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It is easily shown that the largest term in the sum is the
term with all #; equal (i.e., #n;=N, for all 7). Then
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where 91 is the number of terms in the sum and is equal
to the number of ways of placing V¢® indistinguishable
particles in N¢? boxes; therefore
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With L= (N,—1)!, we then have
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or
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New variational parameters are introduced into the wave function employed in the Brillouin-Wigner
perturbation method, and determined to minimize the total energy. The original and modified procedures are

illustrated by a numerical example.

HE variational perturbation method for bound

states generated by the operator H+V can be

developed in terms of the complete set of functions ¥;
generated by the eigenvalue equation
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inserted into the variational integral for the energy,

E=WH+VY)/@1]¥), ©)
yields
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and so on. Here E in the energy denominator is identi-
fied with the approximate value of the energy given by
the variational integral. The prime on the summation
symbols in Egs. (2), (4), and (5) signifies that the value
0 is excluded; the variable indices range through the
values 1, 2, :--l, --- independently. Because the
indices are independent, repetitions occur; i.e., two or
more indices may take on the same value in a single
product of ¥ matrix elements. The proof that e;; <0 for
E < E, is fairly immediate.

The Brillouin-Wigner perturbation procedure just
described can be improved in accuracy and rapidity of
convergence by a simple modification of the wave func-
tion which entails no additional complications in the
actual calculations. The wave function of Eq. (2) is
replaced by :
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TaBLE I. Comparison of numerical results
for the Mathieu equation.

Method € €@ € E
n=1, G1=1 —0.36602 e —0.36602
n=2, Gi=Gz=1 —0.36287 —0.01503 —0.37790
n =2, G1=G251 —0.36273 —0.01502 —0.37839
Eq. (16)
n=3, G1=G:=G3 =1 —0.36273 —0.01502 —0.00071 —0.37845
n=3, Gi=1, G2 =G3#1 —0.36272 —0.01502 —0.00071 —0.37847

Eq. (18)

Equation (4) for the energy is then replaced by

E=Ep+ Voot (2G1— G ext (G2 +2G2— 2G1Gr) e
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Minimum energy now occurs for
dE/3G,=0, I=1,2---n, (8)

which yields # linear equations:
=2 Gi(erj1—€us), j=2,3,---nt+l. (9
P
The substitution G;=1+K; in Eq. (9) reduces it to

Gen=2 Kilewia—ein), j=23, - -nt1. (10)
=1
The further substitution Ly=K,;, Ly=K;—K;, ---L,
=K,— K, transforms Eq. (10) into
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The solution of Eq. (11) can be expressed in terms of the
determinant
€2 €3 vt €ngl

, (12)

€ntl  €ng2 T €2p
and a set of # determinants A, (=1, - - ) derived from
A by the substitution of €ni2, €xy3, * - - €2041 for the kth
column of A. We get '

Lk=Ak/(A—lZ:,l Az).

(13)
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For the special case n=1, Egs. (7) and (9) yield
directly

Gi(ea—e3)=¢, (14)
E=Eyt+ Voot ertes/(1—es/eo)
=Eo+Vooteot-es+ e/ eo. (15)

Equally simple relations may be obtained in higher
orders if e;=0 for odd 7. With this stipulation, the
solution for the case n=2 is

G1=Gy=(1—es/e2) ™, (16)

E=E¢t+Votete/(1—e/e)
=Ept+ Voot eateste/ e, 17)

and for n=3
Gi=1, G:=Gs=(1—es/es), (18)
E=E¢t+Votetete/(1—e/es)
= Eo+ Voot eatesteste6?/ s (19)
Wigner uses the Mathieu equation,

(—?/dx*+sinx)y= Ey, (20)

to illustrate the eigenvalue calculation based on Eq. (4).
Identifying the sinx term with V, one has Ey= V=0,
¢;=0 for < odd, and
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Numerical results for the lowest eigenvalue with and
without the refinement of this note are shown in
Table I.

The second-order wave function with optimum values
given to G and G; is almost as good for the calculation
of the energy eigenvalue as the third-order function
with G1=G,=G3= 1. One additional order is needed to
give five-figure accuracy.



