial derivative on the atomic sphere. An eigenvalue,
Ey=—0.453 ry, was obtained.
According to Bardeen,® the reciprocal of the effective

mass, E,, is given by
1 ) ] . 1)

rP?
E2=['—‘—-
3 \P dr
Here R and P are r times the radial parts of the s- and
p-state wave functions for the energy Eo. E; was found
to be 1.168, but the value appears to be sensitive to
details of the exchange potential in the outer region of
the atomic cell. The value obtained by Brooks® was
1.065.
The contribution to the binding energy from the
boundary correction and from the Fermi energy is

Ep=E+2.21(Ey/r2). 2)

The value of Eg is —0.342 Rydberg. The contribution
from the Coulomb effects in the valence electron
distribution is (according to the free-electron approxi-
mation) .

r dP

1.2 0916 0.88
Er= — .
7s 7s 7’3"{‘7.79

(3)

The first two terms represent the Coulomb repulsion
and the exchange interaction, respectively. The correla-
tion correction, which is the third term, is that given by
Wigner," corrected for an error in Wigner’s derivation.'
The values of these terms are: Coulomb repulsion,
0.2480 Rydberg; exchange, 0.1893; correlation, 0.0697 ;
giving a total of —0.0110 Rydberg, or —3.4 cal/mole.
The theory of Pines® yields a correlation energy of
—0.0671 ry and a net interaction of —0.0084 ry or
—2.6 cal/mole.

The cohesive energy is the difference between the sum
of Ep and Ey and the ionization energy of the free atom,
for which we take the 4s electron eignevalue computed
by Hartree and Hartree,'s —0.291 Rydberg. The value
obtained is 0.062 Rydberg or 19.3 cal/mole, using
Wigner’s correlation expression; and 0.059 ry or 18.5
cal, using the result of Pines.

We wish to thank Mr. Jack Segal for assistance with
the numerical calculations.

14 E. Wigner, Phys. Rev. 46, 1002 (1934); Trans. Faraday Soc.
34, 678 (1938).

16 C. Herring (private communication).

16 D. R. Hartree and W. Hartree, Proc. Cambridge Phil. Soc. 34,
550 (1938).



