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this kind of mixing indicates that the intensity of the
P„ssPstsf„s state is slightly larger than 72%

V. SUMMARY

The E2 transition rate in Pb"' gives a value for the
surface tension parameter, C= 1100 Mev. The E2
transition rate in Pb' ' gives C=520 Mev. The quad-
rupole moment of Bi'" is consistent with C= 1000 Mev.
The discrepancy between the results of Pb"' and Pb"'
appears to be real and cannot be resolved at this time.

The good agreement between the predicted energy
levels and the experimentally determined energy levels
of Pb"4 show that short-range two-body forces describe
the interaction between the external nucleons fairly
well. Also the splitting of the levels for the first two

Mev are due for the most part to these external nucleons
and do not seem to be affected by the collective motion
of the core. Even the large values of the surface tension
deduced in this article are not sufhcient to account for
the very long lifetime of the 4+ to 2+ transition in
Pb"4. A further partial explanation of this long lifetime
is suggested by the shell model calculation —that the
dominant configurations in the 2+ and 4+ states differ
in the quantum numbers of two particles.
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Perturbation Procedure for Bound States of Nuclei*

MARK BOLSTKRLIt AND EUGENE FEENBERG
Waymart Crow Laboratory of Physics, Washilgtort Uttt'oersity, St Louis, Misso. uri

(Received October 31, 1955)

The model of nucleons moving in a 6xed harmonic oscillator well provides a convenient starting point for
calculations on the structure of light nuclei. One complication, the nondiagonal energy operator associated
with the motion of the center of mass, can be eliminated simply by adding the harmonic potential operator
of the center-of-mass motion to the correct Hamiltonian operator of the system.

Following the construction of the correct zeroth-order linear combinations (in case of degeneracy) and the
evaluation of the first-order energy matrix, the further development of the theory, in the direction of an
exhaustive investigation of the consequences of assumed interaction operators, requires the evaluation of
second- and higher order contributions to the energy. A simple, accurate, and powerful procedure for
evaluating the second-order energy and other second-order quantities in closed form is described and explicit
formulas are given for the application to the ground states of the deuteron, the triton, and the alpha particle.
Numerical results for the deuteron, where a comparison with exact calculations is possible, are surprisingly
good. The extension of these calculations to the first p-shell and beyond with the aid of the technique of
fractional parentage coefficients appears feasible.

I. INTRODUCTION

"UMEROUS attempts have been made to correlate
the observed properties of light nuclei with

assumptions about the nuclear forces. ' 4 The nonvan-
ishing quadrupole moment of the deuteron requires a
tensor component in the correct combination of nuclear
forces. Calculations with tensor forces are dif5.cult and
have been worked out to a satisfactory degree of accur-
acy only for two- and three-particle problems. Rarita
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s L. Rosenfeld, nuclear Forces (Interscience Publishers, Inc. ,
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and Schwinger, ' using a combination of central and
tensor forces, succeeded in fitting the binding energy
and quadrupole moment of the deuteron and also the
low-energy p rt scatter—ing data (which essentially
determines the position of the 6rst excited state
(virtual) of the deuteron). Pease and Feshbachs ex-
tended the theory to the three-particle problem using a
variational technique to compute the binding energy of
the triton. All the experimental data can be fitted ex-
cept the Coulomb energy of ~He&.

Feingold" has extended the study of the tensor force
to four-, 6ve-, six-, and seven-particle systems. This
study indicates that some of the effects usually ascribed
to a spin-orbit force may arise, in part at least, from a

' W. Rarita and J. Schwinger, Phys. Rev. 59, 436 (1941), and
59, 556 (1941).' R. L. Pease and H. Feshbach, Phys. Rev. 88, 945 (1952).

A. M. Feingold, Ph.D. thesis, Princeton University, 1952
(unpublished).

s D. H. Lyons and A. M. Feingold, Phys. Rev. 95, 606 (1954).
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tensor force. General arguments yielding the same
tentative conclusion have been developed independently

by Wigner' and Keilson. " Recently the ground-
configuration matrix of the tensor interaction in the p-
shell has been computed" and a research group in

England is reportedly calculating interaction matrices
which include other than ground configurations.

The labor involved in the last-named calculation is
clearly tremendous. This paper is the result of an at-
tempt to include the effects of configuration interaction
in nuclear energy calculations without computing a
prohibitive number of matrix elements. Results ob-
tained for the is shell indicate that the extension of the
method described here to the 1p shell is feasible and that
this application should involve less labor than the com-
putation of the interaction matrix.

The method described here is closely related to that
used by Feingold although in detail there is little re-
semblance. Both methods include contributions from
all configurations in second order, but neglect higher-
order contributions. The present method is somewhat
more elegant and has the advantage of giving exact
results in the limit of weak nuclear forces. Related
techniques have also been employed in early studies of
exchange force models ""

IL PERTURBATION TECHNIQUE

In zero order, the nuclear system is treated as a
collection of single-particle harmonic oscillators with the
Hamiltonian

Hp' ——-'Aa)g (p'+g')
in which

p, = (h/happ) &v;,

q„= (mo)/fz) &r,.

The actual physical system is governed by the Hamil-
tonian

under the assumption that two-particle operators,
denoted by V,;, provide the major part of the nuclear
potential energy (note, however, that the specialized
form of the nuclear interaction operator does not enter
into the general formulation of the perturbation
method) .

In Eq. (3) one cannot proceed immediately to treat
the term in square brackets as a perturbing potential.
The diKculty is that the bracketed expression depends

on the coordinates of the center of mass and would,
therefore, mix states having different energies associated
with the motion of the center of mass. The relation

Q=P q,/A,

makes the difFiculty explicit and at the same time indi-
cates how it may be eliminated. The center-of-mass
potential energy ', fztpA—Q' is added to H', resulting in the
following modified Hamiltonian:

H =H'+ zr AoiAQ'-

=IIp'+ P Vg —-'A&a g (q' —Q') .

Now H contains the Hamiltonian operator for the
harmonic motion of the center of mass as an additive
term; consequently the eigenstates of B are also eigen-
states of the center-of-mass Hamiltonian.

In many problems the determinental wave functions
generated by the set of low (or ground) configurations
contain the coordinates of the center of mass only in a
common factor which describes the zero-point motion of
the center of mass with the energy —,'A~. This statement
applies when, for each of the four spin and isobaric
spin states, all oscillator shells below the topmost shell
are fully occupied. Under the stated condition the re-
placement of q; by q;—Q in a determinant changes each
column into a linear combination of the original column
and of other columns; the additional terms may be
dropped because a determinant with two equal columns
vanishes.

One other adjustment is desirable. In order to fit the
potential energy in II' as nearly as possible to the
average potential due to the nuclear forces, it is con-
venient to add a term PU(q, —Q) where U is a wide
well with a fIat bottom. The radius of U is made large
enough so that it has no effect on the wave functions of
low radial quantum number. Edge eGects can be ne-
glected, if, as seems reasonable, orbitals of very high
radial quantum number are present in the perturbed
wave function only with very small amplitudes; in the
evaluation of matrix elements it is then permissible to
replace U by a constant. Now we write

Hp=Hp'+P U(q; —Q)

' K. P. Wigner, Proceedings of the Conference at Rio de Janeiro
and Sao Paulo, Brazil (July 15—30, 1952) (unpublished).

'0 J. Keilson, Phys. Rev. 82, 759 (195&)."J.P. Elliott, Proc. Roy. Soc. (London) A218, 345 (1953)."0,Horvay, Phys. Rev. 55, 70 (1939)."B.O. Gronblom, Z. Physik 110, 37 (1938).

H=Hp+ Q V i

—z» 2 (C"—Q') —2 U(q' —Q)

(6)
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and denote the operator in square brackets by 5".The
notation f„and E„ is used for the eigenfunctions and
eigenvalues of Hp.

%e use a modified first-order wave function in the
form'4"

enable us to write

, I(V-M).ol

1 8'o
4 =—6+2E E—E„

J
W., [Ãs= 1++

(E—E )s

(7)
E—E„E—Ep (o)

(+[[M o(s—Vo M o
—V oMo )

. E—Ep —2kG0

—Q[)M„p]'—Vp M p
—V pMp ]). (11)

(o)

The primed summation signifies that terms with
E„=Ep are omitted, while (0) signifies that the surnrna-
tion is limited to states with E„=Ep.Since M contains
the coordinates only to the second power, 3f„p fails to
vanish only if state e divers from state 0 by zero or two
units of excitation, i.e., E =Ep or E„=Ep+2hce.
Equation (11) may be simplified by introducing the
relations

+[[M„,('—V,„M.,—V„,M,„]
= (Ms)oo (VM)oo —(MV)oo, (12)two„i' Wo.W. W o+pE-E„-,- (E-E„)(E-E.)

(8)
P[)M.p)' —V,.M „,—V„pMp„g
(p)

For convenience, the depth of U is chosen so that
8 op=0. This means that the first-order energy correc-
tion vanishes for one low state and is small for other
low states generated by the same configuration. If
degeneracy exists in the zeroth-order formulation of the
problem fp must be written as a suitable linear com-
bination of normalized orthogonal functions in the
subspace defined by E„=Eo. Terms with E„=Ep may
then be omitted from the sums in Eq. (7). A procedure
for determining the correct linear combination is de-
veloped in Appendix C.

The energy formula, E= Q ~
H ~P), can be expressed

in the form

All contributions from the second-order sum in Eq. (8)
have the same sign (if Ep~E„).The third-order energy
correction contains both positive and negative terms
(from the Quctuating signs of Wp„and W„) so that
internal cancellation assists in reducing the magnitude
of the sum. YVe omit the third-order energy correction
in the following discussion. Verification of the relation

supplies a partial justification for this
omission.

The abbreviations

=(Voo Moo) P]V p] +g[W p) (13)
(o) (p)

ex E (Ve xEoV)—
E—E„~p

is a consequence of the identity

the first a consequence of closure and the second follow-
ing from Eq. (10).

The relation

M=-', Aps Q (q,s—Q'),

V=+ V;;, ex (E En)d)—
)

0

(15)

and the relations

U=P U(q' —Q) and the application of closure to the infinite summation
over st. Equations (6) and (10) permit the transforma, -
tion of Eq. (14) into the more explicit form

+' o=~ o
—~ o

—Uoo~ o

=0 for m=0,

= (Voo—Moo)b = (Eo—Eo')h

"E.P. Wigner Math. u. Naturwiss, Anzeig. d. Ungar. Akad.
Wisp. L III, 4?5 1935)."P. M. Morse and H. Feshbach, Methods of Theoretica/ Physics
(Me@raw-Hill Book Company, Inc. , New York& 1953), Chap. 9.

exp@, (E—Eo+Eo')]
p

X[V exp( —&Ho') V]ooA (16)

The usefulness of Eq. (16) depends entirely on
the possibility of expressing the matrix element
[V exp( —)tHp') Vjpp in a form suitable for integration
and nurrtericat evaluation, A manageable form, can be
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attained with the help of the integral transformation

(tt )'
expL —t (P'+q') jf(e) =

[ [
' "dvf(v)

i2g) J~3

Vts= e(1—trt' eo)e(3+ et' es)Jp
+-,'(3+ot es)-,'(1—~t ~p) J1
+-.'(1—~t. ~p)e(1 —~t ~s)Js
+-,'(3+or trs)-,'(3+~1 ~p) Jp

+ e (1 &1' &2912J + a (3+&1' &2912Jep (19)

where

)&exp ——(q'+o' —2hq. v) (17)
2g

g= tanh2tt, h = 1/cosh2tt,

and f(q) is arbitrary within broad limits of continuity
and integrability. A derivation is given in Appendix A.
Relations equivalent to Eq. (17) are known and have
been applied in the theory of metals. "We are indebted
to Professor Uhlenbeck for calling our attention to the
antiquity of this formula.

III. APPLICATION TO THE ls SHELL

The two-particle interaction operator is assumed to
be a linear combination of the six charge- and velocity-
independent types of nuclear potentials. This combina-
tion will be written in a way which diGers from the
usual one and conforms to the potentials used in
nucleon-nucleon scattering as follows:

where each J is a function of the radial distance be-
tween the two particles. This form includes singlet-
singlet, singlet-triplet, triplet-singlet, and triplet-
triplet radial interactions in the spin and isobaric spin
variables and independent tensor operators for sym-
metrical (s) and antisymmetrical (a) states in the
space coordinater of two particles. The factor 5~2.is the
tensor force operator

Stp ——(~t xtolrs its/x»') —-'oa& oo. (20)

In the following list of matrix elements the letter e
denotes the operator exp( —XHp') and nts is the unit
vector along r». The single-particle orbitals have the
form

lt .(q)=~ 'exp( —lq')

multiplied by appropriate spin and isobaric spin
functions.

A=2, ground state of the deuteron

Vpp= (0[Jt[0),
Mpp ———,'hro (0 [ qtss [0)=-,shto,

(M') „=(-'„h )'(0[q„'[0)=1S(-;h~),
(VM) oo= —,'hto(0

[ Jtq1s'[0),

(VeV)pp= (0[JteJt[0)+(4/9)(0[ J,{3ntp' (n»e n»)n» —e)J, [0).
A =3, ground et«e of tHs and sHet

Uoo=s(0[ Jo+Jr[0),
Moo= ohio(0[q»'[0) = shto,

(M') pp
———,'(-', hto)'(0 [ q»'+2q, s'qto'[0) = 3(hto)',

(UM) oo= &h&(0 [ (Jo+Jt)»(q»'+2qto') [0)
(VeV)pe=so(0[ Jp(12)eJp(12)+Jt(12)eJ1(12)[0)+es(0[Jp(12)eJo(13)+Jt(12)eJt(13)+6Jp(12)eJt(13)[0)

+-', (0[J,(12){3nts (nto ento)nts —e)J,(12) [0)—-,'(0[J,(12){3nto (n» ento)ntp —e)J,(13)[0)
A =4, ground state of pHeo

Vpp =3 (0 [ Jp+ Jt [ 0),
Moo=-,'hco(0 [ q»'[0) = 9hco/4,

(M') pp ———,
' (-,'hto)'(0

[ qto'+ 4qtp'qto'+ qto'qpe' [0)= 11(3hto/4)',

(UM) Qp shto(0 [ (Jo+Jt) ts(qto'+4qtp'+qp4') [0),
(VeU) pp= 3 (0

I
Jp(12)eJp(12)+Jt(12)eJt(12) l 0)+3(0 I Jo(12)eJo(13)+Jt(12)eJ1(13)+6Jo(12)eJt(13) l 0)

+3(0 [ Jp(12)eJo(34)+Jt(12)e 1 t(34) [0)+(4/3) (0 [ J, (12){3ntp (ntp ento)n» —e)J,(12) [0)
—(8/3) (0[J,(12){3n» (nto ento)ntp —e)J,(13)[0).

(20)

(21)

(22)

IV. THE FORCE MODEL

The numerical evaluation of the integral involving
(UeV)op is in general extremely dificult; however, in

"A. H. Wilson, The Theory of Metals (Cambridge University
Press, Cambridge, 1953), second edition, p. 163.

the special case of Gaussian radial dependence of the
potential functions, the most dificult term reduces to
an easily computed one-dimensional integral. We have
made calculations using the Gaussian form for Jo, J~,
and J,. The depth and range parameters are taken from
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1 3 t' u'"du

5 (rp —1)'" 2"2 (rp —u)'"
n1=E'

Jr(r) =EG exp( —r2/rps),

J.(r) = 1.77Jt(r),
G=2A'/222ro' 1——7.4 Mev, rs 2——.18X10 "cm,

E=—1.695.

(26)

exp[)i (E—Eo+Eo')1[7r (12)eJr (13)gos' /»
~o

1 3 t' u'"du

5 . (47P—1)'" 242 [42P—u)'"
n
—1

=SK'The specification of the potential is completed by
setting Jo——J&. This is consistent with the Serber
mixture of exchange forces which has been used in the
interpretation of high-energy nucleon-nucleon scatter-
ing data. ' One difhculty with the Serber mixture is the
fact that it does not saturate. However, the more recent
attempts to fit the scattering data indicate that the
nuclear potential has a repulsive core."" Since a
repulsive core strongly influences the saturation be-
havior, ' ' the previous saturation arguments are in-
conclusive if the potential does actually become large
and positive for small separations. It is hoped to extend
the present calculations to include the eGect of a re-
pulsive core, both real (by adding a positive short-
range Gaussian) and simulated (by multiplying the
Gaussian by the square of the separation to make it
vanish at zero range). A preliminary to these calcula-
tions will have to be an investigation of the eGect of a
repulsive core on the deuteron parameters.

The explicit formulas for the matrix elements in-
volving the J's can be expressed simply in terms of the
following notation:

f
"p[) (E—E.+Eo')jJ,

X [J&(12)(3n» (n»e n») n» —e}J&(12)jppd)i/»

3 u'~2F (p)du
=—E2(2)—1)', (27)

5 (tp —u) l (2)
—u)'

f00

exp@,(E—Eo+Es') $

X[Jt(13)(3n~s (nrse nr2)n» —e}Jt(12)/ppd)i/»

96 r
' u'12P(p')du

=—E'(2)—1)' . (28)
5 ~o (42p u)l(42)—u)'—

The derivation of Eqs. (27) and (28) is sketched in

Appendix B.
These results can now be put together to yield a pair

of equations for 5 and E——,'Acr. The procedure is illus-
trated by an explicit discussion for the case of the
deuteron:2k»= G(2)—1) or ro2= (2)—1),

3 f' I'i'dN,
52 E2(~ 1) (~2 1)

—2/2
2)
—3

2" 2 (tP —u)'"p, = ,'»X, u= exp(-—4lu),
(24)

(& 1)2 4(&—1)2
p= Q, p= Qq

(21
—u)' (421—u)'

a calculation by Hu and Massey. " These authors
determine a potential with depths and a common range g

exp[)t(E—Es+Es')][Jr(12)sJ~(12)]os~~/»
parameter adjusted to fit the binding energy and
quadrupole moment of the deuteron. In our notation

5 3 [ sin 'y&

F(y) =—1+-(1—y)
' (1—y)' —1

The results are

(0 ) J, ) 0)/»= E(r)—1)'~'/rp~'

(0 (
J$(12)q&2' [0)/» = 3E (2)

—1)'"/2)'" (25)

(0
~
Jt(12)qrss

~
0)/»= ssE(42) —1) (2)—1)'~2/2)'~2

"T.Hu and H. S. W. Massey, Proc. Roy. Soc. (London) A196,
135 (1949)."G. Breit and M. H. Hull, Jr. , Am. J. Phys. 21, 184 (1953)."R.Jastrow, Phys. Rev. 79, 389 (1950); and 81, 165 (1951).

20 M. M. Levy, Phys. Rev. 88, 725 (1952).
2' K. A. Brueckner, Phys. Rev. 96, 508 (1954).
~ S. D. Drell and K. Huang, Phys. Rev. 91, 1527 (1953).

N~~2J d~4.17725
+ (n —1)' '

5 ~p (2)2—u)'(2) —u)'

+ [a+2E(~ 1)'"/~'"'j, —(29)
8+2

E ',»=G(2) 1)[-,' ——8-(21)+E(21
——1)1/2)'). (30)

From the equation expressing 8 as a function of p we

compute the uppermost branch (maximum 8 for given

21) and denote it by 5(2)). The minimum value of E—ash&a

as a function of 5(ri) and 2) is the sought-for energy. The
corresponding value of g determines the strength of the
harmonic oscillator potential and the harmonic excita-
tion energy Ace.

In Eq. (29) the terms in E', exclusive of the integral
involving the function F, can be expanded in powers of
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TABLE I. Numerical results.

—B(Mev) AM (Mev) +2a

The results of calculations based on the potentials
and parameters of Eq. (23) are summarized in Table I.

2
3

1.75
1.99
2.27

0.274
0.342
0.485

2.08 13.2
17.4

35.1 22.2

1.06
1,07
1.10

V. QUADRUPOLE MOMENT OF THE DEUTERON

The diagonal matrix element of the quadrupole
moment operator is

a See Sec. IV.

1/rio and combined to give a single series with the result

zc' "F(p)du
5=0.8354E'(rl —1)' I

(rio —u) l (g—e)'
3 15 g —1

L1+21f (g —1)i&~/7)otojoy —It2
8(8+2) 8

2 Vo„(3sP—r P) „o
(4 l»i' —ri'l|t) =—2

X2 E—E„
+third order terms. (32)

As in the energy calculation, the third-order terms are
dropped and the second order contribution is trans-
formed by the introduction of Eq. (15) and the applica-
tion of closure with the result

+ + + (31)
(PI3si' —ri'I1t) = —— exp@,(E—Eo+3&~)]E'

p8+4 6rP(6+6) 6.8g4(8+8) X (Ve{3sio—rP))oodX (33)

In Eq. (31) the contribution from the central force
resolves into a sum of contributions from the various
levels of excitation as shown by the series terms in
(8+2) ' (8+4) ' . . which correspond to (g—go
—2h~) ', (E—Eo—4k~) ', . . . respectively.

Only the tensor potential which contains a second-
order tensor in the space coordinates contributes to the
matrix element of Eq. (33). After the summation over
the spin variables is carried out, the right-hand member
of Eq. (33) reduces to

2 00

1.77EG ~' expLX(E —So+3k~)]Lexp( —rioo/ro') (3&io'/rio' —1)e(3&io—r P) jooD, (34)
3+2

2 1 k 1 r

1.77EG— — e '""+"dp, ' . exp~ q' q"——
3Ã' k~ M(o x'"

1
q' ~q'(3 cos'0 —1)'dqdq'

and finally, after replacing exp( —XHo') by the eigenvalue exp( —SVi~),

1.77 (v)
—1)'~' 1

EFp
~o/2 g+2

2.67
X1o "cm'. (35)

The evaluation of 2P is somewhat more diS.cult.
Equation (11) may be adapted to this calculation by
replacing F. E„ever ywehr bey—(E—E„)'.Also Equa-
tions (12) and (13) can be used as they stand. The
operation of differentiation with respect to E applied to
Eq. (14) yields

the integrands entering into the calculation of E and
of 1P diGer then merely in a factor X=2@/5~=1/2@a&
Xlnu. For the deuteron

8
ex& (Ve

—xIIo V)
(E E)o gE Jo

15
+ E'—

8
~ ~ ~

(5+4)' 6' (8+6)'
Xe"E(Ve "~'V)oodX (36).

0

This relation can also be derived by a double application
of Eq. (15) and an integration by parts. Equation (36)
makes all the results of Eq. (26) available for the
evaluation of 37'. In practise the integrals involving the
tensor force must be evaluated by numerical integration;

2 (lnu) F(p) du
E'(ri 1)' —— — . (37)

15 ~o (q —u)'(q' —I)&

Expressions similar to Eq. (37) can be derived for A = 3
and 4; numerical results are listed in Table I. In all
these calculations the contributions from central and
tensor forces are clearly separated. Since there is no
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overlapping in the excited zeroth-order states mixed in

by the central and the tensor forces, E'—1. can be
broken down into a sum of independent terms, each
one referring to a particular type of I.S coupling, i.e.,

2=2: 'Si 0.01; 'Dr 005;
2 =3 'S), 0.01. 4D, 0.06.
2=4: 'So& 0.01. 'Do 009

(38)

Now returning to the quadrupole moment of the
deuteron, insertion of 1P= 1.06 into Eq. (35) yields

(tP
~

3sis —r '
~ P) = 2.52&(10-"cm' (39)

which differs by 8'Po from the value 2.73&(10 '7 cm' used
by Hu and Massey to fix the parameters of the potential
operator.

VI. DISCUSSIOH OF RESULTS

The computed values for the deuteron, 2.07 Mev and
2.52)&10 '7 cm', agree remarkably well with the input
values (2.19 Mev and 2.73X10 "cm') used by Hu and
Massey when the following factors are considered: (1)
the zero-order approximation is worse for the deuteron
than for a nucleus with a larger number of nucleons,
where the competition between kinetic and potential
energies in determining the binding energy is less critical
(2) the oscillator potential is less suitable for the deuter-
on than for heavier nuclei; (3) third- and higher order
terms are neglected throughout. However, it should be
noted that the Gaussian potential resembles the har-
monic oscillator well a good deal more than a Yukawa
or repulsive core potential does, and (2) above is miti-
gated somewhat thereby.

The good agreement obtained for the deuteron makes
the applications to the triton and the alpha particle
worthwhile. The binding energies computed for these
nuclides with our somewhat arbitrary potential are both
larger than the experimental values by about 30%%u~. The
calculations are a bit tedious, but it is still feasible to try
different potentials and make computations without the
aid of elaborate computing facilities as lang as Gaussian
radial dependence of the potentials is assumed. Better
agreement between computed and experimental energies
may be expected if the range of the tensor force is some-
what greater than that of the central interaction. ' ""

The integrals which arise for Yukawa radial de-
pendence of the potentials appear to require a com-
puting machine for their evaluation. In general, the
calculations are of a type which could undoubtedly be
set up on a machine rather easily.

A reasonably good approximation to a Yukawa
potential with a repulsive core can be achieved by taking
a linear combination of three Gaussian functions, one
short-range and repulsive, a second attractive of inter-
mediate range, and a third, also attractive, with some-
what greater range to fit the long-range behavior.

It is rather difFicult to estimate the eGect of a re-
pulsive core. However, it seems probable that in the

"H. Primako8& Phys. Rev. 72, 118 (1947).

APPENDIX A. A TRANSFORMATION FORMULA

The formula"

(~,l (»"
exp| —p(Ps+qs))= lim exp] ——P'

) exp( ——qs
)

~ )

=lim exp] —-q (exp( —p )e ) E n ) (A1)

supplies the essential clue to the form of the integral
transformation of Eq. (17). If f(q) is expanded by the

sc L. H. Thomas, Phys. Rev. 47, 903 (1935).
s' S. T. Butler and M. H. Friedman, Phys. Rev. 98, 287 (193$)~

deuteron, in which the nucleons tend to be rather far
apart, a repulsive core of small radius should have only
a small efIect. The average internucleon distance is a
good deal smaller in the triton and the alpha particle, so
that a repulsive core may be expected to have a rela-
tively larger effect here.

The assumption of zero range or contact interactions
has been employed extensively in first-order calcula-
tions. In the present context this means replacing E by
E'/rs, where E' is a constant, and proceeding to the
limit ro—+0. The limiting potential then has the form of
a delta function of finite strength. In terms of g, E is
replaced by E'$rmu/2A(rl 1,)]&—and the limit il—&1

taken. Then it is seen from Eqs. (26) and (27) that
the integrals arising from the matrix elements (VeV) sp

diverge. The divergence is sufhcient to make 8 in6nitely
large for any value of @co; consequently the binding
energy becomes infinite. In the deuteron problem this
result could be anticitpaed since the delta-function well
permits an infinite number of bound states. The con-
dition for any fixed finite number of stationary states is
simply ro'&depth~constant in the limit ro—&0; the
definition of a delta function requires however that
ro')&depth —+constant as ro approaches zero. In this
connection it is interesting to recall that Thomas" has
given a rigorous argument proving that the binding
energy of a three-particle system (two neutrons and one
proton) is infinite in the limit ra~0 and rs')&depth
—+constant if the constant is large enough to admit at
least one stationary state in the neutron-proton
problem.

The perturbation procedure as described is not suit-
able for evaluating the eGect of a very strong short-
range repulsive intereaction. A necessary condition for
the validity of the method is that the positive contribu-
tion to the energy in first order from this interaction
should outweigh the negative contribution from the
corresponding quadratic terms in second order. A
suitable, canonical transformation is required to adopt
the perturbation procedure to the presence of a short-
range repulsive interaction of arbitrary strength.

One of us (AMB) is undertaking to extend this type of
calculation to the first p-shell using the Racah tensor
formalism and the technique of fractional parentage
coe%cients.
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Fourier integral theorem, it is possible to show that

( p, ) (
expl —-q'

I expl P—' If(q)n) & n)
(n $~ I' p, n

exp ——q' —~' f(q u—)du, (A2)
E47rp ~ „.n 4p

and that therefore

( p, '! (
exp( —

q I expj p I f(q) ( ).
IJ, IJ

exp ——q' ——
(q

—ui)' ——(ui'+uo')
4~p a ~J ~ ' + g 4P

Xf(q ul uo) du(duo& (A3)

and so on. (A3) may be integrated once to give some-

thing of the form

N I exp(aq'+bqv+cv') f(v)dv

and (A2) may be rearranged to this form also, sug-

gesting that, in general,

expL —p(P'+q') jf(q)

since p is assumed to be positive, as it will be in the
applications. (A5c) now gives

and (ASd) gives
c= —

~ coth2p= g,

No= 1/sinh2p.

(A6c)

(A6d)

As p approaches zero, the righthand side of (A4) must
reduce to f(q). 8yusing (A6), the rightside of (A4) may
be written

(1
exp~ —q'/au' ~f q

—u du.
E4a ) (1+bo)&

For p~0, this gives,

2v l~ t" ( q
lim] )

I B(u) f(! —u )du= (2v)~f(q).
"~o & cosh2y, ) „&cosh2p

Thus, for proper normalization, a factor 1/(2v. )& is
needed, giving finally Eq. (17), when the transformation
is extended to three dimensions.

APPENDIX B. EVALUATION OF SECOND-ORDER
TENSOR INTEGRALS

The orthogonal transformation

q= (qi —q )/2'*
(81)q'= (ai+q )/2'*

exp(aq'+ bqv+ cv') f(v) dv. (A4)
combined with a change of scale applied to the inte-
grand of the first tensor integral in Eq. (21) yields

(exp( —rio'/ro') [3nio (nio enio)nio —ej
Xexp( —r(o'/ro') )oo

1 (2gpq: .
J expl: —("+q')j(3 cos'B—1)

The following differential equation must hold:

8—expt: —p(P'+q') Jf(q)
Bp

(P'+q') e—xVL—p(P'+q') jf(q)

—q'
I exp' —p(P'+q')3f(q)

4 aq' Xexp(2p~qv cosa) dqd v (82)
in which

If (A4) is correct this requires

p" BN Bu Bb Bc
+Nq' +Nqv +N—v-a„ap, ap, ay,

X exp(aq'+bqv+cv') f(v) dv

=N t (—q'+2a+L2aq+bv)')

(n —1)'
p= Q.

(g—u)'
(83)

The exponential function of cose may be expanded in a
power series and all indicated operations performed with
the result

(1—u ): - 3 5 . (2l+3)
)oo=2I p I p Z p( u& ) o 2'l!(2l+5)

p1 —I '
=2—

I' 1—p
aa/ap =4a' —1,

ab/a„=4ab,

ac/ay= b',

BN/ap =2aN.

(A5a)

(ASb)

The relation
~ASc~

ASd

3 slii p*
X 1+—(1—p) (1—p) l —1 . (84)

( )
~ 3 5 (2l+3)

2'l!(2l+5)
(ASa) is satisfied by

0= —
& coth2p.

pP
=(1—p) '"—p '" x'"(1—x) 'i'dx (85)(ASb) then gives

(A6b)b= T/sinh2p,

Xexp(aq'+bqv+c(') f(v)dv

Equating respectively terms in q', q~, v', and constant
terms gives
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(C3)

E=Eo'+ 2 ('~cq[Xp~ oq+eq~q+ oo~qj/2 l ~q l' (C4)

provides the link between the first and second lines of &oo=Xoo=Z ~y( qXoq, oq/PlGl',
Eq. (B4). From the definitions of p and the function

P(p) LEq (24))

and

1 p=
(q' —u) (1—qs)

)
(q —e)'

N7t46
)oo=-(n —1)' P(t).

5 (q)' —m)'~'(q) —e)'

(B6)

(B7)

aE/BC, =0, p=1 2, j, (C5)

For a given set of amplitudes C„, the energy E——',Lr
is the lowest root of the implicit equation (C4). The
correct amplitudes are determined by minimizing this
root with respect to co and C~. The condition for a
minimum,

A similar analysis can be applied to the second tensor
integral in Eq. (21) in which nip replaces nip to the right
of the operator e. The oscillator transformation substi-
tutes v for q& in the part of the integral to the right of e.
The integral can then be expressed in terms of new

variables

combined with the relations

N~q Bes„q/BX——pp,

P&q = Res&q/BXpp,

BXpp/l9Cy QC,[Xp,, o,—Xopb„q]/Q l Cg l

(C6)

q= (v—qo)/v2,

q'= (qi —qs)/~2,
q"= (v+qs)/V2,
q"'= (qi+q )/~2, Q Cq[Xp, , pq(N+P)+eq„q+eo„q

q=land the required operations in the q" and g'" spaces
carried out. The remaining integrand has the form en-
countered in the first tensor integral except for a diGer-

ent numerical factor and the replacement of p by p'.

—{E Ep'+ (N—+P 1)Xpp}5&—q] =0. (C7)

We observe that (C4) can be recovered from (C7) in
consequence of the relation

yields a system of nonlinear equations for the energy E
(BS) and the coeKcients C„:

APPENDIX C. CONSTRUCTION OF THE CORRECT
ZEROTH-ORDER WAVE FUNCTION Q(;„BXop/a(;„=0 (CS)

The zeroth-order wave function is written as a nor-
malized linear combination,

Wo ——2 CA o./[Z I(.".I')',
@=1

(C1)

of normalized, orthogonal eigenfunctions of Bp be-
longing to the eignevalue Ep.

We need the definitions

X=V—M,

~pp, ~., pq

I'-' —E
62pq

lVp„, TV 8', pq

(E—E-) (E-E-)

(C2)tVp, .tV., p,

(E—E )&

+ py, mtVmn~n, pq 1t
(E E„)(E—E„) E E— E E„— —

N=1+P (;,C,N„,/PlC, l',

P=P C„c,P„/g l
col'.

which follows from (C6) and the definition of Xop.
Since E and P are functions of the unknown ampli-

tudes (C7) must be solved by a process of successive
approximation. A guess at an initial set of amplitudes
permits the computation of an initial value of N+P.
The lowest value of E Ep+(N+P)Xp—p and the asso-
ciated amplitudes can then be computed. The process
is repeated until the assumed and computed amplitudes
agree. Finally Xpp is computed using the correct,
amplitudes.

In practice, the determination of fp~ as correct
zeroth-order linear combinations for the evaluation of
the first-order energy may be advantageous. In this case
Xp&, pq=0 for gap, and the mixing of zeroth-order states
by the nondiagonal components of the second- and
third-order energy operators is seen to depend on the
ratios of these components to the diagonal 6rst-order
differences Xp&, p&

—Xpq, ()q.

Feingold and Wigner" have stressed the possibility
that degenerate or nearly degenerate zeroth-order
states may be coupled strongly indirectly through
remote excited states, especially in connection with the
failure of I.S coupling produced by a tensor interaction.
The present calculation supplies a semiquantitative
formulation for the argument developed in a schematic
qualitative manner by Feingold and Wigner.

Also, from Kqs. (S) and (10),
A. M. Feingold and E. P. Wigner, unpublished calculations

(1950); A. M. Feingo1d, Phys. Rev. 101, 258 (1956).


