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Comparison of the characteristic energy losses of electrons in several materials with the 6ne structure
found on the short-wavelength side of the x-ray E-absorption edge indicates that there is a correlation
between the two phenomena. This leads us to believe that many of the characteristic energy losses may be
due to excitation of the valence electrons to higher allowed energy levels. It is also shown that, in general,
the energy-loss spectra are similar for metals which are neighbors in the periodic table, and that there is
some dependence on the crystal lattice constant.

INTRODUCTION
' T is the purpose of this paper to show that a striking
i - correlation exists between the characteristic energy
losses of electrons in solids and the fine structure found
on the short-wavelength side of the x-ray absorption
edge. For the sake of simplicity, we consider here only
the E-edge one structure, and compare the charac-
teristic losses with the maxima of absorption of the
6ne structure as measured from the E-edge. Since the
x-ray E-edge corresponds to a transition-of a E-electron
to the erst unoccupied level above the Fermi level, and
the maxima of absorption of the fine structure to
transitions to higher allowed levels, it is quite plausible
to account for the characteristic energy losses as due to
excitations of the valence electrons to the same higher

energy levels. It is, of course, obvious that the initial
states will diGer for the two cases, and that, therefore,
there will be some diGerences in the level spectra ob-
tained in regard to the number of levels observed and
the probabilities of the transitions. One might also
reasonably expect diGerences in the energy values due
to the fact that the fine structure is measured from the
Fermi level. There would also be possible diGerences in
the widths of the spectral lines since the initial E-state
for the x-ray case is very sharp whereas, oG-hand, the
initial state for the electron case would appear to be
considerably broader. At the present time there are not
sufhcient data available to allow discussion of the
transition probabilities or the half-widths of the spectral
lines, and we can only approach the problem from the
limited viewpoint allowed by a comparison of energy
absorption values.

Before we present the numerical data, we will erst
discuss the characteristic energy losses and the x-ray
one structure so that the two phenomena in question
a,re understood. These discussions will be brief since
there are rather complete reviews of both subjects; in

the case of the x-ray one structure by Hanawalt' and

by Kurylenko' and in the case of the characteristic
losses by Marton, Leder, and Mendlowitz. 3

' J. D. Hanawalt, J. Franklin Inst. 214, 569 (1932).
~ C. Kurylenko, Cahiers phys. 54, 1 (1955).
3 Marton, Leder, and Mendlowitz, Advances As Electronics aed

E/ectroN Physics (Academic Press, Inc., New York, 1955), Vol.
VII, pp. 183-238.

CHARACTERISTIC ENERGY LOSSES

It has been found that electrons, which interact with
a solid, lose rather small, well-defined amounts of
energy. The distribution in energy of the electrons
after the interaction, measured either in transmission
through thin Alms or in reQection from the solid, gives
a spectrum consisting of a strong line, corresponding to
those electrons which have not lost energy, and then
several other lines corresponding to the characteristic
energy losses. The range of energies of observed losses
is approximately between 5 and 75 ev and the line
shapes vary from very narrow (e.g. , aluminum) to very
broad (e.g., silicon). These energy losses have been
known since 1924,4 but until 1941, when Ruthemann'
started investigating them, they were measured only in
conjunction with measurements of secondary electron
emission. In recent years a number of investigators~"
have been interested in this problem, with a subsequent
rapid increase in the data available. Kronig and
Penney, " in an article on the band structure of solids,
suggested that the observations of Rudberg" might be
interpreted in terms of interband transitions. Haworth"
in 1935 observed the characteristic losses in Mo and
also discussed these in terms of interband transitions.
In 1936, Rudberg and Slater" attempted a theoretical
description of the results for . copper, based on the
quantum theory of the solid state. They considered

that the incident primary electrons caused transitions
from the occupied 3d band to the 4s band and others
above. To calculate the relative probability of diGerent

energy losses, they used the density of states curve and

J. A. Becker, Phys. Rev. 23, 664 (1924).' G. Ruthemann, Naturwiss. 29, 648 (1941); 30, 145 (1942);
Ann. Physik 2, 113 (1948).

6 G. Mollenstedt, Optik 5, 499 (1949); 9, 473 (1952).
7 L. Marton and L. B. Leder, Phys. Rev. 94, 203 (1954); L. B.

Leder and L. Marton, Phys. Rev. 95, 1345 (1954).
8%. Kleinn, Optik 11, 226 (1954).
9H. Watanabe, J. Phys. Soc. Japan 9, 920 (1954); 9, 1035

(1954); Phys. Rev. 95, 1684 (1954).
'0 D. Gabor and G. Vil. Ju11, Nature 175, 718 (1955).
"R.L. Kronig and W. G. Penney, Proc. Roy. Soc. (London)

130, 499 (1930-1931).
~s E. Rudberg, Phys. Rev. 50, 138 (1936); Proc. Roy. Soc.

(London) A127, 111 (1930).
"L.J. Haworth, Phys. Rev. 48, 88 (1935)."E.Rudberg and J. C. Slater, Phys. Rev. 50, 150 (1936).
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approximate wave functions corresponding to each of
the levels. The velocity distribution curve so obtained
was compared with the characteristic energy loss curve
measured by Rudberg. "They found that the 6rst two
maxima agreed quite well, but that the theoretical
distribution contained peaks which Rudberg had not
observed. More recent measurements'" have shown
the existence of these higher energy losses so that the
calculated values of Rudberg and Slater fit better than
it appeared at that time. Cauchois" compared the
characteristic energy losses in aluminum with the fine
structure of the x-ray K-absorption edge. However, she
made the comparison with the maxima of transmission,
and Watanabe' has correctly pointed out that the com-
parison should be made with the maxima of absorption.

The approaches of Kronig and Penney, "Haworth, "
Rudberg and Slater, "and Cauchois" are all essentially
the same since they all postulate excitation of a single
"free" electron to higher energy levels. On the other
hand, Bohm and Pines" have attempted to explain the
characteristic losses on the basis of excitation of col-
lective oscillations in the free-electron gas of a metal.
It appears that there may be some agreement with the
Bohm-Pines theory for the cases of Al, Be, and Mg.

X-RAY ABSORPTION EDGE FINE STRUCTURE

In this section we will present a summary of the
experimental and theoretical background of the x-ray
fine structure. Two theories attempting to explain the
6ne structure have been formulated. While they both
are able to interpret certain aspects of the experimental
data successfully, they contain inherent difhculties
which limit their range of validity. We present these
theories in order to give a more complete picture of
the available information concerning the x-ray fine
structure.

The x-ray absorption edge is obtained by passing
x-rays through an absorber and measuring the intensity
of the transmitted beam as a function of the wavelength.
It is found that, at a wavelength corresponding to the
energy required to transfer an inner shell electron to
the first empty higher level, there is a sudden increase
in absorption of the x-ray beam. This region of high
absorption is called the absorption edge. As the wave-
length is decreased, the absorption coefficient Quctuates.
In some cases these fluctuations have been observed
over a range of several hundred electron volts. This
fluctuation of the absorption is called the 6ne structure.

In order to explain this fine structure, Wentzel" and
Coster" suggested that each x-ray quantum could

"P.P. Reichertz and H. E. Farnsworth, Phys. Rev. 75, 1902
(1949).'" Y. Cauchois, Conference on Applications of X-Ray Spec-
troscopy to Solid State Problems, October 23—25, 1950, Navexos
P-1033 (unpublished); Acta Cryst. 5, 351 (1952)."D. Bohm and D. Pines, Phys. Rev. 85, 338 (1952); 92, 609
(1953); D. Pines, Phys. Rev. 92, 626 (1953}."G. %entzel, Ann. Physik 66, 437 (1921).' D. Coster, Phil. Nag. 44, 546 (1922).

cause a double or even multiple ionization of the atom,
thus removing simultaneously a E- as well as an I;or M-
electron from the atom. However, experimental results"
on the isolated atoms which make up the solid show
that the 6ne structure of the E-absorption edge extends
only 10—20 electron volts from the edge whereas in the
solid the 6ne structure can extend as much as 300
electron volts from the edge. Furthermore, it has been
shown that the fine structure in a solid is a function of
the temperature, and also" that, for solids with the
same crystal structure, the spectra can be made to
overlap if one employs a scaling parameter which is a
function of the lattice constant.

Kronig" inferred from these experimental data that
the fine structure is a property of the whole aggregate
of atoms forming the solid rather than the sum of the
individual contributions of the several atoms. He based
his interpretation on the quantum theory of the solid
state. The electron is excited from the E-shell by the
photon with sufficient energy to raise it to a position
above the uppermost occupied level in the valence or
conduction band. If the energy of the electron in its
final state corresponds to an allowed energy band, the
electron travels around in the solid in a manner which
is essentially free. He assumes that the inhuence of the
lattice on the motion of the electron is a small perturba-
tion by a periodic field. The momentum and energy are
related by the expressions which specify the transla-
tional symmetry of the wave function corresponding to
an energy in a particular band. Because of certain sym-
metry properties of the material it is found, for given
values of the momentum Ak, that the "free" electron
cannot travel through the material. This occurs when
the momentum satisfies the Bragg relations. In this
case, the electron waves are rejected by certain planes
in the material in such a manner as to set up an inter-
ference pattern which gives a null probability of 6nding
the electron in this momentum state —thus we have a
forbidden state.

The energy at the boundary of an allowed band in a
cubic structure is given by

h2
gT (~2+Ps+ ~2)

Smd'

where h is Planck's constant, nz is the electronic mass,
d is the lattice constant, and n, P, and y are integers.
If an electron were to receive from the photon the
requisite energy corresponding to the momentum which
satisfies the Bragg reAection law, the photon would not
be absorbed by the material. In this instance we would
find a maximum in transmission (minimum in absorp-
tion) in the x-ray fine structure. The probability of no

~ D. Coster and J. H. Van der Tuuck, Z. Physik 37, 367 (1920);
J. D. Hanawalt, Phys. Rev. 37, 715 (1931)."D. Coster and J. Veldkamp, Z. Physik 70, 306 (1931); 74,
191 (1932};G. A. Lindsay, Z. Physik 71, 735 (1931}."R.L. Kronig, Z. Physik 70, 317 (1931);75, 191 (1932); 75,
468 (1932).
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absorption increases with the number of planes able to
participate in this type of reQection. In this way one
can find the various heights of the transmitted lines in
the absorption spectra in terms of these equivalent
planes. It should be noted at this point that we are
considering dipole excitation of the electron by the
photon and should expect the final state of the electron
in the E-absorption spectrum to be a p-state. Kronig
considers the distribution of the various angular mo-
mentum states in the bands to be dense enough so
that for almost any momentum in the band there is a
wave function contribution from a p-type state.

Since the positions of the absorption minima are a
consequence of the Bragg law, we would expect the
energy corresponding to the various absorption minima
to be a function of the lattice spacing. Therefore,
different materials with the same type of structure
should exhibit similar types of spectra which can be
made to coincide by scaling in terms of the lattice
constant. The spacing of the absorption minima should
also be temperature-dependent. This is found to be so
in many materials.

Hayasi" interprets the fine structure in a somewhat
different manner. Since the initial electron state in the
E-shell is an s-state, it is necessary that the final state
have a p-type symmetry. He utilizes the fact that there
are deviations from perfect periodicity in the solid
because of thermal vibrations and because of other
impurity types to allow him to consider the final state
of the electron as a "quasi-stationary" state. That is,
he considers the electron trapped and localized over a
small number of lattice sites. We can think of the
electron in the p-type state to be reflected from a pair
of planes at right angles to the direction of propagation.
The electron "bounces" back and forth between these
planes and so is localized about the emitting atom.
The strength of localization is obtained by finding the
number of equivalent planes about the "emitting" atom
which can give the same type of localization. For those
states having a large number of equivalent planes
participating, one would expect a greater probability
of trapping than those states which have a smaller
number of planes. In this way a number of transitions
can be ruled out. In a manner, this is a type of selec-
tion rule.

The energy of the final state is given by the knowledge
of the planes participating in localizing the electron.
This corresponds to the energy of the forbidden states

23 T. Hayasi, Sci. Repts. Tohoku Univ. 33, 123 (1949); 33, 183
(1949); 34, 185 (1950). We are indebted to Professor Hayasi for
a preprint of an article to appear in Science Reports of Tohoku
University in which he considers the relationship between the
characteristic energy losses, the x-ray absorption fine structure,
and the critical potentials for Ni and Cu. He postulates a level
structure for the final states of the excited electrons in a manner
similar to that given in our present paper. Certain outer shell
levels are assumed to be the initial states for the characteristic
loss transitions and are assigned energy values derived from
critical potential data. This allows him to calculate the energy
differences between the initial and final states which are then
compared to the characteristic loss spectra.

in the Brillouin zone structure of the solid. It is interest-
ing to note that where Kronig finds a forbidden final
state, and so a minimum in the absorption, Hayasi finds
a "bound" allowed state (in a forbidden zone) and thus
a maximum in absorption. Also, Hayasi calculates the
width of the various "bound" energy levels by con-
sidering the thermal displacement of the various planes
which smears out the energy of the electrons being
bound by these planes. In addition to this thermal
width, there is the natural line width of the forbidden
zones known in the usual Brillouin zone theory.

In his theoretical treatment, '4 Hayasi studies a
modified one-dimensional Kronig-Penney model where
there is a deviation in the periodic potential at the
origin. He finds that in this manner the energies of the
"quasi-stationary" states correspond quite closely to
the Brillouin zone boundary energies. In terms of a
one-dimensional model, an impurity localized to one
lattice site can give the symmetry of the localized level
to correspond to a p state. Slater and Kosterss have
shown that in a three-dimensional cubic model, with
the perturbing potential exhibiting the same symmetry
properties as the lattice, the p-type levels will not
appear if the perturbation is localized to one lattice
site. When the perturbation extends over more than
one lattice site with sufhcient strength, s, p, d, etc. , types
of localized levels appear to break o8 from the band and
exist in the forbidden zone.

IMPLICATIONS OF THE THEORIES

On the basis of either the Kronig or Hayasi theory,
several properties of the fine structure can be predicted.
For instance, metals crystallizing in the same type
should have the same type of fine structure. In the case
of neighboring metals in the periodic table, the density
of states would probably be similar, so that those with
the same type of crystal structure will have the same
spectrum but scaled by the lattice constant [e.g. , for
a cubic structure it is given by Eq. (1)j.Where crystals
are not of the same kind, e.g. , cobalt (hexagonal) and
nickel (cubic), we might still expect similar spectra but
with some modification because of the di6ering crystal
types. This is because an hexagonal close-packed lattice
can be approximated by a cubic lattice with an appro-
priate lattice constant. "Where metals are not neighbors
in the periodic table, the densities of states may be
quite different. Therefore, although the fiuctuations

may be correlated with a parameter which is a function
of the lattice constant, the line shapes might diGer
because of the different densities of states.

In the Kronig theory, the liberated electrons were

regarded as almost free, so that the forces exercised by
the lattice may be regarded as small perturbations.

24T. Hayasi and S. Okada, Sci. Repts. Tohoku Univ, 37, 331
(1953);T. Sagawa, ibid 37, 339 (1953.).

"G.F. Koster and J. C. Slater, Phys. Rev. 96, 1208 (1954)."C. Kittel, Introduction to Solid State Physics (John Wiley and
Sons, Inc. , New York, 1953), p. 16.
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This implies that the foregoing conclusions would be valid
only at some distance from the zero potential, and
from experiment" this distance appears to be approxi-
mately 50 ev from the absorption edge. The distance
from the edge within which the lattice dependence
would not hold would, of course, vary for different
metals. Using his own theory, Hayasi found good agree-
ment with the measured values for nickel and copper
to within 12 ev and for lithium to 6 ev from the edge.
Since Hayasi employs quasi-stationary states (localized
levels), it would be expected that his theory would

probably hold better than the Kronig theory near the
E-edge.

TABLE I. Comparison for aluminum. The fine structure values
are given in the first column and the characteristic losses in the
second, both in ev.

Fine structurea (ev)
'

8.0
15.0
24.5

~ ~ ~

34.0
42.0
52.0

Characteristic Iossesb (ev)

7.0
14.6
21.6
29.2
36.2
43.8
50.8

a See reference 28.
b These values for the characteristic losses are the combined results of

several investigators.

inverse square of the lattice constant. It is to be
expected that any theory which assumes a lattice de-
pendence for the energy levels will show that the
energies are inverse functions of the square of the
lattice constant. This can readily be obtained from
dimensional considerations. Ke will investigate these
aspects after we first show the numerical agreement
between the characteristic energy loss spectra and the
x-ray fine structure. In all cases the fine structure
values are the maxima of absorption taken from the
E-absorption spectra, and are measured in ev from
the E-edge. The characteristic energy losses are all
measured in ev from the zero loss (elastic peak).

In Table I we show the two sets of values for
aluminum. The fine structure values are those given by
Johnston and Tomboulian" and the characteristic loss
values are the average of all the published values. It is

~7 G. P. Brevrington, Phys. Rev. 46, 861 (1934); D. Coster,
Physica 2, 606 (1935); V. P. Barton and G. A. Lindsay, Phys.
Rev. 46, 362 (1934)~"R.W. Johnston and D. H. Tomboulian, Phys, Rev. 94, 1585
(1954).

COMPARISON OF THE X-RAY FINE STRUCTURE
WITH THE CHARACTERISTIC LOSSES

|A"hile we do not attempt to apply the details of the
theories of the fine structure to the characteristic
energy losses, some of the more general aspects are
helpful for the correlation. Both the theories of the fine
structure and the experimental data indicate that the
energy dependence of the fine structure goes as the

TABLE II. Comparison for iron. The fine structure values are
given in the first column and the characteristic losses in the second
column, both in ev.

Fine structurea (ev)

9 3
15.8
22.9
39.0
55.1

Characteristic lossesb (ev)

7.0
15.8
20.4
36.5
56.1

a See reference 30.
b See references 7 and 8.

TABLE III. Comparison of values for potassium.

Fine structure' (ev)

1.05
2.5
3.8
6.1
8.0

10.0
12.0
17.0
19.2
21.5
24.5
26.8
29.0
32.8

Characteristic losses& (ev)

8.3
11.4
15.4
19.5
22.6
25.5

29.6
32.0

a See reference 31.
b See reference 7.

2' Blackstock, BirkhoR, and Slater, Phys. Rev. 100, 1078 {1955).
30 S. Aoyarna and T. Fukuroi, Sci. Repts. Tohoku Univ. 28,

410 (1939-1940).

obvious that the numerical correlation is quite good
except for the absence of the 29.2-ev value (which
probably is a multiple of the 14.6-ev loss) in the fine
structure. It shouM be pointed out that aluminum
presents one of the best cases for the plasma theory
since the theoretical plasma loss fits quite well the
measured 14.6-ev loss, and Blackstock, Birkho6, and
Slater" have shown that the theoretical mean free
paths also fit the experimental values. However, the
plasma theory does not account for the 7.0-, 21.6-,
36.2-, and 50.8-ev losses. From our own, unpublished,
data we know that the 14.6-ev loss for aluminum has a
larger cross section than any of the other characteristic
losses, and this leads us to believe that in this case we
may be observing a multiple process consisting of a
superposition of the plasma loss on the interband
transition. It should be noted that, of all the cases for
which comparisons have been made, the Be data are
completely in disagreement (see Table V). Here too
there are indications from other sources' that the Be
electron losses may be due to plasma excitations, and
so might have no counterpart in the x-ray fine structure.

In Table II are listed the values for iron. The x-ray
values are those given by Aoyama and Fukuroi, "while
the characteristic losses are taken from the measure-
ments of Kleinn' and Marton and Leder. ' The numerical
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Fine structurea (ev) Characteristic losses& (ev)

TABLE IV. Comparison of values for potassium. similar spectra, provided the density of states are not
radically diGerent, modified by a dependence on the
lattice constant fe.g. , Eq. (1)g and the crystal structure.

2.7
5.2

10.0

~ ~ ~

5.4
10.9
16.6
21.9 Fine structure Charact. losses

(ev) (ev)
Fine structure Charact. losses

{ev) (ev)

TABLE V. Comparison of the values for several other metals.

a See reference 32.
b See reference 7.

agreement is extremely good. In Table III we give the
values for potassium. Four low-lying levels are found
in the case of the fine structure given by Platt" which
were not found for the characteristic losses by Marton
and Leder. However, this may simply be due to their
low probability plus lack of resolution of the spectro-
graph close to the zero level. The other levels are in
excellent agreement. The 11.4- and 25.5-ev charac-
teristic losses are shown as average values of the
bracketed x™rayvalues. We do this tentatively because
they do fall midway between the two sets of values,
and also because in the characteristic energy loss
spectrum they are broader than the other loss lines. '

The comparison for sodium (Table IV) is not as
complete. as in the other cases, although two values
which are common to both sets of measurements are in
excellent agreement. It is easy to see why the 2.7-ev
x-ray value would not be observed in the characteristic
loss spectrum with the present resolution available
since it would fall close to the zero-loss line and probably
be obscured. It is also probable that the 16.6- and
21.9-ev characteristic losses have not as yet been
observed in the x-ray case since Rule" could observe
with consistency only the first three values.

In Table V, we have given the values for several
other metals which we will not discuss individually.
The tabulated values represent the combined measure-
ments of several investigators in some cases. We And

that there are either fine structure values or charac-
teristic losses without counterpart in the other. It will
be interesting, in view of this possible indication of
their existence, to see whether they will be found with
further measurement.

Equally good correlation is found for the several
compounds that have been measured in both cases.
In Tables VI, VII, VIII we have given both sets of
values for NaCl, KCl, and KBr. We note that for these
materials, as for potassium, more losses are observed
than are generally found for the metals, indicating
many closely spaced, narrow levels.

Ag

~ ~

17.0
24.0
33.0
44.0

Cad

~ ~ ~

7.6
15.0
~ ~ ~

29.3
~ ~ ~

49.2

Cu'

3.5
7.5

24.0
23.0

34.0
47.0

7.4
11.8
13.9
17.2
20.1
23.3
27.9
33.4

3.3
~ ~ ~

20.3
33.3
53.3

Znd '

3,8
6.0

10.1
17.1
23.0
35.6

Agb

4.1
7.4

16.7
23.3

~ ~ ~

45.3

Cab

3.6
8.4

13.0
17.9
29.0
36.4
46.0

Cub

3.5
6.8

12.0
20.3
25.5
34.5

Mgb

4.7
10.2

21.0

~ ~ ~

31.2

Ptb

~ ~ ~

6.1
23.2
34.8
46.0
61.4

Znb

~ ~ ~

5.7
99

17.0
23.1

23.4
25.9
35.8
43.1
56.9

Co'

4.0
20.5
24.5
48.0

4.3

11.5
17.6
23.0

Ni& d

2.4
7.7

~ ~ ~

15.7

27.2
45.7

Sek

4.5

13.0
20.5

Beb

6.5
18.9
38.0

~ ~

56.0

Cob

5.7
18.3
24.0
47.0

9.8
~ ~ ~

17.8
29.0

Nib

~ ~ ~

6.0
9.4

12.5
17.6
23.0
47.0

Se'

2.5
6.9

12.1
20.0
40.0

SIMILARITIES IN THE CHARACTERISTIC
LOSS SPECTRA

We have pointed out earlier that it might be expected
that neighboring metals in the periodic table have

s' J. 3. Platt, Phys. Rev. 69, 337 (1946).
~ K. C. Rule, Phys. Rev. 66, 199 (1944).

a Munier, Bearden, and Shaw, Phys. Rev. 58, 537 {1940).
~ See reference b of Table I.

See reference 28.
& J. Veldkamp, Z. Physik 77, 250 (1932); 82, 776 (1933).
e W. W, Beeman and H. Friedman, Phys. Rev. 56, 392 (1939).
& S, T. Stephenson, Phys. Rev. 58, 877 (1940).I H. W. B. Skinner and J. E. Johnston, Proc. Roy. Soc. (London) 161,

420 (1939).
h See reference 7.
I A. E. Sandstrom, Arkiv. Mat. Astron. Fysik 28A, 1 (1942).
& See reference 23.
& W. H. Zinn, Phys. Rev. 46, 659 (1934).
& H. Friedman, Naturwiss. 24, 569 (1954).
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TABLE VI. Comparison of the values for sodium chloride.

Fine structurea {ev)

0.9
3.8

~ ~ ~

11.2
~ ~

20.5
27.2
39.4

Characteristic losses& (ev)

~ ~ ~

4.8
8.3

12.4
15.4
21.0
33.3
36.8

a See reference 32.
b See reference 7.

TABLE VII. Comparison of the values for potassium chloride.

Fine structurea (ev)

1.4
5.0
7.7

10.3
12.1
14.9
17.5
20.9
22.9

~ ~ ~

28.7

Characteristic losses& (ev)

~ ~ ~

7.9
9.6

13.5
~ ~ ~

20,0
22.4
26.1
28.6

& See reference 27 and S. Kiyono, Sci. Repts. Tohoku Univ. 36, 1 {1952).
b See reference 7.

~ All the lattice constant values used are taken from H. E.
Swanson, National Bureau of Standards Circular 539 (U. S. Gov-
ernment Printing OfFice, 1953—1955).

~The axial constants for the ideal close-packed hexagonal
lattice are found from the two relationships, c~/oi=t. 633 and
2aP+cP =2a'+c~.

Several such metals for which data are available can be
compared in this way. In Table IX we compare the
spectra of copper and zinc. Both have a completed 3d
shell, and copper has one, while zinc has two, 4s
electrons. However, zinc is close-packed hexagonal
(a= 2.665 A, c=4.947 A)" while copper is face-centered
cubic (@=3.615 A). In order to determine a possible
lattice dependence, we must approximate an ideal
close-packed hexagonal lattice for zinc. For such a
lattice, the axial ratio c/a should be 1.633. In zinc
c/a= 1.86, indicating a departure from the ideal lattice.
The axial constants for the ideal lattice are found to
be a~ ——2.88 A and c1=4.70 A.'4 We then determine the
distance of closest neighbors in this ideal lattice by
multiplying the a,& by V2. We can now calculate the loss
values for zinc expected on the basis of the measured
copper values by multiplying the zinc values by
(3.615/4.07)'=0.79. These calculated values are given
in column three of Table IX. Considering that we had
to approximate the zinc lattice we get surprisingly good
results which indicate that the two spectra are indeed
similar and do show a lattice dependence.

Another pair of metals which should have the same
spectra are gold and platinum which are both face-
centered cubic (a=4.079A and @=3.923 A, respec-
tively). Both have one electron in the 6s shell, but Au

TABLE VIII. Comparison of the values for potassium bromide.

Fine structurea (ev)

1.1
4.2
7.2
9.6

12.6
16.3
19.8
22.4
25.4
27.1

Characteristic losses& (ev)

~ ~ ~

69
8.9

12.8
18.0
]99
21.9
25.6
28.0

+ See reference a of Table VII.
"See reference 7.

TABLE IX. Comparison between the characteristic losses for
Cu and Zn. In the last column are given the values calculated
for Zn, using the ratio of the square of the lattice constants.

3.5
6.8

12.0
20.3

(25 5)
34.5

Zn

~ ~ ~

5.7
9.9

17.0
23.1

Zn (calc)

2.8
5.4
95

16.0
20.1
27.3

has a completed 5d shell while Pt lacks one electron to
complete its Sd shell. Since gold has been more
thoroughly measured, we will use it as the standard.
From the lattice constants, we would expect Pt to have
slightly larger characteristic losses. The expected differ-
ences here are actually smaller than the probable errors
involved in the measurements, but we might expect a
trend to be apparent. In Table X we show the measured
values in the first two columns and the calculated values
for Pt in the third column. We 6nd that Pt does have
slightly larger losses in agreement with the calculated
values. The 46-ev loss for Pt is possibly an average of
two losses as indicated in the table.

In Table XI we show the energy loss values for silver
and cadmium. The Ag values are averages of the
measurements of several investigators while the cad-
mium values are our own. These metals both have a
completed 4d shell. Silver has one electron in the 5s
shell and Cd has two. As in the case of Cu and Zn we
compare a cubic lattice (Ag, a=4.086 A) with a close-
packed hexagonal lattice (Cd, a=2.98 A, c=5.62 A).
If we approximate an ideal lattice for Cd as we did for
Zn, we obtain a nearest neighbor distance of 4.60 A.
This would indicate that the Cd losses should be less
than those of copper. Actually, we And that the 6rst
two Cd losses are greater than those of Cu.

We can also compare the spectra of the compounds
KCl and KBr, both of which are face-centered cubic
crystals. Their lattice constants are 6.293 and 6.600 A
respectively, so that the KCl losses should be 1.I times
the KBr losses if there is a lattice constant dependence.
In Table XII the measured characteristic losses are
given in columns 1 and 2 and the calculated values for
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TABLE X. Comparison of the characteristic losses for Au and Pt.
In the last column are given the values calculated for Pt using
the ratio of the square of the lattice constants.

Gold

6.3
12.0
18.0
24.0
33.0
41.0
50.0
58.0

Platinum

6.6
11.7

~ ~ ~

24.8
34.0
46.0
61.4

Platinum (calc)

6.5
12.5
18.7
25.0
34.3
42.6 47 352.0
60.3

KCl in column 3. Again we see that the spectra are
similar and that there is some reason to believe a
lattice constant dependence exists. For comparison
purposes we have included the characteristic losses for
E in column 4.

TABLE XI. Comparison of the characteristic losses for Ag and
Cd. In the last column are given the values calculated for Cd using
the ratio of the square of the lattice constants.

Ag

4.1
7.4

16.7
23.3
45.3

Cd

4.4
8.1

18.7

Cd (calc)

3.2
5.8

13.2
18.4
35.8

DISCUSSION

We have shown that in many cases a numerical corre-
lation exists between the fine structure of the E-absorp-
tion edge of x-rays and the characteristic energy losses
of electrons in solids.

The x-ray fine structure has been related to the
periodic properties of the lattice by Kronig and Hayasi.
We would expect that the Kronig theory is probably
valid only for large distances from the E-edge because
he treats the electron in the solid as being essentially
free. On the other hand, we would not expect the
Hayasi theory to hold for large distances from the E-
edge. This is because his theory is based on "imper-
fections" in the periodic lattice which perturb the ideal
periodic potential. The perturbing potentials tend to
localize the electron within a small region in the lattic"
a quasi-stationary level. Unless the perturbing potential
is very large compared to the unperturbed lattice
potential, only the energy levels close to the E-edge
would be affected. Therefore, if the photoelectron has an
energy which brings it to a level much above the E-
edge, this level. will probably exhibit the properties of
a similar level in an unperturbed solid. Although the
Hayasi approach may be successful for the levels close
to the E-edge, we cannot discard the possibility that
some of the fine structure maxima close in may arise
from double excitation by the photon, e.g. , E-excitation
plus, possibly, an I; or 3f-excitation.

If we assume that there is a lattice dependence in the

characteristic loss spectra, then we would expect it to
be exhibited as an inverse function of the lattice con-
stant squared. This has been noted in some cases. As in
the case of the x-ray fine structure, we can get a trapping
potential extending over a region of a few lattice
spacings from impurities (and finite size of crystallites).
Therefore, we can expect to find localized levels around
these "impurity" sites, and the energies of these levels
will be a function of the inverse square of the extension
of the perturbing potential. For metals this extension
is usually of the order of magnitude of the lattice
constant.

The characteristic loss values used for the comparison
are taken either from our own measurements or are the
combined measurements of several investigators. These
values may be in error as much as 1 or 2 ev because of
several factors which have not been taken into account,
such as; line shape, influence of prominent lines on less
prominent neighbors, purity of specimens, and tem-
perature. Also, the x-ray E-edge position from which

TABLE XII. Comparison of the characteristic loss spectra for
KBr and KCl. The calculated values for KCI are obtained by
multiplying the KBr values by the ratio of the square of the
lattice constants. The loss values for potassium are given in the
last column.

Kcl KC1 (calc)

6.9
8.9

12.8
18.0
19.9
21.9
25.6
28.0

7.8
9.6

13.5
~ ~ ~

20.0
22,4
26.1
28.6

7.6
9.8

14.1
19.8
21.9
24.1
28.2
30.8

8.3
11.4
15.4
19.5
22.6
25.5
29.6
32.0

the fine structure is measured cannot be determined
with great accuracy. One must bear in mind that these
errors will cause some deviations.

Since we have considered here only the E-edge fine
structure the initial state in the x-ray process is an s-

state as compared to the various possible angular
momentum states for the initial states in the electron
scattering experiments. However, since the various
angular momentum states in the bands are very close
to each other energy-wise, it is not expected that any
significant differences in the energy levels would be
observed due to the angular momentum selection rules.
It should, however, be noted that the initial state in the
x-ray absorption is sharp while the initial state in the
electron absorption may be considerably broader. There-
fore, without an accurate knowledge of the densities
of states in the bands, it would be extremely difficult to
make meaningful comparisons of the line shapes or
intensities for the two cases.

As in the case of the x-ray absorption spectra near
the E-edge, where some of the lines may arise from an
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additional photoejection from the outer shells to the
bands, so also in the case of the electron absorption
we may expect excitations of the outer shell electrons.
This could possibly explain some of the cases where
there is a correlation between the fine structure and
the characteristic spectra but no apparent energy
dependence on the lattice.

In order to have a complete theory of the charac-
teristic energy losses in terms of the band picture,

more information concerning the densities of states is
necessary.
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Cohesive Energy of Potassium*

SASH BERMAN, t JosEPH CALLAwAY, AND RQGER D. WooDs
Department of Physics, University of Miami, Coral Gables, Florida

(Received October 27, 1955)

The cellular method has been applied to a calculation of the cohesive energy of metallic potassium. The
crystal potential is taken from a self-consistent field with exchange for the potassium ion. An approximate
exchange interaction between the valence and the core electrons was included, The cohesive energy was
found to be 18.5 or 19.3 cal/mole according as Pines' or Wigner's expression for the correlation energy is used,
and the effective mass to be 86% of the free-electron mass. The experimental value is 22.6 cal/mole.

INTRODUCTION

HE cohesive energy of potassium was 6rst cal-
culated by Gorin' who used the cellular method.

Unlike previous calculations for lithium and sodium by
Wigner and Seitz' and by Seitz, ' Gorin did not obtain
reasonable agreement with experiment, but found a
value considerably too small. Gorin attributed the fail-
ure to the supposed greater importance of the electron
interaction, i.e., correlation between valence and core
electrons. The subject has since been taken up again by
Kuhn and Van Vleck' and by Brooks' who use the
"quantum defect method" which avoids explicit use of
a potential, but rather makes use of knowledge of the
energy levels of the free potassium atom, determined by
atomic spectroscopy. These authors find much better
agreement; in particular Brooks finds a cohesive energy
which differs from the experimental value by only 0.4
cal/mole neglecting the Coulomb interactions of the
valence electrons —a discrepancy probably well within
both the experimental and theoretical uncertainties.

The basic assumption of the Wigner-Seitz method is
that the atomic polyhedron can be replaced by a sphere
of equal volume. Each atomic cell is regarded as elec-
trically neutral, so that the valence electron moves in
the field of the corresponding positive ion. In this

*This research was supported by the 0%ce of Naval Research,
t Present address: Department of Physics, California Institute

of Technology, Pasadena, California.
' E. Gorin, Physik. Z. Sowjetunion 9, 328 (1936).' E. Wigner and F. Seitz, Phys. Rev. 43, 804 (1933); 46, 509

(1934).
3 F. Seitz, Phys. Rev. 47, 400 (1935).' T. S. Kuhn and J. H. Van Vleck, Phys. Rev. 79, 382 (1950).' H. Brooks, Phys. Rev. 91, 1027 (1953).

approximation, the cohesive energy is essentially the
difference of two quantities: 6rst, the boundary cor-
rection due to the fact that the wave function of the
ground state of the valence electron is Qat at the surface
of the atomic sphere. Hence there is a decrease in the
kinetic energy of the ground-state wave function, and
at the same time, the valence electron is forced back
into the ion core to a certain extent, i.e. , into a region of
more negative potential energy. The second quantity
is the kinetic energy of the electron distribution, occa-
sioned by the fact that only one electron of each spin
can be in a given state. This kinetic or Fermi energy
can be calculated by the method of Bardeens (which has
been extended by Silvermanr) where it is determined by
the effective mass of the electrons. The contribution
from the Coulomb interaction of the valence electrons is
considered to be that for a free-electron gas, diminished
by the exchange and correlation holes. The net. eGect
of the Coulomb interaction turns out to be small. This
surprising result has been explained by Bohm and
Pines' as a consequence of the screening eGect of the
rest of the electron distribution on the field of any
single electron.

We have repeated Gorin's calculation with some im-
provements. The potential of the K ion is taken from a
self-consistent field with exchange calculated by
Hartree and Hartree. ' (The K+ ion field used by Gorin

' J. Bardeen, J. Chem. Phys. 6, 367 (1938).' R. A. Silverman, Phys. Rev. SS, 227 (1952).' D. Bohm and D. Pines, Phys. Rev. 92, 609 (1953); D. Pines,
Phys. Rev. 92, 626 (1953);D. Pines (unpublished).' D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London)
A166, 450 (1936).


