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The 0.570-Mev gamma ray in Pb"' and the 0.803-Mev gamma ray in Pb' ' are electric quadrupole
transitions and have transition rates which are much too fast for neutron transitions. The surface tension
parameters necessary to give the observed transition rates are determined by assuming that the collective
motion of the core is weakly coupled to the external nucleons. The calculated surface tension parameters
are 1100 Mev for Pb~ and 520 Mev for Pb"~. These two values are large compared to the hydrodynamic
surface tension, as expected near closed shells, but the difference of a factor of 2 is unexpected. The quad-
rupole moment of Bi"' also indicates weak surface coupling. Also determined are the con6gurations which
describe the low-lying energy levels of Pb"', assuming short-range two-body forces. Reasonable agreement
with experiment indicates that the shell model can account for the main portion of the level splitting. Many
levels are predicted which have not been observed as yet. The 0.375-Mev gamma ray in Pb "is anomalously
slow even with weak surface coupling. A possible explanation for this slowdown is indicated by the con-
6gurations describing the initial and Anal states. In connection with the Pb'" problem, formulas are given
for antisymmetrical wave functions in the j-j coupling scheme for three and four particles.

I. INTRODUCTION

!
'HE collective model of the nucleus has had some

success in explaining nuclear properties in the
regions where the strong coupling approximation is
valid. ' ' Many features of the strongly coupled system,
however, are insensitive to detailed assumptions of the
model. In spite of less dramatic sects, a better test of
the underlying hypotheses of the collective model
might be obtained in a region of weak surface coupling,
where one has a better chance to understand the extra-
particle configurations, and where the competition
between collective eQ'ects and the effects of direct par-
ticle coupling is more evident. '

Isotopes near Pb"' appear to be well suited for such
a study. The very high first excited state' of Pb"',
measured electric quadrupole transition rates in
other Pb isotopes" and the measured quadrupole
moment' of Bi'" all give evidence of a weak surface
coupling in these nuclei. The work of Alburger and
Pryce has shown that a very successful description of
the low states of Pb"' can be obtained from a simple
shell model perturbed only by short-range two-body
forces.
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Foundation.
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If the surface coupling is su%ciently weak, it makes

itself felt primarily only in electric quadrupole eGects
because the interaction Hamiltonian of the collective
theory is itself of quadrupole form. Energy level

spacings might, for example, be only slightly changed
while E2 transition rates are greatly changed. Especially
this could be the case in the isotopes of Pb, since the
protons form a closed shell and cause almost the entire
electric quadrupole moment to be of a collective type.

With these facts in mind, an investigation has been
made of four nuclei near Pb'Os in order (1) to find out
to what extent their electric quadrupole properties can
be accounted for by a given set of parameters of the
collective theory, and (2) to extend and test further the

shell theory of Alburger and Pryce. ' ' From the experi-

mentally measured E2 transition probabilities' in Pb"'
and Pb"', estimates of the required strength of surface

coupling are made. The coupling strength determined

from Pb"' is used to calculate the quadrupole moment

of Bi'. The result agrees favorably with the measured

value of the quadrupole moment. The Pb"' and Pb"'
coupling strengths, however, are not in close agreement.

The shell theory of Alburger and Pryce is extended

to the four-particle system, "Pb"', and gives a semi-

quantitative description of the observed levels in this

nucleus, " including an explanation for the long-lived

9—isomeric state. The 0.375-Mev E2 gamma ray in

this nucleus is anomalously slow even for quite weak

surface coupling. The shell model assignments of the

levels involved in this transition (4+ to 2+) suggest a

possible explanation for the anomaly, but still require

a very weak surface coupling.

' M. H. L. Pryce Proc. Phys. Soc. (London) A65, 773 (1952).
' As Alburger and Pryce point out, 4 holes in a closed shell

can be treated in the same manner as 4 nucleons outside of a
closed shell.

n V. E. Krohn and S. Raboy, Phys. Rev. 97, 1017 (1955).
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II. WEAK SURFACE COUPLING

A. Theory

The interaction Hamiltonian of the collective theory
has been given by several authors' ""and is of the form

II;„,= —Q, b;(Aced/2C)& P„(b + (—1) b *)

&& I'o-(0', o '), (1)

where k; is a parameter which is of the order of mag-
nitude of twice the kinetic energy of a particle in the
the nucleus, "fur is the phonon energy of the collective
motion, C is a measure of the surface energy due to
deformation, b and b * are the destruction and
creation operators, respectively, of one phonon, and
the particles. are labeled by the index i.

Discussions of the theory for weak surface coupling
have been given by a number of authors. " '8 Only the
important formulas needed for the following applica-
tions are summarized here. The notation follows most
closely that of reference 17. H;„t is considered to be a
small perturbation admixing the zero-order states,
laJ; NR; IM), which are shell-model states of con-
figuration e and angular momentum J coupled to a
collective state of X phonons and angular momentum
R to give a total angular momentum I. In the weak
surface-coupling limit, where the particle level spacings
and the energy level shifts due to the interaction can
be neglected compared to the phonon energy, A~, and
only the one-phonon state of the collective motion is
excited, perturbation theory yields the result that the
wave function for a state with a given total angular
momentum I can be written as

lf r=r ~—letJ; 00; IM)+Q "j Ar r"
In"J"; 12; IM). (2)

The coefFicients AI "&"are given by

Ar "r"=—Pioo) '(rrJ; 00; IXIII &la"J"; 12'; I~),
(3)

and can be expressed concisely by the methods of
Racah."""Defining (~/5)*'Fo (0;,g;) as 'ps~(e, ,@,)
and (55co/2s. C)& as y, Eq. (3) becomes

Ar "r"=(&v/&~)(2I+1) '(o'JIIZ' 'JJo(e'A'~)llcr"J"»
(4)

where the double bar reduced matrix elements are
dehned in references 19 and 20. The dimensionless
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see Simon, Vander Sluis, and Biedenharn, Oak-Ridge National
Laboratory Report ORNL-1679 (unpublished).

T= (47'.'/755)B, (2), (6)

where ~ is the wave number. B,(2), the reduced transi-
tion probability, is given by

B,(2) = (2I'+1) ' P„~
I (IMI Q II'M') I', (7)

where I' and I are, respectively, the angular momentum
of the initial and final states. In the weak-coupling
limit, B,(2) reduces to

B,(2)= 53ZeRo'y/4 (Sar )' j' (2I+1)
& ILA'../(»+1)'*]+I A.- /(2I'+1)'3l', (8)

where the Ar ~'s are given by Eq. (4). It is significant
to note that cross terms between different particle con-
figurations do not occur in Eq. (8) because the col-
lective operator, Qs, is independent of the particle
coordinates. Since Ar r is proportional to ky/Igloo, B,(2)
is seen to be proportional to (ky'/bra)'= (5k/2+C)'.
B,(2) is, therefore, independent of the mass parameter
8 of the collective theory and depends only on the ratio
b/C of the other two independent parameters of the
collective theory. This is in interesting contrast to the
moments of inertia of the highly deformed nuclei
which depend only on B.

The quadrupole moment is defined as the expectation
value of (16'./5)'Qoo. In the weak-coupling limit, the
collective quadrupole moment is

Q, = (6/5)ZeRosyArarttI(2I 1)/(I+1)(2I+3))*. (9)

For a single extra particle, Eq. (9) reduces to

Q,= —(3/20)ZeRo'(ky'/fuo) [(2I 1)/(I+1)j—. (10)

Note that Q„ like B,(2), depends only on the ratio of
0/C.

B. Applications

Lead 207-
Table I shows the experimentally determined low-

lying levels5 of Pb' . Stelson and McGowan have
measured the Coulomb excitation cross section of the
first excited state. They determine the reduced transi-

parameter measuring the strength of coupling is
$ = (ky/Iloo). The weak-coupling limit (one-phonon)
remains valid, however, to )&1, because the factors
multiplying f in Eq. (4) are in general considerably
less than unity. See, for example, reference 17 where, for
a two-particle configuration, the weak-coupling limit
is very good for )&0.8.

Using the wave functions as given in Eq. (2), the
contribution of the collective motion to the E2 transi-
tion rates can be determined. The collective quad-
rupole transition operator is

Qs~ ——[3ZeRoo/4(5')'*]y(b +(—1) b ), (5)

where Eo is the effective radius of the nuclear charge
distribution. The transition rate for E2 radiation is'
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tion probability for the decay (fs7s~pi7s) to be As has been pointed out, B,(2) determines the ratio
(k/C)'. The parameter k which is determined by the
6rst-order shift of particle energy levels is not subject
to much uncertainty, and in particular should not vary
markedly as one moves through the periodic table. If
one takes k=40 Mev' and Eo=1.17X10 "A' ' cm"
C is determined by the transition rate to be 1100 Mev.
If, in addition, the mass parameter 8 of the collective
theory is specified (with much less certainty) by
/ri'/B=0. 025 Mev, ' then the phonon energy is ho/

= [(I'is/B)C)'=5. 2 Mev. These values are to be com-
pared with the "hydrodynamic" values, "C=63 Mev
and Ace=1.3 Mev. This is in accord with the qualitative
expectation that near closed shells C and therefore Lr
should increase, as the nucleus is not as deformable as
the "hydrodynamic" model would indicate. According
to Moszkowski, " one can expect the surface tension
near closed shells to exceed the hydrodynamic value by
about a factor of ten. For the parameters so determined,
g= (ky//rro/) =0.47, and the mixture amplitudes Ar "~"
are of the order of 0.15. Hence the one-phonon ap-
proximation is quite good for this calculation.

B,(2) = (0.096 barn)'e'.

This value corresponds to a half-life of 1.0X10—"sec,
which is consistent with the result reported by Lazar and
Klema' that

(12)0.7X10 "(t&~&(4X10—"sec.

The measured transition probability is almost as large
as for a single proton transition, for which

LB,(2)j„...„=(0.140 barn)'e', (13)

and is many orders of magnitude larger than would be
expected for a pure neutron transition. Lin Eq. (13),
it is assumed that (r') = ss (1.17X10 "A' ' cm)' )

Even if the neutron in nuclear matter carries an
effective charge, the transition probability cannot be
accounted for in terms of a single neutron transition.
Brueckner" has suggested an effective charge for the
neutron of magnitude e,gg= —0.17e. The trend of mag-
netic moments of odd-neutron nuclei, however, suggests
that this value is an overestimate. In particular, the
magnetic moment" and quadrupole moment" of 0"
are most easily interpreted by supposing that the
effective charge of the neutron is indeed close to zero.
An eGective charge of 6e, however, would still give a
transition probability smaller by a factor of 17 than
that observed. One is therefore forced to conclude that
the major part of the E2 transition probability in Pb"'
is due to the collective sects. Similar arguments apply
to the other isotopes of lead. In this paper, it is assumed
that the collective eGects of surface coupling account
for all of the transition probability.

Stelson and McGowan' have also determined the
reduced transition probability for the decay (I'=2 to
I=O) from the first excited state to the ground state of
Pb"'. They found that

B,(2)= (0.158 barn)'e'

As a result of the work done by Alburger and Pryce, '
the con6gurations assigned to the ground state and the
first excited state were respectively p&~&' and p&~&fs~&.

Assuming, as in Pb"~, k=40 Mev and 80=1.17
X10 "A' ' cm, one gets 5=520 Mev. This value of C
is much larger than the "hydrodynamic" value but
smaller by a factor of two than that found in Pb"'.
With h'/B=0. 025 Mev, as in Pb" )io/=3. 6 Mev and
is also diGerent from the phonon energy determined in
Pb20'7

In view of the approximation inherent in the limiting
weak-coupling formulas used, this diGerence may not
be a serious discrepancy. However, if the coupling
strength is really as weak as suggested by the Pb"'
result, then the perturbation formulas should not be in
error by such a large factor. It is possible that this error
does not arise in the perturbation formulas but in
assigning particle configurations to the nuclear states.
That is, with configuration interaction, the particle con-
Qgurations can become mixed. In Pb"', the most
plausible place for configuration mixing is the ground
state. One would expect that a small amount of the
fs7ss J'=0 configuration would mix with the pi~as J=O
configuration. Calculations have shown, however, that
regardless of the mixing of the pi~a and fs/s' configura-
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"K. A. Brueckner (private communication).
~ F. Alder and F. C. Yu, Phys. Rev. 81, 1067 (1951).
2'Geschwind, Gunther-Mohr, and Silvey, Phys. Rev. 85, 474
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~ K. W. Ford and D. L. Hill, Phys. Rev. 94, 1630 (1954).
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FIG. i. Energy levels of Pb~4. The levels of greatest interest
are labeled by small letters which designate the conFigurations as
asIoliows: o—(pqg2s, J&=0)f5/2s, l/ (f5/ms, %=5/2)p/—n, e (f//2/—
+/ 0)pl/2pm/2 d (pl/2 +/ 0)p3/2f//2 e—(pl/2 +I 0)f5/2&13/2
The configurations associated with the other levels may easily
be found by referring to Table IV.
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tions in the ground state, the values of C and Sco deter-
mined from the Pb ' data cannot be brought into agree-
ment with the values of C and kv determined by the
Pb"' data. There appears, therefore, to be a real dif-
ference in the value of C for the two isotopes, and this
difference does not arise from approximations made in
the limiting case of weak coupling.

Bismuth-209

As a further possible check on the correctness of the
weak-coupling approximation, the quadrupole moment
of the ground state of Bi"' was calculated. The col-
lective contribution to the quadrupole moment is
given by Eq. (10). The direct particle contribution is

Q,= —-', e(r')L(2I —1)/(I+1)j. (15)

If one used C=1100 Mev as determined by Pb'P~, the
nuclear radius as 1.17)&10 "A' ' cm, and in addition,
(r') is set equal to -sos', one finds that

Q,= —0.25 barn, Q„=—0.21 barn,
and

Q=Q,+Q„=—0.46 barn. (16)

This value of the quadrupole moment compares favor-
ably with the experimental value of —0.4 barn.
Although neither the experimental value of Q nor the
theoretical value of (r') are sufficiently precise to make
this a good test of the surface coupling strength, the
result does again suggest a very weak surface coupling.
A similar conclusion has been reached by Mayer and
Jensen 's

I.cad-204

The experimentally determined energy levels" of
Pb"4 are shown in Fig. 1. The 0.375-Mev transition
(4+ to 2+) should be another case where the weak
surface coupling can be tested, as the lifetime of the
4+ state is known. From the energy levels of Pb's'
given in Table I, it is reasonable (without detailed
calculations) to assign the configuration ptts'fsts' to the
0+, 2+, and 4+ levels. Using Eqs. (6) and (8), k=40
Mev, Ep=1.17&(10 'A'" cm, and C=1100 Mev as
determined from Pb"", the lifetime of the 4+ level is
1.3&10 ' sec. This lifetime is much smaller than the
observed value of 2.6&(10 ' sec. A wrong choice of

configurations for the energy levels is the most likely
reason for this discrepancy. Therefore, the possible
conlgurations describing the low-lying energy levels of
Pb"4 were investigated in greater detail. The results
of this investigation will be discussed in Sec. IV.

It is to be noted however, that if the particle con-
6gurations for the two levels differ by more than one
of the j; of the Particles (e.g., Pttssfstss and Ps/ssfstss),
the reduced transition probability will no longer be

se M. G. Mayer and. J. Hans D. Jensen, Eterpteutary Theory of
Nuclear Shell Structure (John Wiley and Sons, inc. , New York,
1955),p. 115.Their surface tension parameter S is equal to 16s/45
times our C.

given by Eq. (8). The A& "&- of Eqs. (2) and (3) will
now be zero as the operator B;„&is a sum of one-particle
operators and will not connect these two states in the
first order calculations. Then second-order eGects
would have to be considered in order to calculate the
contribution of the weak surface coupling to the en-
hancement of the transition between the two levels
This point will be discussed further in Sec. IV.

n

J"'tlat' )
i&j~l

where the subscript a indicates that we have an anti-
symmetric wave function. Due to the antisymmetry of
the wave function, Eq. (17) can be rewritten as'r ss

This process can be repeated e—2 times and one finally
obtains the matrix element const&& Q, I Vts If ) between
particles one and two.

For the evaluation of a matrix element of this type,
it is convenient to have the wave function expressed in
the following manner:

j'a'J'

where a' represents the configuration j~, j2, ~ j; ~,

j~t, j„(together with other required quantum
numbers) combining together to give J which is anti-
symmetric with respect to the interchange of any of its
n —1 particles, j; is associated with the eth particle as

TAaLE I. Energy levels of Pb'0'.

Configuration

Pl/2
fs/2
P3/I
113/2

he/2

Parity Energy (Mev)

0.00
0.570
0.87
1.634
2.35

a Note added in proof.—Since the preparation of this article, it has been
brought to my attention that D. E. Alburger and A. W. Sunyar t Phys.
Rev. 99, 695 (1955)g have evidence that the level called h9/2 is actually a
fp/3 level. However, this change does not affect any results in this article.

"G. Racah, Phys. Rev. 76, 1352 (1949).
~ M. Redlich, thesis, Princeton University, January, 1954

(unpublished). M. Redlich, Phys. Rev. 99, 1427 (1955).

III. ANTISYMMETRIC WAVE FUNCTIONS

Often it is desirable to have antisymmetric wave
functions in a special form when considering certain
types of matrix elements. In this paper, we shall be
interested in the expectation value of the interaction
energy of a group of particles when the interaction
energy is a sum of two-particle interactions. That is, we
shall want to evaluate the matrix element
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indicated by the n in parentheses, and j; is vector-
coupled to J' to give an angular momentum of J'. [In
Eq. (19) and the following, j is shorthand for all one-

particle quantum numbers, e.g. , I, I, j.) If P, is repre-
sented by Eq. (19), then Eq. (18) becomes

X(n'J'I P V;, ln'J'& .(20)

In this section, the coefficients of Eq. (19) will be
derived when v=3 and m=4.

First, consider 3 particles with different j, (i.e.,
inequivalent particles). It is possible to write an anti-
symmetric wave function in the following way":

4.= (s)'{I I it(1)is(2)Ji).js(3)J&
—

I Lji(1)js (3)Ji].js (2)J&

+ I[jr(2)js(3)Ji).js(1)J&), (21)

Comparing Eqs. (19) and (25), we see thatss

&(i j J ).j JI J)= (l)'*,

(VijsJ').jsJI~)
= —[s (2J'+1)(2Jt+1)]iW(JijsjsJ'; Jji), (27)

(26)

and

((j j J').j Jll J)=(—1)'"' '[l(2J'+1)(2J +1)]*'
XW(jijsJjs, JtJ'). (2g)

The case when all three j s are the same has been
treated in other places. """

The procedure for four particles is very similar to
that for three particles and will only be outlined here.
Only the cases where at least two of the j s are the
same will be considered. One may easily extend this
work to the case where all four j s are diferent. Let us
consider first the case where j&' couples to give JI, j2
and j3 couple to give J2, and J& and J2 couple to give J.
An antisymmetric wave function can be written in the
following form":

where the configuration [ji(1)js(2)Ji), is antisymmetric
with respect to interchange of particles one and two.
The same notation without the subscript a will be used
for nonantisymmetric vector-coupled states, The first
term is already of the form of Eq. (19)' while the last
two terms are not. However, both of the last two terms
are of the same form and can be expanded. Expanding
the second term, we get

(j&j.m&ms~ j&jsjm)= (—1)~'+is ~'(jzj&mmmm&~j2j&jm)

lt.= (s)'{I [it(1)A(2)Jt).[is(3)is(4)Js) J&

+ I [it(2)jt(3)Ji).[js(1)is(4)Js).J&

+I[ji(3)ji(1)Ji) [js(2)js(4)Js) J&)

+ ( 1)zz+/s —/(r)$

X{I [js(1)is(2)Js).[it(3)ji(4)Jt).J&

+ ILjs(2)is(3)Js).[it(1)it(4)Ji] J&

+ I [is(3)js(1)Js] I:ji(2)ji(4)Ji).J&)ILji(1)is(3)Ji).is(2)J& (29)
Z J'{~J I [jt(1)js(2)J']js(3)J&

+f, ,
I [j,(1)j,(2)J&)j,(3)J&} (22) All six terms in Kq. (29) are of the same form. The first

term, when expanded, becomes
az and bz are given explicitly in terms of Racah coef-
Qcients" and are

o/ =(s)'*([jrjsJ')jsJII:jijsJi)jsJ)
= [s (2J'+1)(2Jr+1)] W(Jt jsjsJ'; Jji), (23)

I [it(1)jt(2)Ji)-[js(3)js(4)Js] J&

~ {~~ I (Lji(1)ji(2)Ji].js(3)J')js(4)J&

+ I ([j (1)j (2)J ].j (3)J')j (4)J&), (3O)

f~ = —(l)'([jsjsJ')jiJII jijsJi) jsJ&
= (—1)'"' "'[s(2J'+ 1)(2Ji+1)]'

XW(gigsJ jsi JiJ'). (24)

Expansion of the third term gives the same coefficients
as the second ternl but has the particle numbers 1 and 2

reversed. Substitution of these back in Eq. (21),
together with appropriate combination of terms to
yield antisymmetric 2-particle wave functions, gives

e/ = —(s)'(LJijsJ']jsJI Jil isjsJs) J&
= (—1)~'s+~s—~s+'[—'(2J'+1)(2J,+1)]l

XW(Ji jsJjs; J'Js) (32)

All six terms can be expanded in this manner. Upon
expanding all six terms, substituting in Kq. (29), recom-

d~ =(l)'*([Jij.J']jsJIJiLjsjsJs]J)
=[—',(2J'+1)(2Js+1)]'W(JijsJjs, J'Js), (31)

alld

~ G. Racah, Phys. Rev. 63, 367 (1943).

u = (s)'I [jr(1)js(2)Ji].js(3)J&
~ For the sPecial case when ji= js, multiPly Eq. (27) by V2

and ignore Eq. (28).
+P~ {L—(s)'~~) I[jr(1)js(2)J'].js(3)J) s' A. R. Edmonds and 3.H. Flowers, Proc. Roy. Soc. (London)

A214, 515 (1952).
+L—(s)'f ~ ]I [js(1)is(2)J').ji(3)J&& (2S) ~ s. Meshkov, phys. Rev. 91, 871 (1953).

"Where use has been made of the property of the Clebsch-
Gordan coeKcients that
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TABLE II. Zero-order energy levels of Pb~4. TABLE III. Alburger and Pryce's interaction parameters.

Configuration

pl/2 f6/2
pl/2 p3/2f6/2
fe/2'pl/2
Pl/2 P3/2
fe/2'pl/2p3/2
pl/2 f6/2&13/2

fe/24

(ps/s i Jr 2)(pllsfs/2/ +2=3)
P 1/2 P3/2113/2
(fs/s', %=9/2)ps/s

Zero order
energy
(Mev)

1.14
1.44
1.71
1.74
2.01
2.20
2.28
2.31
2.50
2.58

Possible I's

0, 2, 4
1, 2, 3, 4
1, 2, 3, 4, 5
0, 2
0, 1, 2, 3, 4, 5,
4, 5, 6, 7, 8, 9
0, 2, 4
5a
5, 6, 7, 8
5a6a

Parity

Configuration

Pl/2
pl/2 f6/2

P1/2P 3/2

fe/22

p3/2fe/2
Pl/2$13/2
p3/22

f6/2113/2

P3/2113/2

61
62

67

610

sin Mev

04
0.3
04
04
0.3
0.2
0.4
0.2
0.2

a Only the indicated spin values were investigated.

0"(ji'Ji) =2 /3~2' (ji'J2).jiJr),
J2

(36)

where the P» are the fractional parentage coeffi-
cients. """Proceeding as before, one finds for this
case that

f.= (-'.)'*I (j i'Ji).j 2(4)J)+Z»~'f»~'
&& I (Lj,(1)j,(2)J,]j,(3)J').j,(4)J), (37)

where

f»~ =—P»t 4(2J'+1)(2Ji+1)]&
&(W(Jij 2j iJ', JJ2). (38)

In this manner, antisymmetrical wave functions were
found for the possible particle configurations which
could occur in Pb"' in order to find the interaction
energies between the particles. The results of this
calculation are discussed in the next section.

IV. SHELL STRUCTURE OF Pb204

The weakness of the surface coupling deduced in
Sec. II suggests that the energies of the low-lying levels
in the Pb isotopes should be well described by a shell

"For the special case when j2= j3, multiply Eq. (33) by V2
and ignore Eq. (34).

bining and comparing with Eq. (19), one gets"

(L(ji'Ji)j2J'j.jsJII~J)
= L~ (2J'+1) (2J2+1)$&W(Jij2Jjs, J'J'2), (33)

(L(ji'Ji) jsJ'j.j2J Il~J)
= (—1)s's+s'' »+'[4r (2J'+1)(2Js+1)$&

&(W(Jrj sJj 2, J'J2), (34)
and

(L(j2jsJ2)j/J'3 jrJII~J)
=(—1) + —

$-', (2J'+1)(2Jr+1)$
XW(Jsj iJj i, J'Ji). (36)

The same procedure follows when one considers three
particles with equal j; adding to give J& which in turn
adds to one particle with a different j; to give a total
angular momentum of J. In this case, the three-particle
antisymrnetric wave function can be written as

model with a rigid spherical core. The work of Alburger
and Pryce' has shown, moreover, that a very simple
form of the shell theory, one which works in the short-
range limit and ignores configuration mixing, yields
serniquantitative agreement with experiment for Pb"'.
Accordingly, this theory has been extended in a
straightforward way to describe Pb"'.

The one-particle energy levels of Pb-"' are shown in
Table I. Using these as a basis, the antisymmetric wave
functions for the configurations shown in Table II were
found by the methods outlined in Sec. III. The calcu-
lation of diagonal matrix elements of a short-range
potential with the antisymmetric wave functions then
followed exactly .the method of reference 8. The results
for the more important low-lying levels of Pb"4 are
given in Table IV—first in terms of Alburger and
Pryce's energy parameters, ~], E2 E]0 shown ln
Table III; second, in Mev, using the numerical values
of the ~'s used in reference 8 to describe Pb"' and also
listed in Table III. These interaction energies shown in
Table IV were then subtracted from the zero-order
energies as given in Table II and the resulting energies
were normalized so that the ground state of Pb"4 would
be at zero. Figure 1 shows the predicted positions of the
low-lying levels of Pb"4, and, for comparison, the
experimentally determined levels up to 2.2 Mev.

One cannot draw quantitative conclusions about the
three 2+ levels which lie close together nor about the
two 4+ levels, as configuration interaction has not
been considered. The e's used are also uncertain and
thus the order of these levels may not be correct.
However, for such high energy shifts due to the diagonal
matrix elements, the agreement between experiment
and theory is quite good. In particular, a 9—isomeric
state is predicted at 2.05 Mev, to be compared with the
observed isomeric state, probably 9—," at 2.19 Mev.
From this state, the predicted dominant gamma ray
cascade 9—to 4+ to 2+ to 0+ agrees with experiment.
A considerable number of other levels is predicted
below 2 Mev. It would be extremely interesting to
know if a careful analysis of Pb"' (perhaps by exciting
the nucleus by some other method) could reveal some
of these other levels. It is to be noted that no free
parameters were adjusted in this calculation. The
parameters adjusted to fit the Pb"' data' were used
without modification. It may be remarked also that
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TABLE IV. Interaction energies for various configurations (Mev).

Configuration
SpinI Vint, the interaction energy in terms

of the e's
Numerical value Normalized

of Vfnt energy

PI/Ssf5/2'
pl/2 fe/2
pl/2 fe/2
PI/2'PS/sf 5/2

pl/2 p3/2f5/2
pl/2'p3/2 f5/2
pl/2 p3/2f 5/2

(fe/23) %=3/2)pl/2
(fe/A ~3=3!2)PI/2
(fe/23, Jl =5l2)pus
(fen', ~I=5/2)PI/2
(fe/2'I ~l =9/2)Pus
(fe/23~ ~I=9/2)Pln
PI/2 P3!2
Pl/2 P3/2

(f5/2 1 +I 0) (pl/2PS/Sp
(fe/2 I +I 0) (pu2p3/21
(fe/2') JI——2) (pl/Sps/2)
(fe/2 1 JI 2)(pl/2p3/21
(fe/2 ) +I 2) (pl/2ps/2p

(fe/2r ~l 2)(pu2pe/2t
(fe/2 y JI 2) (pl/2ps/2p
(fe/2'. ~I =2) (PusPen,
(f5/2 p Jl 2) (pi/2p3/2p
(fe/2', A =2) (pu2p3/2r
(f5/2 ) Jl 4) (pl/2p3/2p
(fe/2') A =4)(puspen,
(fe/2', A =4) (PusPsn,
(fen', A =4) (PuSPSn,
(fe/2 JI 4) (pl/2p3/2,
(fe/2', &=4) (PI/epe/2)
(fe/22, &=4)(puspe/2,
(fe/2r JI 4)(PI/SPS/2I
pl/2 f5/2&13/2

pl/2 f5/2&13/2

pl/2 f5/2&13/2

pl/2 f5/2113/2

p I/2 f5/2&I 3/2

pl/2 fe/2213/2

f5/2

f5/2

f5/24

(pe/2 y +I 2) (pl/2fe/2~

P I/2 P3/2ZI3/2

Pl/2 P3/2813/2

Pl/2 P3/2113/2

Pl/2 P3/2113/2

(fen', A =9l2)PSn
(fen', 4 =9l2)Pe/2

J,= 1)
J,=2)
J2=1)
J,= 1)
J2——1)
J2=2)
J2——2)
J2=2)
J,=2)
J2=2)
J,= 1)
J,= 1)
J2——1)
J2=2)
J2=2)
J2=2)
JR=2)
J2=2)

J,=3)

0
2

2
3

1
2

5
0
2
1,

2
1
2
3
0

2
3
4
3
4
5
2
3

5
6

5
6
7
8
9
0
2
4
5
5
6

8
5
6

El +2E2+3E4
El+2 E2+0.686E4
el+2 E2+0.286E4
El+ E2+ E3

el+ E2+E3+0.343E5

El+E2+E3

El+E2+E3+1 14E5
2E2+ 1.71c4

1.20E2+1.71e4
2.20E2+3 E4

E2+3E4
2,60E2+1.11E4
0.600E2+1.11E4
El +2E3+2E7
El+2 E3+0.400Eg
E2+3E4+ EG

E2+0,800E3+3E4+ E5

0.700E2+0.686E4+0.386EG
0.900e2+0.686E4+0.986e5
1.20E2+0.686E4+1.27EG
1,60E2+0.800E3+0.686E4+0.457EG
1.50E2+0.800E3+0.686e4+0.386E5
1.30E2+0.800E3+0.686E4+0.638EG
E2+0.800E3+0.686E4+1.27E5
0.600E2+0.800c3+0.686E4+1.27E5
0.501c2+0.286E4+0.327EG
0.900E2+0.286E4+0.687EG

1.40E2+0.286E4+1.69EG
1.99E2+0.800E3+0.286E4+0.327e5
1.70E2+0.800E3+0.286E4+0.327EG
1.41E2+0.800c3+0.286E4+0.555E5
0.800E2+0.800E3+0.286E4+1.09EG
0.200E2+0.800E3+0.286E4+1,86EG

El+E2+EB

El+E2+eg+0.294Eg
El+E2+Eg
E)+E2+Eg+0.608eg
El+ E2+EB

El+E2+E6+1.56ES
6E4
3.69E4
3.29e4
1.40e3+1.57EG+0.400E7
El+ E3+Eg+1.76elp
El+E3+E6

C1+e3+Eg+0.287Elp
El+E3+C6

1.11E4+1.56E5
1 ~ 11E4+2.38E5

2.20
1.27
1.11
1.10
1.20
1.10
1 44
1.28
1.04
1.86
1.50
1.22
0.62
2.00
1.36
1.80
2.12
0.60
0.84
1.02
1.21
1.16
1.17
1.28
1,16
0.36
0.59
1.04
1.13
1.04
0.99
1.00
1.05
0.90
0.96
0.90
1.02
0.90
1.21
2.40
1.48
1.32
1.19
1.35
1.00
1.06
1.00
0.91
1.16

0.00
0.93
1.09
1.40
1.30
1.40
1.06
1.49
1.73
0.91
1.27
1.55
2.15
0.80
1.44
1.27
0.95
2.47
2.23
2.05
1.86
1.91
1.90
1.79
1,91
2.71
2.48
2.03
194
2.03
2.08
2.07
2.02
2.36
2.30
2.36
2.24
2,36
2.05
0.94
1.86
2.02
2.18
2.21
2.56
2.50
2.56
2.73
2.48

calculations of the energy shifts of these levels due to
weak coupling to the core showed that the shifts could
be neglected.

It is to be noted that the conigurations of the lowest
leVelS With a Spin Of 2+ and 4+ are fe/sspt/2 and
pl/2'ps/2 f5/2 respectively. These configurations differ by
having two of the j s diferent. As mentioned in Sec. II,
the contribution to the E2 radiation between these
levels will vanish in the erst-order weak-coupling cal-
culation. Estimates indicate that second-order per-
turbation calculations between these two levels will

yield a half-life 1onger than is observed experimentally.
But with a mixing of the configurations, which is to be
expected, the transition rate will be greater than that
for the pure pl/2 p3/sfe/2 level to the pure fs/2'p, /2 level.

An estimate of the mixing in the 4+ level can be
made as the gyromagnetic ratio for this state is known.

Krohn and Raboy" have found for this level that
g= (+0.054&0.005) nuclear units. If the 4+ level were
a pure pt/2'ps/sfe/2 conftguration, the g-factor for this
state would be —0.137. On the other hand, if it were a
pure puss f5/22 configuration, the g-factor would be
+0.547. Taking the true state as a linear combination
of the above two states, one 6nds that a mixture of
72% of the pl/2'ps/sfe/2 state and 28% of the pl/2'fe/2'
state is needed to give a gyromagnetic ratio of +0.054.
This indicates that there is quite a lot of configuration
interaction although the Pt/2 PS/sfs/2 state is still the
dominant one. However, states present with very small
amplitudes may have a substantial eGect on the g-factor
if they are connected by the magnetic moment operator
to the dominant states. "A crude calculation including

"R. J. Blin-Stoyle and M. A. Perks, Proc. Phys. Soc. (London)
A67, 883 (1954); A. Arima and H. Horie, Progr. Theoret. Phys.
il, 509 (1954); Progr. Theoret. Phys. 12, 623 (1954).
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this kind of mixing indicates that the intensity of the
P„ssPstsf„s state is slightly larger than 72%.

V. SUMMARY

The E2 transition rate in Pb"' gives a value for the
surface tension parameter, C= 1100 Mev. The E2
transition rate in Pb' ' gives C=520 Mev. The quad-
rupole moment of Bi'" is consistent with C= 1000 Mev.
The discrepancy between the results of Pb"' and Pb"'
appears to be real and cannot be resolved at this time.

The good agreement between the predicted energy
levels and the experimentally determined energy levels
of Pb"4 show that short-range two-body forces describe
the interaction between the external nucleons fairly
well. Also the splitting of the levels for the first two

Mev are due for the most part to these external nucleons
and do not seem to be affected by the collective motion
of the core. Even the large values of the surface tension
deduced in this article are not sufhcient to account for
the very long lifetime of the 4+ to 2+ transition in
Pb"4. A further partial explanation of this long lifetime
is suggested by the shell model calculation —that the
dominant configurations in the 2+ and 4+ states differ
in the quantum numbers of two particles.
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Perturbation Procedure for Bound States of Nuclei*
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The model of nucleons moving in a 6xed harmonic oscillator well provides a convenient starting point for
calculations on the structure of light nuclei. One complication, the nondiagonal energy operator associated
with the motion of the center of mass, can be eliminated simply by adding the harmonic potential operator
of the center-of-mass motion to the correct Hamiltonian operator of the system.

Following the construction of the correct zeroth-order linear combinations (in case of degeneracy) and the
evaluation of the first-order energy matrix, the further development of the theory, in the direction of an
exhaustive investigation of the consequences of assumed interaction operators, requires the evaluation of
second- and higher order contributions to the energy. A simple, accurate, and powerful procedure for
evaluating the second-order energy and other second-order quantities in closed form is described and explicit
formulas are given for the application to the ground states of the deuteron, the triton, and the alpha particle.
Numerical results for the deuteron, where a comparison with exact calculations is possible, are surprisingly
good. The extension of these calculations to the first p-shell and beyond with the aid of the technique of
fractional parentage coefficients appears feasible.

I. INTRODUCTION

"UMEROUS attempts have been made to correlate
the observed properties of light nuclei with

assumptions about the nuclear forces. ' 4 The nonvan-
ishing quadrupole moment of the deuteron requires a
tensor component in the correct combination of nuclear
forces. Calculations with tensor forces are dif5.cult and
have been worked out to a satisfactory degree of accur-
acy only for two- and three-particle problems. Rarita

* Supported in part by the U. S. Atomic Energy Commission
and the OfIice of Naval Research.

t National Science Foundation predoctoral fellow 1954-1955.
Present address: Department of Mathematical Physics, Univer-
sity of Birmingham, Birmingham, England.

'E. P. Wigner and E. Feenberg, Repts. Progr. Phys. 8, 274
(1941).

s L. Rosenfeld, nuclear Forces (Interscience Publishers, Inc. ,
Nev York, 1948).

3 J. M. Blatt and V. F. Weisskopf, Theoretical Xuclear Physics
(John Wiley and Sons, Inc. , New York, 1952).' D. R. Inglis, Revs. Modern Phys. 25, 390 (1953).

and Schwinger, ' using a combination of central and
tensor forces, succeeded in fitting the binding energy
and quadrupole moment of the deuteron and also the
low-energy p rt scatter—ing data (which essentially
determines the position of the 6rst excited state
(virtual) of the deuteron). Pease and Feshbachs ex-
tended the theory to the three-particle problem using a
variational technique to compute the binding energy of
the triton. All the experimental data can be fitted ex-
cept the Coulomb energy of ~He&.

Feingold" has extended the study of the tensor force
to four-, 6ve-, six-, and seven-particle systems. This
study indicates that some of the effects usually ascribed
to a spin-orbit force may arise, in part at least, from a

' W. Rarita and J. Schwinger, Phys. Rev. 59, 436 (1941), and
59, 556 (1941).' R. L. Pease and H. Feshbach, Phys. Rev. 88, 945 (1952).

A. M. Feingold, Ph.D. thesis, Princeton University, 1952
(unpublished).

s D. H. Lyons and A. M. Feingold, Phys. Rev. 95, 606 (1954).


