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10 percent of the transitions from 2—to 2+ states
should result from the tensor interaction which gives
rise to the shape factor term C1"'. Assuming that the
deviation from a constant shape factor for the 1.985-
Mev beta group in K4', Fig. 10, is due only to the CI&'&

term, it is estimated that this shape-factor term cannot
contribute more than two percent of the transitions.

V. ACKNOWLEDGMENTS

It is a pleasure to acknowledge the many suggestions
and the assistance on experimental technique made by
Mr. J. H. Talboy, Jr., the data gathering and com-

putational aid of Mr. K. W. McMurry, and discussions
on theory by Dr. B. C. Carlson. Dr. F. H. Spedding
made available the spectrographically pure Y203.

PHYSICAL REVIEW VOLUM E 101, NUMBER 4 FEBRUARY 15, 1956

Perturbation Treatment of the Many-Body Problem

J. SWIATECKI

Institute for ItIechanics and Mathematica/ Physics and The Gststuf Werner Institute for Nuclear Chemistry, Uppsata, Sweden

(Received November 14, 1955)

In the conventional perturbation treatment of the many-body
problem of interacting particles, the zero-order Hamiltonian
corresponds to independent particles moving in a static over-all
potential. A discussion of the eRects of particle interactions or
'correlations' shows that if one starts instead with a Hamiltonian
representing noninteracting particles in a eetocity-dependent over-
all potential, deeper for slow, and shallower for fast particles,
then part of the correlation effect is included already in zero
order. In addition, a velocity-dependent over-all potential may
be called for by velocity dependent interparticle forces or by
exchange forces. The degree of the improvement in the con-
vergence of a perturbation expansion based on a Hamiltonian
with a velocity-dependent over-all potential is discussed and
illustrated by a simple example in which the velocity dependence

of the potential gives rise to a reduced "eRective mass" of the
particles.

The many-body problem of a large, uniform system of inter-
acting particles (e.g., the case of a heavy nucleus without surface
effects) is formulated in detail in perturbation theory, starting
with a velocity-dependent potential constant in space. The work
involved in such a ca)culation turns out to be essentially the same
as with a velocity-independent potential, the eRect of the velocity
dependence being to reduce each term in the perturbation expan-
sion by a constant factor raised to a power equal to the number of
"energy denominators" 8 —E„in the term in question. A simple
equation is deduced for the optimum degree of velocity de-
pendence of the over-all potential which ensures the most rapid
convergence.

1. INTRODUCTION

HERE are two principal difhculties in giving
a quantitative description of the properties of

nuclei: our limited knowledge concerning the funda-
mental interactions between nucleons, and the mathe-
matical difhculties associated with the solution of a
many-body problem. In recent years, some progress
has been made in the nuclear many-body problem. '
The present paper describes a method of dealing with
the many-body problem which shows many similarities
with those investigations and may turn out to be
equivalent in many respects as regards the physical
effects considered. The present method is, however,
formulated according to conventional perturbation
theory, which makes the interpretation of the results
in terms of familiar concepts especially easy and makes
clear the relation to earlier work along these lines.

The many-body problem of interacting particles has
been treated with considerable success in the case of
atomic electrons by a method in which the zero-order
solution corresponds to particles moving in a common
potential and the difference between the actual inter-

' See, for example, the article by K. A. Srueckner and C. A.
Levinson, Phys. Rev. 97, 1344 (1955) and the series of articles by
Brueckner, Watson, Levinson, Mahmoud, Eden, and Francis,
referred to in the above article.

action energy and that part of it which is represented
by the common potential is treated by perturbation
theory. The same method has been applied, with much
more limited success, to the case of nuclei. ' ' The magni-
tude of the second-order term (representing correlation
effects) in the perturbation expansion of the total
energy indicates that, in the case of typical nuclear
interactions, the convergence is rather slow. The expan-
sion has never been carried beyond the second order.

The success of a perturbation treatment of any
problem depends on how close the unperturbed system
is to the exact solution, i.e., on the success of the
initial choice of the zero-order Hamiltonian Bp in the
division of the exact Hamiltonian B into Hp and the
perturbation 8"=B—Bp. The method to be described
in this article differs from the older perturbation expan-
sions in the 6rst place only in the choice of Bp. As will
be shown, it is possible, by a proper choice of Bp, to
include already in the zero-order solution part of the
correlations normally appearing in higher orders. The
result is that the second- and higher order terms in the
new expansion are smaller and the convergence is
improved.

s H. Euler, Z. Physik 105, 553 (193'I).' W. Heisenberg, Z. Physik 96, 4I3 (1935).
4 R. Huby, Proc. Phys. Soc. (London) A62, 62 '(1949).
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In order to have a good initial Hamiltonian Ho, one
must include in it the principal features of the system
one is trying to describe. In the case of a system of
interacting particles, an important feature is the appear-
ance of correlations among the motions of the particles,
expressing the tendency of the particles to stay close
together in the case of attractive forces and to avoid
each other in the case of repulsions. For a cohesive
system with over-all attractions, the eGect of the
correlations is to increase the average (negative) poten-
tial energy of any particle, since each particle tends to
spend as much time as possible in configurations where
the potential energy is lowest. The net result is a nega-
tive contribution to the (negative) binding energy of
the total system, as illustrated, for example, by the
sign of the second-order term in the above-mentioned
perturbation expansions.

If one is considering a system composed of particles
moving with diGerent velocities, the correlations will

aGect the slower particles relatively more than the fast
ones. This is simply due to the greater difhculty of

deflecting a fast particle from an unperturbed motion,
and would be brought out most clearly in the case of a
very fast particle passing right through the system, in
which case the potential felt by the particle would tend,
with increasing velocity, to a limiting value representing
an average uninQuenced by correlations. Similarly, if
instead of comparing slow and fast particles, we follow
the motion of a given particle, the correlations which
aGect it will be more pronounced when it happens to
be moving slowly and less pronounced when its velocity
is high. Hence, to the extent that the eGective potential
felt by a particle arises partly by virtue of correlations,
its magnitude will depend on the velocity of the
particle.

In addition, a velocity dependence of the over-all
potential may be called for by velocity-dependent inter-
particle interactions, resulting in a diGerent effective
potential for slow and fast particles. Also, for exchange
forces the eGective interaction between two particles
depends on their states of motion Lthrough the exchange
integral J'pq*(1)1' *(2)U"p-(1)p~(2)$. In both cases,
this leads to a velocity dependence of the eGective
potential even before correlation eGects are considered.
(Discussions of this e&ect in the case of exchange forces
are given by Bethe and Bacher' and Van Vleck. '$

The preceding discussion suggests that the approxi-
mation in which the interactions between particles are
replaced by an over-all potential will be improved if
this potential is made velocity-dependent, becoming
deeper for slow particles and tending to a limiting
value for high velocities.

A.H. Bethe and R. F. Bacher, Revs. Modern Phys. 8, 82
(1936).

6 J. H. Van Vleck, Phys. Rev. 48, 367 (1935).

To solve a many-body problem with a Hamiltonian

~2
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it would thus be advantageous to take as the starting
point a Hamiltonian Ho given by

a,=p +-'p v~ r,,
p", ( p" )
2m ' E 2nz

where the average potential U felt by the ith particle is
an increasing function of p'2. We have written p'2

instead of p; in the argument of U in order to imply a
symmetric function of velocity, independent of the
direction of motion. I-The factor -', in the last term of
Eq. (2) expresses the fact that interaction energies
between particles, depending as they do on two par-
ticles at a time, are not additive. For k-body forces the
contribution to the total potential energy from a par-
ticle experiencing a potential U is (1/k) U.]

The Hamiltonian (2) represents the motion of par-
ticles under the action of a velocity-dependent poten-
tial, but still without explicit interactions between
them. If a solution of this problem is found, the solution
of the many-body problem could then proceed with the
diGerence,

W=a —e,=PP U, ,—-,'P V(r„",),

treated as a perturbation. (We have put ~;=p'2/2m. )
The difference from the conventional perturbation

treatment with a velocity-independent U now comes in
when we consider the eGect of the perturbation W in
introducing correlations between the motions of pairs
of particles. These interactions (or "collisions" ) have
the effect of changing the state of motion of the inter-
acting pair. In the language of perturbation theory this
is described as a transition from the ground state of
the unperturbed system to a virtual level m. As is well
known, the energy difference E„Eo (where Eo refers-
to the original state) has a controlling effect on the
probability of the occurrence of the

configuration

associated with the state e, the probability decreasing
with increasing E„—Eo. In the case of a velocity-
independent U, the diGerence E„—Eo is essentially the
diGerence in the kinetic energies of the two particles
before and during the interaction. When U is an in-
creasing function of the kinetic energies, the energy
difference will be increased because the average poten-
tial for the faster-moving particles during the inter-
action is shallower than for the initial state. Physically
this expresses the fact that during the interaction the
particles acquire a higher velocity, which makes them
less susceptible to further correlations —less, that is,
than one would estimate on the basis of their original
velocities. This result, which makes the correlations
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themselves reduce the original estimate of their magni-
tudes, is an effect which, with a velocity-independent U,
would only appear in higher orders of a perturbation
expansion.

The increase in the energy differences E„—Eo
"stretches" the energy spectrum of the system associ-
ated with the Hamiltonian (2) as compared with the
case of a velocity-independent U. The result is that
transitions to states of motion diGering from the un-
perturbed solution of Ho are made more dificult and
the convergence of a perturbation expansion is im-

pl oved.
The stretching of the energy spectrum corresponds

to an e6ect occasionally described in terms of a reduced
effective mass of the particles. This is illustrated most
simply in the case when U(r, t) is taken to be of the
form:

U(r, t) =f(r)+c(p'/2m), (3)

2. PERTURBATION THEORY FORMULAS

It is required to 6nd the solutions of

HiP =E f,
assuming the solutions of

+olm=Em +m

to be known. Writing

lf na Qk Ckm+kq

when the last term can be combined with the kinetic
energy in the Hamiltonian to give p'/2m', with 2m'
= 2m(1+c) ". The resulting Hamiltonian describes
particles moving in the velocity-independent part f(r)
of U, the level spacing being increased in the ratio
m/m' on account of the reduced mass. With the simple
dependence on p' assumed in Eq. (2) the effect of the
velocity dependence of U is thus to improve the con-
vergence of a perturbation expansion to the extent of
multiplying each term in the expansion by a power of
m'/rw equal to the number of energy denominators
E —E„occurring in the term in question. The qualita-
tive discussion of the reasons for the stretching of the
spectrum which was given before, suggests that similar
conclusions are to be expected also for a dependence of
U on p' more general than that in Eq. (3). We shall
illustrate this by a second simple idealization in which
the dependence of U on p' is unspecified, but instead U
is assumed to be independent of r. This represents the
frequently discussed limiting case of a large nucleus,
with surface eGects neglected. The results of such cal-
culations describe the properties of nuclear matter in a
statistical way. We shall discuss this case explicitly
with reference to a perturbation expansion and we
therefore begin with a summary of some relevant
formulas.

and

Wmk ——P Wkl, I W„k ——
i I Wuk

I

f
J

subtraction of (5) from (4) gives

Zn cknW~k=cm~(&m —&m') (6)

Solving once for E —E and once for c „and applying
repeatedly the latter expression to the cj, appearing
in the former, we find an equation of the following type:

Wm~W~m8„E'=—W „+Q
7~m g

W gWI, iWg„
+ZZ

(g g„p) (g p o)

W AWING

+QQ Q c „W)„. (7)
k, tarn (E —gkP)(g —gP) c n

This is exact. The perturbation formula to second order
is obtained by retaining the erst two terms and re-
placing E by E ' in the denominator:

W pe
E E'=W —+Q +

kgmg 0—g 0

The pth term in the expansion (7) has p —1 energy
denominators. In what follows, the ground state of the
system will be denoted by m=0.

W=PP V,;—~p P U(t;) =A —8, say. (10)

Since U is a constant in space, the solutions I of (9)
are Slater determinants composed of single-particle
plane waves, just as in the case of a U independent
of p'. In evaluating the matrix elements of W between
two such determinants I and NI„ the contributions
from the second term in (10) vanish for mWk, since
operating with U(p,k/2m) leaves all the plane waves in
a determinant unchanged (a velocity-dependent but
constant potential will not cause a particle moving
under its influence to change its state of motion). All
the nondiagonal matrix elements (A k) are, therefore,
identical with the matrix elements occurring in a per-
turbation expansion with a velocity-independent U.
The velocity dependence affects only the energy de-
nominators in the sums occurring in (7) and (8). The
effect on these denominators is easily exhibited by

3. PERTURBATION THEORY PV'ITH A
VELOCITY-DEPENDENT U

In the present case, H is given by Eq. (1) and H p by

Hp=g; pP/2m+-, 'Q; U(t;), (9)
so that
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writing
.2

=T+B.

where b, which should really be written b I„ is the rate
of change of the expectation value of the potential
energy with increasing kinetic energy (excitation), all
referring to the zero-order system I„.For a velocity-
independent U, the expectation value of U would be
independent of the excitation, and b=0. For a velocity-
dependent U, the factor 1+b expresses the stretching
of the energy spectrum discussed in the introduction.

The close relation which exists between the de-
pendence of the potential energy B„on the total kinetic
energy T and the dependence of U on t; for the separate
particles can be brought out as follows. Consider an
excitation of the zero-order system consisting of in-
creasing the kinetic energy of a particle from t; to
I,,+At,;, the associated change in piU(t, ) being pihU;.
If the kinetic energies of several particles are affected
by the excitation the total changes are P; At; and
P; (-,'hU;), respectively. The rate of change of B with T
is then

2' (5»') 2' I
—.(dU/«)'~~')

where ip((dU/dt))A, is some average value of the deriva-
tive of U. The precise value of this average will depend
on the excitation in question (as defined by the set of
excitations LU;), but for the most important excited
states occurring in a perturbation theory (the removal
of particles from states somewhat below the surface of
the Fermi sphere to states somewhat above), ((dU/dt))A„
will be approximately equal to dU/dh evaluated at a
kinetic energy tp corresponding to the top of the Fermi
sphere. Hence, the quantity b is approximately given by

b ,'(d U/dt) ip. -

Here T is the zero-order kinetic energy associated with
the plane-wave determinant I, and 8 is the expecta-
tion value of -',P; U(t~) for this state. Hence we may
write

E '—Eao= T Tk+B—BI—
Bm—Bpi

=(T-—Tp)( 1+
T„—T,)

= (1+b)(T„—Tp),

above, j3 will depend on the state of excitation m.
The quantity A, which is the average value of gP V;;

z&j
for the unperturbed state m, would be independent of m
for ordinary, nonexchange, velocity-independent inter-
particle forces. However, with such more general forces
present, A will also depend on m. To bring out
explicitly the dependence of A and 8 on the degree
of excitation T —Tp (here Tp refers to the ground
state), we shall write, for the small excitations relevant
to a perturbation treatment:

(Bm—BoiB-=B.+I 1(T- T.)-B-.+b(T. T.), -
I,T -T,)
(A„—Api

A =A p+ ( i (T —Tp) Ao+a(T —Tp),
&T„—T,J

where a=0 for particle interactions independent of the
state of motion of the system. Bp is an average depth
of the potential for the ground state.

We may now write Eq. (8) in the following form:

E E=A o B—o+ (a—b)—(T To)—
+(1+b) ' 2 +(1+b) '(3)

»~ &~—&a

+" +(1+b) "+'(P)+ (13)

where (p) stands for the pth term in a perturbation
expansion with a velocity-independent V.

4. DETERMINATION OF THE OPTIMUM
PARAMETERS OF U

Equation (13) gives the change of the energy spec-
trum of the zero-order system caused by the perturbing
interaction 8', for any arbitrary value of b pi(dU/dt).
The question arises as to what value of dU/dt one
should assume so as to ensure the most rapid con-
vergence.

If one requires that the zero-order system should be
such that its energy spectrum E ' in a region of values
of m of greatest interest resembles as closely as possible
the spectrum of the exact system (or, in practice, the
estimate of this spectrum after a given number of steps
in the perturbation expansion), then the condition on b
is that it should minimize the right-hand side of (13)
in the range of m-values considered. H we apply this
optimum condition to the region of low excitations
(relevant for the perturbation treatment) by requiring
that(E —E„') =o=OandL(B/BT )(E„—E ')) p=O,
we 6nd:

Factors of the type (1+b) ' will appear in all the higher
order terms of (8), their number being equal to the
number of energy denominators. For positive b, this
will improve the convergence of the expansion.

The first term on the right-hand side of Eq. (8)
consists of the diagonal elements A —8 . As discussed

and

where

Ao —Bo+(1+b) 'Q=O

e b+(1+b) 'q—=O

AoIAIO

k~ gp —QA.
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is the "correlation energy" in a conventional perturba-
tion calculation and g is the rate of change of this
energy with increasing excitation T . Terms beyond
the second approximation have been neglected in Eqs.
(14) and (15).

In the above equations, the quantities A&, a, Q, and q
are constants which can be calculated for any assumed
particle interactions V;q. The sums for Q and q, in
particular, are of a type that have evaluated explicitly
for Gaussian and Yukawa two-particle potentials (refer-
ences 2 and 4). The two unknowns Bs and b refer to
two adjustable parameters of the potential U: an
average depth and an average degree of energy de-
pendence, respectively. Equation (15) gives directly the
optimum value of b and Eq. (14) then determines Bs.

The positive solution of the quadratic equation (15)
gives

This shows how the factor 1+b, which is a measure
of the degree of improvement in the convergence of a
perturbation expansion, increases both with increasing
u and q, the quantities which give the rate of energy
dependence of the interaction energy PP V;; calcu-

i&j
lated in first and second order, respectively. In par-
ticular, if q were negligible we would have

1+5=1+a,

whereas if both e and q were small compared to unity:

1+b=1+a+q+
It is interesting to note that the presence of exchange

or velocity-dependent particle forces resulting in a
positive u would, by itself, tend to suppress correla-
tion and higher order eGects, and so help to preserve
the validity of the "independent-particle" zero-order
approximation.

5. DISCUSSION

The velocity dependence of U in the zero-order
Hamiltonian Ho was introduced on physical grounds,
as the result of a discussion of correlation effects,
exchange forces, and a possible velocity dependence of
the particle interactions. The final formulation of the
method, with a velocity dependence of U which is
automatically fixed by the approximation procedure,
may be regarded as an extension of conventional
perturbation theory (whose formulation has been con-
sidered in the present paper only in two simple limiting
cases), whose success is to be judged by its usefulness in
applications to specific problems.

The zero-order solution, based on a potential U ad-
justed according to Eqs. (14) and (15), represents an
approximate solution of the many-body problem in
which part of the correlation eGects are included,
although the wave function is still a simple Slater

determinant. Considering the eGect of the perturbation
W on this zero-order system, Eq. (14) ensures that the
first- and second-order corrections to the ground state
energy cancel out. The next (third-order) correction is
decreased by a factor (1+b) ' as compared with a
conventional perturbation calculation. Equation (15)
ensures that the same is true also for low-lying excited
states of the system.

In applications to problems of nuclear structure, the
accuracy of the improved expansions can be expected
to depend on the type of particle forces considered.
The second- and higher order terms in the present
method refer to effects that cannot be represented by
even a velocity-dependent over-all potential. The re-
maining essential correlations, representing deviations
from ",independent-particle" motions, will depend,
among other things, on the smoothness of the assumed
particle interactions, and this question will become
clearer in the light of the results of specific applications.
(I am indebted to Professor K. Brueckner for valuable
correspondence in this connection. )

There appears to be experimental evidence for a
dependence of the depth of the nuclear potential on
energy which, according to the present considerations,
could be due to correlation eGects and exchange forces
as well as to an explicit velocity dependence of nucleon
interactions. Thus, for neutrons of about 1 Mev, the
depth of the nuclear potential well is around 42 Mev, '
but with increasing energy it decreases to about 10—15
Mev, around which value it appears to remain approxi-
mately constant between 150 and 400 Mev."Informa-
tion about the depth of the potential felt by bound
particles is dificult to obtain, although it is precisely
in the region of the top of the Fermi sphere (i.e., at a
negative energy of around minus g Mev) that the
dependence of U on t is of most interest in the present
connection. It is hoped to discuss these questions further
in the light of specific applications of the perturbation
calculation.

In the description of the modified perturbation
method we have made references to nuclear problems,
but the procedure should be applicable in principle
also, for example, to atomic systems. It would be
interesting, for instance, to examine the velocity de-
pendence of the atomic Fermi-Thomas potential re-
sulting from taking correlations into account.
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