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It is easily shown that the largest term in the sum is the
term with all 22; equal (i.e., 22;=%0 for all j).Then
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Refiriement of the Brillouin-Wigner Perturbation Method*
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New variational parameters are introduced into the wave function employed in the Brillouin-Wigner
perturbation method, and determined to minimize the total energy. The original and modi6ed procedures are
illustrated by a numerical example.

HE variational perturbation method for bound in which
states generated by the operator P+V can be

developed in terms of the complete set of functions f1
generated by the eigenvalue equation
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inserted into the variational integral for the energy,
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yields
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and so on. Here E in the energy denominator is identi-
ied with the approximate value of the energy given by
the variational integral. The prime on the summation
symbols in Eqs. (2), (4), and (5) signifies that the value
0 is excluded;. the variable indices range through the
values 1, 2, I, ~ independently. Because the
indices are independent, repetitions occur; i.e., two or
more indices may take on the same value in a single
product of V matrix elements. The proof that &2~&0 for
E. (Ep is fairly immediate.

The Brillouin-Wigner perturbation procedure just
described. can be improved in accuracy and rapidity of
convergence by a simple modification of the wave func-
tion which entails no additional complications in the
actual calculations. The wave function of Eq. (2) is
replaced by
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TAaxz I. Comparison of numerical results
for the Mathieu equation.

Method

For the special case 22=1, Eqs. (7) and (9) yield
directly
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m =2, G1~Gs=1
m=2, Gx=G2&2

Eq. {16)
e =3, G1=Gg=G3=1
~ =3, Gt=i, G2=Gayi

Eq. {18)

—0,36602-0.36287—0.36273

—0.36273-0.36272

~ ~ ~

—0.01503-0.01502

—0.01502-0.01502
—0.00071—0.00071

—0.36602-0.37790—0.37839

—0.37845—0.37847

E=E0+ Vpp+ 02+ 02/(1 02/02)

=Ep+ Vpp+ 02+ 02+ pp'/02 (15)

Equally simple relations may be obtained in higher
orders if e;=0 for odd i. With this stipulation, the
solution for the case e= 2 is

Equation (4) for the energy is then replaced by
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Minimum energy now occurs for
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(7) and for n=3
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8E/BG4= 0, l= 1,2 22,

which yields e linear equations:
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E=Ep+ Vpp+ 02+04+ 00/(1 pp/04)

=E0+Vpp+ &2+ 04+ &6+ 00 /04.

Wigner uses the Mathieu equation,
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The substitution G;=1+X; in Eq. (9) reduces it to

The further substitution LI=Ei, L2=E2—Ei . . .I-~
=E„—I)"

& transforms Eq. (10) into 2E—1

n
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to illustrate the eigenvalue calculation based on Eq. (4).
Identifying the sins term with V, one has Ep= Vpp=0,

0;+„——Q E4(p;+; &
—0;+)), j=2,3, 24+1 . (10) 0;=0 for 2 odd, and
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The solution of Eq. (11)can be expressed in terms of the
determinant
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and a set of I determinants 62 (k = 1, n) derived from
6 by the substitution of 6~2 6~3 ' ' ' &2~1 for the kth
column of h. We get

Numerical results for the lowest eigenvalue with and
without the refinement of this note are shown in
Table I.

The second-order wave function with optimum values
given to Gi and 62 is almost as good for the calculation
of the energy eigenvalue as the third-order function
with 61=G.=63= i. One additional order is needed to
give hve-figure accuracy.


