TRIPLET FINE STRUCTURE OF He

and ¥,y denotes the triplet orbital function. The values
of the corrections calculated by adopting the previously
evaluated approximate values of these parameters® are
shown in Table I. They may be a little too small because
the calculated intervals were smaller than observed
ones, but they can indicate an order of magnitude. The
observed values'? of the intervals are shown in the
$ G. Araki, Proc. Phys. Math. Soc. Japan 19, 128 (1937).

7 Brochard, Chabbal, Chantrel, and Jacquinot, J. Phys.
radium 13, 433 (1952).
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same table. The corrections are in the range of experi-
mental errors in the case of optical measurements
while the microwave experiment will permit observa-
tion of the corrections. The previous calculation of the
intervals® is too rough to test the correction terms even
with the accurate data. We should have vastly im-
proved orbital functions for the He excited states in
order to deduce the fourth-order correction from the
accurate observations.
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A Lorentz-invariant finite-particle model is introduced into the Maxwell theory by extending the space
from space-time to all (time-like) space-time spheres. The properties of the model are examined in the classical
theory as a preliminary to the quantized case. The space-time sphere radius A is the parameter of finiteness;
it has the effect of smearing point particles into bell-shaped bounded distributions which go over into the
s-function point-particle distributions in the limit A=0. The smeared particles give rise to fields in which
the Coulomb infinity no longer exists. It is shown that the finite-particle 4-current has various indispensable
formal properties: that charge is conserved; and that, in interaction with its field, momentum and energy are
conserved, the integrals representing the electromagnetic self-energy and self-force being convergent for
A5%0. This replacement of point by finite particles results in corrections to calculations which are probably
negligible where the classical theory is valid, but which might be appreciable in the quantum domain at

distances comparable to A.

1. INTRODUCTION

LASSICAL field theories suffer from infinities due
to the use of a point model of the particle sources
of the fields.! These same infinities carry over, multi-
plied in number and variety, into quantum field theo-
ries,? (which suffer as well from other infinities of a
strictly quantum-mechanical nature). What is needed
to eliminate this type of infinity is a finite-particle
model. Moreover, it is not unreasonable to suppose
that a particle model which eliminated this kind of
infinity from a classical theory would do the same in a
quantized theory built from it by the correspondence
principle, especially if the finite-particle model were a
kinematical (i.e., geometrical) element of the theory,
independent of whether the classical or quantum in-
terpretation of the fields were used. Accordingly, the
study of a finite-particle model in the classical theory
should serve as a useful preliminary to its eventual
introduction into the quantized theory. That is the
spirit in which a finite-particle model in the classical
Maxwell theory is examined in this paper.
The next question is, what sort of a model shall it be?

. *dAt present at Johns Hopkins University, Baltimore 18, Mary-
and.

L. Landau and E. Lifschitz, The Classical Theory of Fields
(Addison-Wesley Press, Cambridge, 1951), Sec. 5-2.

2 V. Weisskopf, Phys. Rev. 56, 72 (1939).

The finite-sphere model runs into group-theoretical
troubles.? Moreover, the idea that an elementary par-
ticle has a definite volume and boundary in 3-dimen-
sional space seems to be interpreting the phrase “finite
particle” in too literal and naive a sense. Another
method of avoiding the infinities is the admixture of
unphysical elements like advanced fields,* which, be-
sides defying causality, leads to unphysical behavior.?
Yet, undoubtedly, elementary particles are finite in
some sense. One might demand of a finite-particle
model, discarding some of the prejudices carried over
from macroscopic intuition, at least the following:
that there be a parameter of finiteness A which acts
analytically as a cutoff in formerly infinite expressions;
that the model defined by A be meaningful against the
groups employed, i.e., (at least) Lorentz-covariant; and
finally, the demand of simplicity, that A have a natural
connection with, or meaning relative to, spacetime,
that it remain not forever an ad koc and geometrically
inexplicable element in the theory. One could add to
these the stronger demand that A admit interpretation
in some end formulas as the linear dimension of a finite

3W. Pauli, Die Allgemeinen Prinzipien der W ellenmechanik
(J. W. Edwards, Ann Arbor, 1947), p. 271

4P. Dirac, Proc. Roy. Soc. (London) A167, 148 (1938).

5 For yet other attempts, see M. Born and L. Infeld, Proc.
Roy Soc. (London) 142, 410 (1934); 144, 425 (1934); 147, 522
(1934); 150, 141 (1935); R. Feynman, Phys. Rev. 74, 939 (1948).
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particle in the naive world picture inherited from
macroscopic intuition (but' certainly not necessarily
the same geometrical quantity—e.g., the radius of a
sphere—in all such formulas).

A finite particle model satisfying, these requirements
is obtained by widening the domain of definition of
physical fields in the following natural way: The point
of spacetime 4™ (m=1, - - -4) can be identified with the
“null-sphere” (light cone) of which it is the center.
Physical fields which are functions of #!, ---x* can
thus be said, from this viewpoint, to be defined over
the null-spheres of spacetime. If now one extends the
space from all the null-spheres to all the space-time
spheres, characterized by their centers 2™ and (directed)
radii A, this means that we take physical fields to be
functions of the five coordinates x!, - - -x% A. The radius
A then turns out to be the parameter of finiteness.

Because of its conformal form invariance, the form
that the Maxwell theory, extended to this space,
should take is especially clear.® In this paper some
consequences of this finite particle model in the classical
Maxwell theory are examined. The main task is to
show that the particle has the correct formal properties,
for example, that its charge is conserved, and that in
interaction with its own field there is conservation of
energy, momentum, etc. These properties are indis-
pensable, of course, in the quantized theory as well.
Besides cutting off infinities and making these questions
meaningful, the presence of A also manifests itself in
systematic corrections to the calculated results of the
old theory. Some of these corrections are calculated
below, although it is expected that they are negligibly
small for phenomena in the classical domain. On the
other hand, the corrections brought by this model to
quantum-mechanical calculations, which might be ap-
preciable, could be determined just as soon as we know
how the Dirac theory should be extended to this space.

This finite-particle field was first proposed in 1939
by Groenewold? and again in 1949 by Landé®; they
gave the potential [our (3.5)] with the new retarded
time condition involving the finiteness parameter A.
These authors simply postulated this potential by
analogy with the old Liénard-Wiechert potential ; with
them it was not a question of first having a new set of
field equations and then verifying that their ansatz is
a solution. Landé recognized in addition that this field
entailed, as its source in the second Maxwell set, a
finite, smeared-out particle [our (2.9)]. Both were
primarily interested in the dynamics of a particle,
especially the self-force question, a matter excluded
from consideration here. However, we may make the
following remarks in passing: (1) that we believe that
a quantum-theoretical treatment is indispensable in the
self-force question; (2) that the dynamics of the finite

6 R, Ingraham, Proc. Natl. Acad. Sci. U. S. 41, 165 (1955).

7H. J. Groenewold, Physica 6, 115 (1939). I am indebted to
the referee for this and the following reference.

8 A. Landé, Phys. Rev. 76, 1176 (1949); 77, 814 (1950).
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particle advanced here seems to us still a subject fraught
with ambiguities (e.g., it is not at all clear how the
integral of the force density over the whole spatial
extent of the particle, which represents in one sense the
total force on it, governs the motion of the single point
which specifies completely the position of the finite
particle); (3) that these authors see various formal
reasons to admix advanced fields in the dynamical
problem, e.g., because they emerge along with the re-
tarded fields from a natural, Fokker-type variation
principle. These seem to us to be scant reasons for using
such unphysical entities, especially when they are no
longer needed to cancel infinities in the retarded fields.
On the other hand, questions like the charge distribu-
tion of the finite particle, energy-momentum exchange
between it and the total field, etc., untouched on by
Groenewold and Landé, are treated here in detail.

Finally, the difference in viewpoint should be men-
tioned. Those authors seemed unaware of the funda-
mental connection of the theory with the sphere
geometry of space-time, i.e., that the extension of the
space brings with it fifth components, leading to a
unified treatment of field and 4-current, etc. For ex-
ample, Landé’s “‘reciprocity” is a characteristic feature
of any theory built on sphere geometry.’

2. SURVEY OF RESULTS

The physical effect of introducing the length A into
the Maxwell theory as a fifth variable alongside the
four of space-time is to smear out particle sources,
pointlike in the old theory, into charge distributions
spread through all space but mainly concentrated in
regions of linear dimension X around the old point
sources. The bell-shaped curve of charge density against
distance becomes higher and narrower as A decreases,
going into the 3-dimensional §-function distribution of
the point source in the limit A=0. The total charge of
the distribution, independent of A, is just e, the charge
on the point source. The electromagnetic field of a
particle is just that which would be calculated in the
old theory from such a charge distribution, and is thus
bounded, showing a finite maximum at the position
of the old point charge. In the limit A=0 it goes over
into the classical unbounded field of a particle. Geo-
metrically, A is a Lorentz invariant and might be
identified, e.g., with the Compton wavelength of the
particle. For a particle at rest the charge distribution
is spherically symmetrical ; for a moving particle, how-
ever, an anisotropy appears, depending on the velocity,
acceleration, and hyperacceleration.® Working in the
extended space is equivalent to working with the con-
ventional Maxwell theory in which all point sources are
replaced by certain continuous distributions with
effective spreads A (and where, for a given A520, solu-
tions corresponding to point sources no longer exist).

9 See R. Ingraham, Nuovo cimento 12, 825 (1954), p. 834, ff.
0 By hyperacceleration we mean d°r/d.
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This effects systematic corrections to the end results
calculated on the basis of point particles: A appears as
a parameter in these formulas. As an illustration, the
correction to the total radiation flux from an accelerated
slow electron is calculated. Incidentally, the inverse
phase, the motion of these finite particles in a given
field, is not treated here. '
The introduction of the fifth variable A has as a formal
consequence that charge-current and field are united in
a unified description by means of a 5-force Fop (o, 3=1,
-++5). F,p satisfies field equations formally identical
with the old Maxwell laws for empty space. The 4-
vector of charge-current j,=(J/c, —p) is described

this way as
a 1
jn= (—_'—)F5n~
N A

It is the source of the electromagnetic field F,, and
satisfies a continuity equation. The second main pur-
pose of this paper is to show that the right member of
(2.1) may also be consistently interpreted as the 4-
current when we come to energy-momentum considera-
tions. It is shown that the decrease of the electro-
magnetic energy and momentum in a region of space is
due not only to the loss of these quantities on the
boundary but also to the work done by the field in the
one case—and the force exerted by the field in the
other—on a charge distribution whose 4-current is
exactly the right member of (2.1). There is also a fifth
conservation equation unfamiliar from the old theory,
whose possible significance will be discussed later in
this section.

To come to details, the 5-potential F, of a particle
of charge e and velocity v is found to be

(2.1)

e v/c

"4 (RN)I—(R-v)/C
—e 1

" ar (RAN)I—(R-v)/C

where A and ¢ are the vector and scalar potentials, R
is the radius vector from the position r’ of the charge
at the retarded time

et = 1— (R4-M2)Y/c (2.3)

to the point of observation r, and v is the velocity at
the retarded time. The curl of F, gives the S5-force!
Fap of which the components!! F,,, form the electro-
magnetic field of the particle and the other components
G.=Fj5, determine the particle 4-current j, via (2.1),
which can be conveniently written

Fi=—o Fs=0, (2.2)

ad
Ja=A—A"G.). (2.4)
2N

1 General index conventions: Greek letters go from 1 to §;
Roman letters m, n, p, q, etc., go from 1 to 4; Roman letters
i, j, k go from 1 to 3.
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This 4-current, which is the source of the field F,.,,
satisfies the continuity equation

aj7/dx"=0. (2.5)

From (2.2), (2.3), it is evident that we get back the
well-known Liénard-Wiechart solution for A=0, but
that for A>20 these potentials, and hence the 5-force
Fap and 4-current j,, are bounded quantities. Indeed,
by (2.3), t.t'<t everywhere and

(tretl)max =f{— )\/C

The presence of the nonzero parameter A thus prohibits
the instantaneous action of source on field point
leading to infinities in the fields. If the source be pic-
tured as a finite particle in the macroscopic sense, which
acts, as far as the effect of its field on points external to
it is concerned, as if it were concentrated at its center,
then this last formula says that A is as near as we can
get to the center of the source, i.e., that A is interpretable
here as the radius of the finite particle.

The electromagnetic field of the particle is computed
in Sec. 3. The charge-current turns out to be

eN? 3cP  Q eN’Q
J= [b+~——a+——v], p= ,  (2.6)
4mcrD? D D 4ne.

where v, a, and b are the ordinary velocity, accelera-
tion, and hyperacceleration® of the old point source, and

R-v
D= (RN ——
c

2 R-a
P=1——+ ,
¢
3¢cP2 R-b

= €1

T
D c? c?

(2.7

3a-v

The charge distribution thus shows an anisotropy if
the particle is in motion. For a source moving with
constant velocity the charge density simplifies to

N2 73\ 2
p=— (1—'") ’
47 D" e
so that, e.g., the maximum value of p (that at the
position of the old point source) exhibits a [1— (2/¢?) J?
velocity dependence.

Forasource at rest at the origin, only ¢=e/4xr (r?+A2)?
is nonzero, giving the 5-field

e r
=
47 (r24-22)}
a € A

4= ———p=—

© R E—
O\ Ar (Pa)

E=-V H=0, G=0,

(2.8)
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This electrostatic field is that due to the charge-current
derived from G, G4, which by (2.6), or directly from
(24),is

a
J=cA—(\"1G)=0,
N

NG = (29)
p=—A—A1Gy)=——-. 2.9
)Y 4r (P22
This distribution into which the old point source has
been smeared has the following interesting properties.
The charge is mainly concentrated in a region of linear
dimension ~\ around r=0, attenuating rapidly (like
7~5) for »>\. The function p(r) becomes higher and
narrower for decreasing A\, whereas for any value of A
its total charge is

3en? S
f pdv= (—)4ﬂ'j ———=c¢, (2.10)
all space 4 o (P2A2)52

exactly the charge on the old point source. Thus p/e
is an approximation for the 3-dimensional é function:

Lim (3\/4m) (N2 =5(7),

so that we get back the point-particle §-function dis-
tribution in the limit A=0. One further property, which
ties A to a macroscopic finite particle interpretation,
should be mentioned here. By (2.9), at =0,

0= pmax=e(4mN\3/3)7, (2.11)
and this maximum charge density is just what one would
obtain in the naive picture in which the point source
was spread uniformly throughout a sphere of radius
exactly A.

In the macroscopic Maxwell theory, one replaces a
large number of particle sources by a fictitious con-
tinuous charge distribution. The solution due to the
continuous spread is built up by linearity from the
elementary Coulomb solution as an integral of the
charge density over the appropriate volume, surface,
or curve. By the same device the fields due to continu-
ous source distributions may be built up from the ele-
mentary solution (2.2), (2.3). The presence of A0
smears each “point particle” of the fictitious fluid over
all space; the charge-current j, differs thus in its de-
tailed distribution from ¢, the given continuous spread
of sources, although they coincide in the limit A=0.
A calculation of the dipole radiation of a current of
atomic dimensions, for example, shows a correction due
to A5%0. The total charge, whether given by j, or a4,
is the same. The detalils, given in Part 3, are passed over
here because we are more interested in the changes
which this extension brings to the exact, microscopic
theory.

RICHARD INGRAHAM

Energetics—From the S-force an energy S-tensor
T o of the usual form can be built, except that here we
must use the appropriate metric, that of the extended
space, to raise the indices. The energy tensor satisfies
a conservation law in virtue of the field equations. In
terms of the electric and magnetic fields and the 4-
vector Gy, the components T ,5= —\~2T 46 turn out to be

T..= — (EE+HH)+15(E2—H2)+GG+15(G2—G?),
T..=— (EXH-G\G),

@4=%(E2+H2+ GH-G4), (2.12)
T.5=—G:E+GXH, )
Tws=—G-E,

T55=%(E2—H2+G2—G42),

where the dots indicate suppressed 3-vector indices, so
that, e.g., T.. and T.; are 3-dyad and 3-vector re-
spectively, and & means the unit 3-dyad. The com-
ponents of T, are the quantities familiar from the old
theory enlarged by terms in the 4-vector G, and the
Ts. are new. The conservation laws written for the
quantities 7', read

I R _
TBES—T’"B—I-)‘(;):()\_ITW)‘H\"laﬁaT:0: (2.13)

xm

where T= T11+ ng—}— T33— T44+ Tss and the index m
is raised with the Lorentz metric. Further support for
the identification (2.1) now comes from the fact that
the integral conservation laws

f T,gdv = 0,
14

where V is a volume of boundary .S, give for f=4:

o [ B
L)
ady\ 2

=cf(E><H)-do+fJ-Edv,
. S 14
and for 8=1,2,3

ExH ]
dv= f S-do-+ f (pE—I——XH)dv,
v ¢ S 14 c

where the charge p and current J are given by (2.1).
(Some manipulation using the field equations to
eliminate dE/0\ and dH/d\ has been performed.) Here
S is the classical stress dyad of the field [the first two
terms of T.. in (2.12)7]. These are the classical laws
expressing the conservation of the energy and mo-
mentum of the field in a region V containing charge of
density p and current J.

The component 3=35 gives (after similar manipula-

(2.14)

(2.15)

9
_ (2.16)
ot
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tion) the conservation law

1
dv=5f(—G4E+GXH) -do
8

1 10
——f{E-(—VGH———G)
cy c ot
]
+H~(V><G)—pG4——-G]dv. (2.17)
C

It suggests that a mass density G- E/¢? be ascribed to
the field ; then (2.17) is a conservation law for this mass
in V, relating its decrease to certain volume and surface
interactions with the other components of the 5-force
and their derivatives, including the charge-current
(2.1). G could be interpreted as an electric polarization;
it is this polarization which gives rise to the current
via J=cA(9/\) (A 1G).

Specializing these considerations to the elementary
solution (2.2), one gets for a nonrelativistic electron the
acceleration field

e R-a 1
Eacc= —_[ R— a]’
dr?L(R24N)F (R*HAY)3
e RXa
Hacc =T T,
4mc? (RN

(2.18)

hence the acceleration dependent part of the Poynting
vector is

SaccE C(Eaccx Hacc) = —

e

167%c*
(R-a)? a? MR-a
dl Jrs
R Rl @

a}. (2.19)

Integrating this over a sphere of radius » around the
particle as center, one gets the power loss of a slow
electron by radiation:

2 (¢')? AZ\ 4
fSncc'du=— a?0, O= (1—[*—) , (2.20)
s 3 72

where ¢/=e¢/(4m)}. The correction factor ®, which goes
to unity as » — o, involves the square of the ratio \/7,
presumably small for » of macroscopic size (~1 cm).
For the field of a particle, the integrals in (2.15)
representing the energy of the particle field and the
work done by this field on the smeared charge spread of
the particle itself can be calculated for any given state
of motion of the old point source. These integrals are
finite (A>%0) as contrasted with their divergent nature
in the classical theory. Hence we can talk meaningfully
about the electromagnetic self-energy and self-force
of a particle with this model. For a resting particle the
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electromagnetic self-energy is

1 e © ridr
é,::_f E2d7)= ( )41rf —
2Jan space 3272 0 (72_*_)\2)3

OE)E) o

The classical expression, for a finite particle of radius @,
is 8class=€?/8ma. Hence from energy considerations we
would be led to interpret A as 37/16 times the radius of
the particle in the naive picture.

Probable size of \.—The corrections to results in the
classical domain, for example ® in (2.20), cannot be
expected to furnish an idea of the size of A, whether it
should be taken as the classical radius, say, or the
Compton wavelength, or something else again. In the
quantized theory, however, the cutoff A would yield
finite results for quantities which today are evaluated
by a subtraction process in a perturbation formalism.
A comparison with experiment here could be expected
not only to fix A but also to answer the prior question
whether field theory built on the present extension of
space-time is consistent with observation.

3. DETAILS OF THE CALCULATIONS
The extended Maxwell laws are

d
'Y—}_'— (‘Y*’Y“G‘Yﬂ‘Fae) =0)
dxe

3.1)
a

i} a
—Fpgyt—Fyat—Fap=0,
dxe dxh oxY

where Fos=—Fg, is the 5-force, vq.s the metric in
sphere-space, defined by

A=y apdxodaf= —\2(dr— 2dP+dN),  (3.2)

giving the infinitesimal angle df between the neighboring
spheres? of centers a™=(r,cf) and a™+dx™=(r+dr,
c(t+dt)) and directed radii x5=\ and x5+dx5=\+d\
respectively; v*# are the normalized cofactors of vy.g,
vy=Detyass. From (3.2), y*¥= —2\2g*¥ where g*f=g.g
=(++4++4—4)1 on the diagonal, gef=g.s=0, a5=0;
and y¥=X"5 Hence (3.1) decomposes into

a J 1 d
—Fm,—— (————)Fan, —Fm=0, (3.3)
dx™ oA A ax™
and
a ] a
—an+—Fprn+‘—an=0,
dxm axn ax?
(3.4)
a a d
'_'Fﬁn*—_FEm:_an;
dx™ ax™ A

12 Only time-like spheres are considered, i.e., those whose surfaces
and centers are related time-like in space-time. This choice leads
to the plus sign before d\? in (3.2). The inclusion of space-like
spheres brings with it various unphysical features; see reference §
or R. Ingraham, Nuovo cimento 1, 82 (1955).
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in which the indices m, n, p are Lorentz indices and are
raised with the Lorentz metric. For the subspace A=0
we take Fg,=0; then (3.3) and (3.4) go into the ordi-
nary Maxwell laws for empty space. To verify that
the S-potential (2 2), (2.3) gives a solution of these
field equations, it is convenient to write it in its Lorentz
invariant form, thus

e Um
Fp=——
4w Rry,

where [y*(w),0] is the path in sphere-space of the old
point source in terms of any Lorentz-invariant running
parameter w; v=dy"/dw evaluated at the retarded
time (i.e., at the corresponding value of w), indices are
lowered with the Lorentz metric gn., and Rr=xr—yr
is the radius 4-vector from the point source at the
retarded time to the observation point x™. (3.5) gives
the potential at the sphere (x™\) and the last equation
fixes the retarded w as a function of x™ and A. The
S-force is the curl of F,, or

(3.5)

Fs=0; RPR,=—N\,

b

e 1
an_‘_'_"'x
4 (RPp,)?
A
X[R,,nan—Rnam———~——'—[Rmv,,——anm]], (3.6)
(RPv,)
e A I' A ]
T Rl Re, )

where a™=d?y"/dw*, A= Rra,—vrv,, and indices are
lowered with Lorentz metric. We have used the formulas

R,  Owret A
=, =" (G{ERP'DII)
® oA

obtained from differentiating the last equation of (3.5).
From these follow the formulas:

awret

3.7)

ax™

OR, VR dR™
(a) =8gmn— ) —=3 ) 3
ax™ ®R dx™
vy R, v, A
(b) =0y, =0y,
axm ® N ®R
da, R, da, A &Py
(C) =0p— = bn—“? (bn= )’
axm ® O\ ® du®
(3.8)
IR A IR A
(d) = v’m+—Rm, ”‘:‘“‘)\,
dx™ ®
9A (R%,— 3a”v,)
(&) —=an Y R,
dxm ®
34  (Rrb,— 3(11"01,)
an ®

18 See Landau and Lifschitz, reference 1, p. 176 for the corre-
sponding formula for A=0.
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The set (3.4) is satisfied automatically in virtue of
Fos=0F5/dx*—dF ./dxP. As for the set (3.3), we verify
first that the divergence of Fy™ vanishes. We have from
(3.6) and (3.8):

dF " ex 4 4
= ———l:—Z(B,_s(vn+—Rn) (aﬂ_._.__vn)
9x" 4 G
L[ (RD) A (Ra) A
- -—'—+Av”0)f2('vn+'—Rn)
R R ® &
Un R”
~_(an+[(1eb)—3(av)]—) }]
® ®
e A A 4 24
__° —[—Z(av) ~2—(Ra)+2—(0)+—
47 ®3 ® ® ®

A?

A A
(R~ —(Ra)+ (o) +—
® ®R ®
— (av)— (Rb)+3(av) ], (3.9)

with the notation ( ) for the Lorentz inner product,
e.g., (Rb)=R,b". All terms except those involving 4
and A? cancel immediately and the rest give

AF s

ax™

_° _"_[er_[ 3( Ra)+3(‘v)2]]

4 Q3L R
e\ [342 342
Ty
® ®

(3.10)

Hence our solution satisfies the last equation of the
set (3.3). As for the first set of (3.3) we first compute

a A R, A R, Av, A
— an_—vn)=bn_'—'—an_+ (vm'*_'_'R'm)
dx™ ® ®R ®R ®R @ ®
Vn (Rb)—3(av)
),
® ®
(3.11)
a A A A N 4 Al
- an—_'vn):bn—"""-an_'l_'—vn—‘_
oA ®R R R AR R AR
vn[ (Rb)—3 (av)]
-
® ®
Abbreviating ®,=a,— (4/®)v., we get from (3.6)
and (3.8):
aF™,

A
= —i[— 2 01‘3(1Jm+~—Rm) (R™®,—®"R,,)
4 ®R

R,
+ (R—z‘ SQn_q)m(gmn_ ’_vn)
; ®

a I¢]
+ R#"—®,——P"R,,
dx™ x™

Ix™

} o
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From (3.11),

8%, (R A
R—=""p — " (R)a.,

Ix™ @ ®?

)? R)? 3(R)?
+( O L e R+ B ) Yon
(R
(3.13)

6<IJ”‘ (Rb) A (Ra) 4 (av)
. T L(”)2 A]——
. R R ® ®

(Rb)J 3(av) 2(av)
& & &
Using (3.13) and the relations
(R®)=(Ra)— A= (v}, (v®)=(av)—(4/®)(v)
in (3.12), we get
dF™,

e A A
= ——[— 261—3((R+—(R)2) (an——‘un)
dxm 47 ® ®

- (- S-S or)r

24 2 R)? A(R)?
+(R_2lzdn-—“vn+(_v)_vn+( ) bn— ( ) An
® ® ® ®R?

A2(R)2

(R)?

—(® RO+ )2<av))v,.
2(:’)&,}].

Grouping together the terms proportional to by, @m, vm,
and R,,, this becomes finally

aF™, e (R)?
dx™ B 4r @3
34 342 (Rb) 3(av)
X[bn a,.+( 8 )v,,]. 3.14)
® ®? ® ®
Next we compute
a 1
- _——)F5n= '_>\_(x IFSn)
ON A

from (3.6), (3.8), and (3.11).

ad e\ AN A
SR e
I\ 47 ® ®

A A A2 (Rb) 3(av)
+(R—2{_bn_)\'—'an+( = )vn}
® ®?2 ®? ®?2 ®?

(Rb) 3(av)
(R2 @ T ® )‘Un]. (3.15)

eN? r 34 342
= bn an+(
41r(R“I. ®
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Finally, it follows that the right members of (3.14)
and (3.15) are equal in virtue of the retarded time
condition (R)?=—X\? in (3.5). Hence (3.5) is demon-
strated a solution of the field equations.

The statement that [ (8/d\) — (1/X)]F5, is the source
of the electromagnetic field F,., and satisfies an equa-
tion of continuity follows from (3.3) and (3.4).

The fact that the field (3.6) is bounded for A£0 can
be seen very easily from this invariant form: an in-
finity could occur only where Rr vanished or was
orthogonal to the timelike vector v7, in which cases we
would have R?R,>0. But by (3.5) Rr is time-like.

The 4-current 7, for a general state of motion of the
particle is given by the negative of the right member
of (3.15). If we replace the invariant parameter dw by
d’=c¢"'dy* [as we may do by the homogeneity of F,
in v,, see (3.5)7], the new * and ¢* vanish, and the new

=¢. ® becomes —c[ (R24+A2)}— (R-v/c)]. Substitut-
ing these into (3.15), we get the expressions (2.6), (2.7).

In a macroscopic theory, consider the field due to
the continuous space spread ¢,= (¢v, —0o). Replacing e
by odv in (2.2) and integrating, one gets the solution

1 a(v/c)dv
ard (RAN)I—(R-v/0)
1 odv

o= » F5=07
(RN~ (R-v/0)

(3.16)

where ¢, v, and R are the retarded quantities. For the
4-current (2.1) associated with this field j,#0o, but it
easily can be seen that

adv, (3.17)

lim g (57 \) = o (), f pdo= f
A0 all space all space

where the last equation refers to an electrostatic dis-
tribution. As an application, the electrostatic potential
of an infinite straight filament of charge o= const per
unit length along the z-axis is

a p° ¢

i) _ ety G-y

=—->Iog(r2+A%?%, (3.18)
2

where r;= (x2+13%)%. For A=0, one gets the familiar
result that ¢ is the potential of a point charge ¢ at the
origin in two dimensions. Gs=—(3/0\)¢, hence the
charge distribution p due to this field is

2
T (r 12_*_)\2)2

p is cylindrically symmetrical, attenuates like »,~* for
r1>A, and has a total charge (considered as two-

(3.20)

3
p=—A—N\"G )~——
oA
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dimensional distribution)

T
f pda=—)\2X27rf
™ 0

xy-plane

®  rydry

(712__{_)\2)2
=20NX1/(2\) =0, (3.21)

or just the charge on the point source. Thus p/s is an
approximation for the 2-dimensional  function:
>\2
lim - ———
0 1 (72 A2)2

We note further that at ;=0

= 5(7’1).

P=Pmax=0 (TN}, (3.22)
which is just the density of a point charge o smeared
uniformly through a circle of radius A.

Energetics.—The symmetric energy S-tensor is

TaB=F7aFvﬂ_‘i'YaﬁF78F75: (3.23)
where indices are raised with the angle metric v de-
fined by (3.2). It satisfies

Vo T%=0, (3.24)

where V, is the covariant derivative with respect to
the metric v.g. This is proved by a calculation formally
identical with the same one in the conventional theory,™
using the field equations (3.1), of which the first may be
written V,F2=0. Equation (3.24) expanded reads

d
v H—T “a)—l—%ﬁg—ﬁvavny =0. (3.25)
X

xd
Using vag=—\"2gss and y¥=\"5% where ga.s are the
constants defined after Eq. (3.2) and writing Tas
=—\2T,.s this gives the conservation laws in the

form (2.13).
To derive the integral conservation laws (2.15)-
(2.17), we first set B=4 in (2.13), getting
19 (E2+H2+G2+G42)
c ot 2
a 1
—V-(EXH—G4G)—(———)(G-E)=O‘ (3.26)
M A

Write the second sets of field equations in (3.3) and
(3.4) as

190G,
(3') V.G=*—.—’
¢ 9t
190G 9OE
(b) VGy———=—, (3.27)
c 0t O\
oH
() VXG=—.
N

14 See Landau and Lifschitz, reference 1, pp. 87, 88.

RICHARD INGRAHAM

Take the scalar product of (b) with G, transform the
first term by product differentiation, and use (a) to
replace V-G. We get

19 /G2+G2 dE
( )——V-(G4G)+G~—=O.
cat N

Adding this to (3.26), we obtain

19 sE24+-H?

¢ ot

F)
)+V‘(EXH)+>\5{(A—1G)-E=O, (3.28)

which leads on integration over V to the Poynting
Theorem (2.15). Proceeding similarly with the mo-
mentum, (2.13) for =1, 2, 3 gives

19 _ g 1
L -Gy 1 (L))
cat N A

X (—G:E+GxH)=0. (3.29)

Multiply (3.27b) by G4 and take the vector product of

G and (3.27c). One gets

1 9G oE
IVGE—-G——Gs—=0,
c It I\
and

oH
GX——1vGHG-VG=0,
a
respectively. Add these, transform the last term thus
1 0G4
G-VG=V-(GG)— (V- G)G=V- (GG)—— —G
¢ Ot

and subtract from (3.29). One obtains

a(EXH

9
— )+V- S.—A—("'G,)E
ot oA

c

)
+>\5(>\~1G)><H=0, (3.30)

where S.. is the classical stress, dyad, which leads
directly to (2.16). Equation (2.13) gives for =35

19
—&(G-E)—}—V- (—G.E+GXH)
c

10
+55(E2~H2+G2—G42)+>\—1(G42—G2)=0. (3.31)
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By using (3.27) to eliminate’ dE/d\ and dH/I\ from
this, an equivalent equation is obtained which, when
integrated, yields (2.17).

The acceleration field (2.18) of a nonrelativistic
electron can be read off immediately from (3.6). We
can replace a;, v; by a, v, the ordinary acceleration and
velocity and a4, v4 by 0 and —¢ (see the remarks earlier
in this section). To evaluate the integral (2.20), take
the z-axis along a at the retarded time corresponding
to the moment in question. Then

R-a=R|a|cosh, R-de=R*Q, a-do=R?|a|cosfdQ,
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and therefore

e T R3|a|? R? cos?9
fsacc'daz_ f( l)dQ
s 16m2L (R0 s\ Ren
R3\?|a|?
+— f cos2dﬂ]
(R2+>\2)5/2 s

sin%0dQ=— ———a2( )
3 4xct R?

which is the right member of (2.20).

¢ R al? f
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Transformation of Relativistic Wave Equations*
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A unitary transformation is found which transforms the Dirac equation into two uncoupled equations.
These involve higher orders of the time derivative than the first. In order (v/c)? the equations involve only the
first time derivative and they are then equivalent to the Foldy-Wouthuysen transformation. While the
equations are uncoupled and free of odd operators the functions satisfying them cannot be interpreted as
different functions describing positive and negative energies separately, the general interpretation in the
exact theory remaining in terms of the four-component wave function.

The transformation is extended to quantized fields and to relativistic two-body equations. The second-
order electromagnetic mass effects in the quantized Dirac equation appear, in the nonrelativistic limit, as the
time derivatives of the electric terms of the nonrelativistic Hamiltonian without the radiative corrections.
These mass effects in the nonrelativistic Hamiltonian are proportional to (1/mc)3.

Construction of unitary transformation operators for the ps-ps meson theory and for the Bethe-Salpeter

equation are also discussed.

I. INTRODUCTION

T is well known that for many physical systems the
application of the relativistic quantum theory meets
with some mathematical difficulties. Furthermore, the
description of many-body systems by relativistic
methods raises some conceptual difficulties with regard
to the meaning of a many-body relativistic wave func-
tion. It is, therefore, desirable to construct a general and
systematic method for transitions from relativistic to
nonrelativistic theories. Many methods of reductions of
relativistic equations to nonrelativistic forms have been
known all along, but all of these methods suffer from the
lack of generality and from the required tedious pro-
cedures in their executions.

In the conventional methods of approximations the 4
components of the wave function are not treated on an
equal footing, and this procedure gives rise to non-
Hermitian terms in the Hamiltonian of (v/¢)? approxi-
mation. However, there exist methods of approximations

* This research was supported by the United States Air Force,
through the Office of Scientific Research of the Air Research and
Development Command.

f Now at Turkish General Staff Scientific Advisory Board,
Ankara, Turkey.

which easily remove the above defect. In connection
with a study of the nature of nuclear interactions, Breit!
considered the (v/c)? effects for nuclear particles. His
method was, essentially, based on approximate Lorentz
transformations and gave consistent results for spin-
spin and similar interactions.

A different treatment of the problem was given by
Foldy and Wouthuysen.? This method involves an
infinite sequence of successive canonical transformations
on the Dirac Hamiltonian, for a particle interacting
with an external field. It leads to a transformed Hamil-
tonian in the form of an infinite series in powers of p/me.
For higher order approximations in p/mc, the Foldy and
Wouthuysen development is not easy to use. Moreover,
their method does not provide a simple way for the
investigation of many-body problems. :

It has been found possible to derive two sets of two-
component equations referring to positive and negative
energy states which are free of odd operators. The
generalization of the method to other relativistic sys-

1G Breit, Phys. Rev. 51, 248 (1937); 51, 778 (1937); 53, 153

(1937
2L, L Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29 (1950).



