
CLASSICAL MAXWELL THEORY

By using (3.27) to eliminate'8E/BX and BH/8)i from
this, an equivalent equation is obtained which, when

integrated, yields (2.17).
The acceleration Geld (2.18) of a nonrelativistic

electron can be read oG immediately from (3.6). We
can replace a,, z; by a, v, the ordinary acceleration and
velocity and a4, e4 by 0 and —c (see the remarks earlier
in this section). To evaluate the integral (2.20), take
the s-axis along a at the retarded time corresponding
to the moment in question. Then

R a=Rl alcos8, R de=RsdQ, a de=R'l alcos8dQ,

and therefore

S... de=—
"8

which is the right member of (2.20).
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A unitary transformation is found which transforms the Dirac equation into two uncoupled equations.
These involve higher orders of the time derivative than the first. In order (v/c)' the equations involve only the
first time derivative and they are then equivalent to the Foldy-Wouthuysen transformation. IA'hile the
equations are uncoupled and free of odd operators the functions satisfying them cannot be interpreted as
different functions describing positive and negative energies separately, the general interpretation in the
exact theory remaining in terms of the four-component wave function.

The transformation is extended to quantized fields and to relativistic two-body equations. The second-
order electromagnetic mass effects in the quantized Dirac equation appear, in the nonrelativistic limit, as the
time derivatives of the electric terms of the nonrelativistic Hamiltonian without the radiative corrections.
These mass effects in the nonrelativistic Hamiltonian are proportional to (1/mc)'.

Construction of unitary transformation operators for the ps-ps meson theory and for the Bethe-Salpeter
equation are also discussed.

I. INTRODUCTION
" 'T is well known that for many physical systems the
~ - application of the relativistic quantum theory meets
with some mathematical difficulties. Furthermore, the
description of many-body systems by relativistic
methods raises some conceptual difhculties with regard
to the meaning of a many-body relativistic wave func-
tion. It is, therefore, desirable to construct a general and
systematic method for transitions from relativistic to
nonrelativistic theories. Many methods of reductions of
relativistic equations to nonrelativistic forms have been
known all along, but all of these methods suGer from the
lack of generality and from the required tedious pro-
cedures in their executions.

In the conventional methods of approximations the 4
components of the wave function are not treated on an
equal footing, and this procedure gives rise to non-

Hermitian terms in the Hamiltonian of (e/c) approxi-
mation. However, there exist methods of approximations
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which easily remove the above defect. In connection
with a study of the nature of nuclear interactions, Breit'
considered the (v/c)' effects for nuclear particles. His
method was, essentially, based on approximate Lorentz
transformations and gave consistent results for spin-
spin and similar interactions.

A diferent treatment of the problem was given by
Foldy and Wouthuysen. ' This method involves an
infinite sequence of successive canonical transformations
on the Dirac Hamiltonian, for a particle interacting
with an external field. It leads to a transformed Hamil-
tonian in the form of an infinite series in powers of p/@ac.
For higher order approximations in p/mc, the Foldy and
Wouthuysen development is not easy to use. Moreover,
their method does not provide a simple way for the
investigation of many-body problems.

It has been found possible to derive two sets of two-
component equations referring to positive and negative
energy states which are free of odd operators. The
generalization of the method to other relativistic sys-

' G. Breit, Phys. Rev. Sl, 248 (1937); Sl, 778 (1937); S3, 153
(1937).

s I.L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29 (1950).
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2 (II.3)

By introducing the transformation

p=p tanu, (II.4)

and using (II.3), Eq. (II.2) can be written as

2tr exP(Vpu)/[exP(V„u)+exP( —Vpu))lt o=PPofo. (II.S)

For a free particle, the relation p,'= —p' and the
transformation (II.4) gives

2/[exp(v. u)+exp( —v.u)) = (P'+p')'/p,

tems involving more than one field is rather straight-
forward.

II. FREE-PARTICLE EQUATION

The four-coInponent spinor wave function fo for a
free Dirac particle satisfies the equation

(vppp+p)A=o,
where

p,go iA———(BPo/rim ), p= 1, 2, 3, 4

ih —(8/Bt) ~cps',
&4=ict) vpv, +v vp= 2&p v4=iP vp = vp
u=mc. The 4-vector p, stands for the 3-dimensional

vector y and the fourth component p, =ip, .
We write Eq. (II.1) in the form

(II.2)

and introduce the operator p„by

v„=(1/p)v y,
where

the Hermitian operator

S= (i—/2P) Y.H'(P/P)

where the function W was determined by imposing the
condition that the transformed Hamiltonian

A+' s(=I~P) (II.11)

is the usual procedure. The operators A+' can be ob-
tained from the Casimir projection operators by taking
p=0, but this does not mean that they are related to
particles at rest. They dier from the Casimir projection
operators in that they are the simplest projection
operators formed from even matrices. The positive- and
negative-energy wave functions are de6ned by

0'p =~y pp. (II.12)

We may further note that the operator Up satisfies the
equation

HoUo= UoPEp, (II.13)

Hr = exp(iS)H exp( i—S)

be free of odd operators. Equation (II.9) for the new
wave function is free of odd operators and therefore it
can be split up into two-component wave equations
describing positive and negative energy states of a free
particle. So far nothing new has been obtained in this
section. The reason for giving the above detail for the
free particle case lies in its extensive use in later sections
of this paper.

In order to separate positive and negative energy
parts of (II.9), the use of the projection operators

so that Eq. (II.S) reduces to
where

Ho ——cn y+Pcp.
(p'+t ')' exp(V.u)A= PpoA (II.6)

Actually the unitary operator Up, as shown by Foldy
and Wouthuysen, can be written asWe can eliminate the operator exp(v„u) from (II.6) if

we introduce the following transformations:
Uo [2E„(E+Mc'——)) :(H,P+E„) —(II14)

q o exp(v„u/2)lt o=——Uotgo,

po'= UotpoUo= po,

Uo ——exp (—v„u/2) .

Thus Up consists of the usual four solutions of the free-
particle Dirac equation corresponding to positive and
negative energy states with "up" and "down" spin
states. The form (II.14) of the solutions of the Dirac
equation was used by Breit and Thaler' in order to
analyze the origin of relativistic corrections to magnetic
moments and it also made it possible to extend it to a
two-body system.

and

where

Hence Eq. (II.6) becomes

(II.9)ik(8yo/Bt) =PE„opo,

E„=c(p'+ p')'
where

III. INTERACTION VfITH AN EXTERNAL
ELECTROMAGNETIC FIELD

which is a consequence of the relation

In deriving (II.9) use was made of the operator property
The equation for a Dirac particle interacting with an

external electromagnetic field is given by

[tt,T)+=O

Equation (II.9) was derived by Foldy and Wouthuysen

by stipulating a canonical transformation generated, by

(Y ~+p)4=P~og, (III.1)
where

.=P. (e/~)~„p=1, 2, 3—, 4.

' G. Brei& and R. M. Thaler, Phys. Rev. 89, ll82 (I9S3).
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The simplest way to investigate the case of interac-
tions is, first, to represent the unitary operator Uo of the
free-particle case in a suitable form and, then, pass to
the introduction of interaction just as one does in
writing down the Dirac equation for a particle inter-
acting with an external Geld from the free particle
equation.

In order to write the unitary operator Up in a form
suitable for the introduction of an external Geld, we
observe that we cannot bring in the interaction with an
external field when the momentum operator in (II.S) is
involved both as a vector and as a magnitude of a
vector. However, the operator y„N can be written as

VrI =y„ tan —
'(P/p)

=TEL(P/I ) 8(P/I —)'+5 (p/I )'+ .j
=i tan —'L —(iy. p/p) j.

Hence

write

Ut~o U= pro+i(S, troj—(1/2 I)LS&LSp ojj
—(i/3!)I S,I S,I S,mo]']1+ ' . (III.11)

Hence

(III.12)

L=i[Spo]—(i/3!)I S,[S,I Sero]]7+ . (III.13)

We also have

S=—i(Y oo)/(2p) —( i v—oo)'/(6p')+ . (III.14)

From (III.12), (III.13), and (III.14) it is easy to see
that E and I.consist entirely of even and odd operators,
respectively. The expansion of S shows also that 3f is an
even operator.

Now, we can use the projection operators (II.ii) and
split up the new wave function q into two-component
functions

where
Uo ——exp( —iSo),

So=i tan-'( —ip y/p),

(III.2)

(III.3)

o+ k=(1+8)o,
-k=(1+0) o

(III.1S)

and So is a Hermitian operator. The form (III.3) of the
generator of the unitary operator does not involve the
magnitude of the momentum operator, as only the
components of p appear in So. The unitary operator U
for an interacting particle can now be inferred as

PM p+ Ryp+Lq-—,

PMq =Rq +—Lq~.
(III.16)

We also use the operator properties PL= LP, PR=RP-,
PM=MP, so as to record Eq. (III.9) in the form of two
coupled equations:

U= exp( —iS),

.where the Hermitian generator S is given by

(III.4) It easily follows from (III.16) that the new wave
functions p+ and q satisfy the equations

S=-', tan '( iy —oo/—II) (III.S)

We may now write Eq. (II.S) for the case of inter-
action as

2'�(U'+U't) 'q = UttroUto, (III.7)

where use is made of (III.6) and the operator property

(III.S)

The new wave function p will be represented by

(III.6)

Op= lj~OV. (III.19)

(W —R) to++ L(J3M+R) 'Loop=0, (III.17)

(PM+R) y +L(PM R) 'L~ =O—. (I-ii.ig)

These equations are exact and are free of odd operators,
since the odd operator I.appears twice as a factor in the
equations.

Because of the unitary property of U the expectation
values of the observables in both the old and the new
representation are the same, provided the de6nition of
an observable 0 in the old representation is replaced in
the new representation by

M p=Ry+Lrp, (III.20)

The right-hand side of Kq. (III.7) is not free of odd
operators. It will be convenient to record Fq. (III.7) in For examPle, the Probability density Ptoo is conserved

the form with a current density given by

(III.9) g= q&tUtaUoo.
where

M =2'�(U'+ U't) ',

R= o (UttroU+ UtroUt),

L= gi(UtmoU UtroUt). —
(III.10)

The operators M, E, and I. are Hermitian. Under a
change of sign of p, the unitary operator U changes to Ut
so that, while M and E. remain unchanged, the operator
I. changes its sign. In order to see more explicitly the
structure of M, R, and L, for small enough p/y, we can

Thus the physical interpretation of the theory is still
based on the use of a 4-component wave function. For
the exact theory the functions p+ and p by themselves
cannot be regarded as diGerent wave functions, one
describing the positive energy and the other the nega-
tive energy particle, respectively. Although Eqs.
(III.17) and (111.18) describe positive and negative
energy states separately, we are not able to conserve
probability with positive energy or negative energy
particles alone, the only probability that is conserved
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referring to the state
(III.21)

Schwinger' has shown that the function y(1) satisfies
the equation

yp1rp'y(1)+) "M(11')y(1')d(1')=0, (V.2)This means that the possibility of reducing the Dirac
equation to two-component equations does not prevent
transitions to negative energy states. The physical
meaning of the functions q+ and q is now clear:
(i) the sum of p+ and y is a probability amplitude of
the same kind as Dirac s 1t function, (ii) in the non-
relativistic limit the function p refers to small com-
ponents and the function q+. is a probability amplitude,
(iii) the difference between the functions p+, p and

lies in the fact that, while p+ and p are solutions
of equations consisting entirely of even and Hermitian
operators, the same is not true for P+, P defined by

where

~,'=P,—eA, '/c,
and

M (11')=mcus (11')+OR(11')

is Schwinger's mass operator consisting of unrenormal-
ized radiative corrections to the particle's motion. We
would like to remark that there are difhculties in
regarding a function defined by (V.1) as a wave function
of a relativistic system interacting with its proper
radiation field. These difhculties lie in an incomplete
analysis of the eGect of vacuum Quctuations. Thus it has
not yet been shown whether one can derive a conserva-
tion law for

~ y(1) ~'. After the renormalization of mass
and charge, to the second order, a conservation law does
exist. For higher order radiative corrections a general
proof is needed.

Formally however, our transformation can be ex-
tended to quantized fields. For the sake of illustration of
the ideas involved, let us start by considering the
equation

O,=-,'(1~~)a

IV. DERIVATION OF THE NONRELATIVISTIC
EQUATION

Let us assume that the interaction is weak and expand
the operators M, E and I. retaining only the terms
proportional to (1/mc)'. We use the operator properties

[Sp-p) = —(eh/2pc) y. 8 (IV.1)
and

where
S=—~ pp

—(1/c) (BA/Bt).

From (IV.1), (IV.2), (III.12), and (III.13) we obtain

R=prp+(eh'/8''c)V E

+ (eh/8p'c) [ (EX')+o' (ppX 8)),
I= —(ieh/2pc) T S, —

PM =tj+ (1/2ti) (y —eA/c)' —(eh/2 pc) rr K

S=-', tan-'[ —iy pp'/ti —p'n S/p),

t '= (~/2~) (e&/2t ),

(V.4)
where

so that the largest contribution to the Hamiltonian
arising from the second-order anomalous magnetic
moment is given by

Hence, Eq. (111.17) becomes

ih(B q+/Bt) = [mc'+ eq + (1/2m) (p (e/c) A)'—
—(eA/2mc)e Se—(d't'/8m'c') V S
—(eh/8m'c')s (EXpp)

—(eh/8m'c')e (ppX S))q+. (IV.3)

—(p, '/8ti'c) A,'(i}/cjt) V E (i'tp'/8p'c) e—[(88/Bt) Xpp')
—(p'h/8''c)o [pp'X (a S/Bt)) (V.5).

This correction to the nonrelativistic Hamiltonian
arising from the radiative corrections to the motion of
an electron is y' times the time derivatives of the electric
terms in (IV.3), which fact shows that in the non-
relativistic limit also the radiative corrections are as-
sociated with the high-frequency components of the
interaction.

The most general canonical transformation for a
quantized Dirac equation is generated by

For a time-independent field the last two terms give the
usual spin-orbit coupling. Equation (IV.3) is in agree-
ment with the result obtained by Foldy and Wouthuysen.

V. TRANSFORMATION OF THE QUANTIZED
DIRAC EQUATION

The wave function for a quantized Dirac field is
de6ned as the matrix element of the quantized Heisen-
berg operator 1t with respect to the interacting vacuum
state 4'0 and an arbitrary one-particle state +, inter-
acting with its proper radiation field and an external
Geld, by

S=—,
' tan —'[—iy pp'/ti —iOTtp/p), (v.6)

where PRO is the odd part of the renormalized mass
operator.

~ J. Schwinger, Proc. Natl. Acad. Sci. U. S. 37, 452 (1951),
s J. Schwinger, Phys. Rev. 82, 664 (1951}.x(1)= (+p,|t (1)+). (V.1)

Lv.&~'+ti t '(~ &—+~ &))g=0 (V.3)
[S,[Spp)) = —(ek'/4ti'c) V E (eA/4psc—)0

8 h 4 s I This equation was derived by Schwingers from Eq
(V.2), where the last two terms represent the second-
order electromagnetic mass e8ects, producing a spin
magnetic moment of n/2m rnagnetons.

The required canonical transformation, in this case, is
generated by
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where

and
5=ZPQ ysy4

(VI.1)

1e

The generator of the transformation for this case is

S=-', tan —'L —iY y/p+iGysq/pj.

For simplicity we confine ourselves to a static interac-
tion, in which case the operators R, M, and I.of Sec. III
are given by

E=pp, 1.=0,
P~=p+(p'/2~)+(&G/21 )~ &v. (VI.2)

The transformed Hamiltonian is therefore

H =~c'+ (p'/2M)+ (AG/2M)o" V y (VI.3.)

This is the usual meson Hamiltonian obtained by con-
ventional methods in the (e/c)' approximation. It does
not contain any terms proportional to (1/mc)', and
nothing like a spin-orbit coupling shows up in this
approximation. At this point a few remarks are neces-

sary: a spin-orbit coupling term has recently been
obtained by Klein' from the quantized meson theory in
the fourth-order approximation. This two-nucleon spin-
orbit coupling energy has recently been analyzed by
Araki~ in connection with the calculation of the fine

structure of 0". Araki's investigation is based on a
phenomenological cutoG of the meson theoretical spin-
orbit potential and therefore its success cannot be
unambiguously attributed to the soundness of the
meson theory.

VII. TRANSFORMATION OF THE RELATIVISTIC
TWO-BODY EQUATION

The reduction of relativistic two-body equations to
approximate forms has been studied by Chraplyvy' by a
generalization of the Foldy and Wouthuysen one-

particle method.
In this paper we extend the one-particle transforma-

tion discussed in Sec. III to two-body relativistic
equations by using the current field-theoretical methods. '

6 A. Klein, Phys. Rev. 90, 1101 (1953).
7 G. Araki, 1954 Glasgow Conference on Nuclear and Meson

Physics (Pergamon Press, London, 1955).' Z. V. Chraplyvy, Phys. Rev. 91, 388 (1953);92, 1310 (1953).
9 All the arguments in this section about the two-body trans-

formation are intended only as a sketch of the problem.

VL APPLICATION TO MESON THEORY

We shall consider only the unquantized neutral ps-ps
meson theory. The quantized theory can be treated in
the same manner as in Sec. V. The Dirac equation for an
interacting meson-nucleon system is given by

The Bethe-Salpeter equation" for a two-body electro-
dynamic system, interacting by an exchange of a photon
only, is given by

(v.p.—~) t(v,p, —u) sx(12)
= —e'yt, ys,D& (12)x(12), (VII.1)

where the wave function x(12) is defined by

y(12) = ('Irp, T(gt(1)P, (2))4'). (VII.2)

As in Sec. V, %0 is the true vacuum state" for two
interacting particles and 4 is a two-particle state (any
two-particle system formed from particles and anti-
particles). The remarks made in Sec. V about the one-
particle wave function apply in this case also, except
that here the difhculties are not only with the radiative
corrections. The well known difhculties of interpretation
of x(12) as a probability amplitude connected with the
relativistic features of the problem will be disregarded in
the present paper particularly because no one has made
use of the Bethe-Salpeter equation in its covariant
form; all the calculations with it have been carried out
with an equal-time formalism or with the so-called
instantaneous interactions. Formally, therefore, the
employment of the equation is just like that of Breit's
two-particle theory using the wave function with single
time.

It is hoped that a two-particle transformation may
throw some light on these problems. Ke shall deal with
two forms of the Bethe-Salpeter equation, the second
form of which is obtained by using a transformation of
the wave function given by

X(12)=,t Spt (11')Psy(1'2) d 1'

+J Sps(22')Pry(12')d2'. (VII.3)

This transformation can be made use of to obtain an
equation free of the spurious plane-wave solutions of the
Bethe-Salpeter equation and brings it into a more
familiar form. " The function y(12) may turn out to
have a normalization not corresponding to

1V= P*(12)9 (12)d1d2.

If so, then correction terms to what is obtained below
would have to be added. In the case of a second-order
instantaneous interaction of the particles, the functions

p and g are the same.
Equation (VII.1) with the transformation (VII.2) in

'0 E. E. Salpeter and H. A. Bethe, Phys. Rev. 84, l 232 (1951)
"M. Gell-Mann and F. Low, Phys. Rev. 84, 350 (1951)."B.Kuryunoglu, Phys. Rev. 96, 1697 (1954).
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momentum space in the center-of-mass system becomes

l &~(u)+&2(—u) —&j~(P.)

The electromagnetic 6eld is described by the quantized
Heisenberg operators A „and in the generators, only the
vector part of the potential being involved. The
operator U» can also be used for the reduction of Eq.
(VII.4).

The unitary operator Uy2 ls now a 16X16matrix and
depends on two space-time points. The new wave func-
tion is given by

+cPo'j ') ~(P')d'P' (VII 4) gr= Ui2tx. (VII.7)

where
H;= (Ace y+Mc'P);,

The appropriate projection operators in this case are an
obvious generalization of one-particle operators given

by
In this form the equation is similar to Breit s equation,
but differs from it in respect to retarded interactions.
This form of the equation is suitable for carrying out the
reduction to approximate forms.

In analogy to the de6nition (VII.2) of the wave

function, the unitary transformation operator will be
defined by

Uam= T exp( iS~—) exp( —iS2), (VII.5)

where T is %ick's" covariant chronological ordering
operator and

S;=f-', tan —'(—iy ~/p)j;, (j=l, 2). (VII.6)

A++=&(fapi) (I+p2). (VII.s)

The evaluation of the unitary operator dehned by
(VII.S) and application of the results to various
electrodynamic systems will be the subject of another
paper.
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