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Extension of the Condensation Theory of Yang and Lee to the Pressure Ensemble
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Phase transitions which occur at or lead to a speci6c volume larger than the minimum speci6c volume
can be described by roots of the Laplace transform Cz(s) of the canonical partition function approaching
real positive values of the pressure (krs) in the limit of in6nite number of particles. The formulation in
the pressure ensemble has the advantage that the real values of the variables considered have the immediate
physical meaning even for a 6nite number of particles.

For a special model (molecules whose incompressible cores are oriented cubes), a phase transition leading
to the minimum specific volume at constant pressure is shown to be impossible.

I. INTRODUCTION

'N their theory of condensation, Yang and Lee'
~ . have stated the function-theoretical properties of
the grand partition function gv(y) considered as a
function of the complex fugacity y, which lead to phase
transitions such as condensation. The grand partition
function is defined as

M(V)

where E is the number of particles in a 6xed volume V,
M(V) is the largest number of particles that can fit in
V, and Qsr(V) is the canonical partition function defined
as

is obtained by averaging over the distribution of the
number of particles in V i.e.,

M (V)
pl= &~—(&)pp= »Zv8'),

NM BV

where W(cV) is the probability of finding X particles
in a volume V in a grand canonical ensemble of fugacity
y, and JV(Ã) is given by

JV(&) =PQ (V)/Z. b). (5a)

The pressure used by Yang and Lee is therefare ob-
tained as a second average over all volumes from zero
to the actual volume V:

(6)

where p=i/kT, U is the potential energy of the N
particles and d7.; is the volume element of the jth
particle. In the grand canonical ensemble the pressure
and density are given by

1
P(p„)= lim —1ngv(y),v~ V

(2)

8
p=1im y——lngv(y)

V-+eo gy

Yang' has pointed out that the quantity (kT/V)
Zingy(y) is actually a doubly averaged pressure, once
aver the distribution of the number af particles in V
and once over the volume from 0 to V. In the canonical
ensemble the pressure is given by

Pp= (ci/ciV)»QN(V) (4)

The average pressure in the grand canonical ensemble

*Now at Sloane Physics Laboratory, Yale University, Near
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The quantity p(p) has no immediate physical meaning
for 6nite V but is used by Yang and Lee as the pressure
only in the limit of in6nite V. While there is little
doubt that the two definitions (p) and p become equi-
valent in the limit, a rigorous proof of this equivalence
has not yet been given and would have to be based on
the limit properties af the cueoeica/ partition function.

Some limit properties of the canonical partition
function are known from the work of van Hove' and
are more dificult to prove than the corresponding limit
properties of the grand partition function. Since some
of the advantage of the use of the grand canonical
ensemble is therefore lost if one requires a proof of the
equivalence of the two pressures in the limit, it seemed
to us of interest to attempt to rigorize a variant of
the Yang-Lee theory suggested by one of use, 4 which
operates with a canonical ensemble from the beginning.
We use a canonical ensemble whose elements are
replicas of the system of interest together with a
mechanical system used as a pressure gauge; that is, a
pressure ensemble. We believe it to be an advantage
of our variant that it deals directly with the expectation
vaIue of the speci6c volume as a function of the
pressure, and that these quantities are physically

s L. van Hove, Physica 15, 951 (1949).
4 A. J. F. Siegert, Phys. Rev. 96, 243 (1954).
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meaningful for a finite number of particles as well as
in the limit. The latter advantage is academic as long
as one deals only with equilibrium states, but may
become of interest if one wants to deal with the non-
equilibrium states such as overheated liquid and under-
cooled vapor which can appear with nonvanishing prob-
ability only in finite systems.

II. PRESSURE ENSEMBLE

If a substance together with a mechanical system of
potential energy pV is in thermodynamic equilibrium
with a heat bath, the probability that the substance
has a volume between V and V+dV is

W(V)d V= e svQ&(U)dU
C~(s)

where s=pp and

C~(s) = e 'vQN(V)ifU

This can be realized, for example, with a gas in a ver-
tical cylinder which is closed at the bottom and has a
Qoating piston on top and a vacuum above the piston.
The gas is then under a fixed force per unit area p. The
average volume per particle is given by

For finite X the only singularities of 8iv(s) in the open
right half plane are the poles corresponding to roots
of Civ(s). These must occur at complex values of s.
The real part of 8iv(s) can be visualized as an electro-
static potential. Singularities of this potential can for
6nite E in the open right half-plane arise only from

dipole lines perpendicular to the s plane located at
roots of Civ(s). We expect, therefore, that phase transi-

tions can be described by the closing in of roots of

C~(s) onto the real axis in the s plane in the limit

W—+~. If, for instance, the dipole lines close in such as
to form a dipole layer, a discontinuity of the specific
volume occurs.

To make rigorous this formulation, we must prove
that the limit lim~ 8~(s) exists and is an analytic
function in those regions of the complex s plane that
are free of roots of C~(s) and contain a segment of the
positive real axis bounded away from the origin.

III. LIMIT OF INFINITE NUMBER OF PARTICLES

The proof falls naturally into two parts. By means of
some minor extensions of van Hove's result and
assumptions, we show that lim~ (I/1V) 1nC~(s) exists

on a certain interval t~ & s ~& t2 of the real positive s axis.
This part contains the physical features of the problem
since the limit shown to exist is essentially the Gibbs
free energy per particle in the limit of large number of
particles, and the proof proceeds from van Hove's

results which are based on assumptions concerning the
intermolecular forces. The other part of the proof
extends the existence of the limit to any region of the
complex plane which is contained in the strip tj ~&Res
~&t2 and remains free of roots of C~(s) in the limit.
Using the fact that C~(s) as a Laplace transform is
analytic and regular for Res)0 and the Vitali con-
vergence theorem, ' we show that inside of such regions
c(s)—=lim~ „(1/N) 1nC~(s) exists and is analytic and
that limits of derivatives such as lim~ „8~(s) are
obtained as derivatives of the limit function c(s).

In Sec. III-A we carry through the second part of
the proof, postponing the erst part of Sec. III-B.

A.—Vitali convergence theorem applied to our case
states: If the sequence of functions LC~(s)]'t~ has the
following properties:

(a) LCiv(s)$'t regular in a region Q.
(&) I C~(s)j" tend to a limit as N-+m at s, set, of

points having a limit point inside of 5), and
(c) IC~(s) I

"~
~& M for every 1V and s in S,

then the sequence tends nmformly to a limit in any
region bounded by a contour interior to X), the limit
being an analytic function of s.

C~(s) exists for Res)0 and, being a Laplace trans-
form, is analytic and regular there. The existence follows
from the fact that Qiv(U)=K~Viv/1V! where E is
independent of E and V. Let then S be a region which
contains a segment of the real axis and which is entirely
contained in the strip tJ, ~& s ~& t2 where t~, t2 are real and
positive. Let further X) be chosen such that any roots
of Civ(s) are outside of 5) for any Ã. Then condition (u)
is satisfied. Condition (b) will be shown to be satisfied
in Sec. III-B. Condition (c) is satisfied since

IC~(s) I
~& C~(Res) ~& C~(t,) & E~/tP+'

and, therefore, IC&(s) I't~ ~& E/t +i' ~t. We can certainly
choose t~( i and have therefore

C~(s) I""~~E'/t ~ in S.
According to the Vitali theorem, therefore,

lim~ „LC~(s)j't"

and, therefore also

lim~ „(1/cV) lnC~(s)

exists and is analytic and regular in any region entirely
contained in K). Any phase transition which occurs for
ti&s&t& must therefore be ascribed to roots of C~(s)
which approach the real axis arbitrarily dose in the
limit T—&~.

B.—This part of the proof is primarily based on some
of van Hove's results for the canonical partition func-
tion for a system of X particles in a domain D of volume
V(D), in the usual limit. These results are based on

~ F. C. Titchmarsh, Theory of Pgnctions (CIarendon Press,
Oxford, 1939), second edition, p. 168.
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certain assumptions concerning (1) the intermolecular
forces and (2) the way in which the limit of infinite
domain and infinite X is taken. We make the same
assumptions concerning the intermolecular forces, i.e.,
essentially impenetrable cores of the molecules and
finite range and magnitude of the attractive part of the
potential. '

Concerning the limit, van Hove assumes that the
volume and the number of particles approach infinity
in such a way that the volume per particle approaches
a finite number, ' and further that for each cubic lattice
the number Eq of cubes which contain points on the
surface of D satisfies limtr „Ns/N= 0.s

We have imposed two additional regularity restric-
tions on D, namely that (1) Ns(D)/Ns(D') ~&1

V(D) & V (D'), where V (D) is the volume of the domain
D, and that (2)

N, (D)/V(D) & N, (D')/V(D') if V(D) & V(D').

The meaning of these two additional assumptions is
roughly that in the approach to the limit the surface
area of D must not decrease and the surface-to-volume
ratio not increase with increasing volume. These two
restrictions are imposed for both the processes we,
consider, i.e., increase of the volume with increase of
N (passage to the thermodynamic limit) and change
of volume with fixed N (change in v). We also assume
that in the passage to the thermodynamic limit V (D)/N
= V(D')/N'= v. This assumption, although not neces-
sary, simplifies our equations.

With this assumptions van Hove obtained the fol-
lowing results for

f(N, D)= 1nQiv (D). —
E

(1) limiv „f(N,D)= f(v) exists and is a function of
v only for v) v;„, where v;„ is the smallest speci6c
volume obtainable.

(2) f(v) is a nondecreasing function.
(3) df/dv exists almost everywhere. '
(4) df/dv is a nonincreasing function.
We have shown in Appendix I that with our addi-

tional assumption f(N, D) approaches its limit strti

formly in any closed interval vi ~& v ~& vs, where vi and vs

are restricted by
vmin+vl&v2& ~

p

and otherwise arbitrary. In this range of values v we
thus have

if(v) —f(N, D) i&eiv,

~ The precise statement is given in reference 3, Sec. 2 (a), first
half of (b), (c), and second half of (e). Van Hove actually replaces
assumption (e) second half by a less restrictive assumption in Sec.
6, but we have disregarded this refinement.' See reference 3, p. 954, assumption (d).

s See reference 3, p. 954, assumption (e), first half.
9This actually follows already from (2) by a theorem of

Lebesgue. See F.Riesz and B.Nagy, Legons d'aealyse Folctionmelle
(Acadbmie des Sciences de Hongrie, Akademiai Kiodo, Budapest,
1952).

where eN does not depend on v and can be made arbi-
trarily small for sufficiently large X.

We have then

—1nCiv (s) &

( ~vs
&~—lrli e '" ' e~t '"+fl'i'dv

i

N & ~„)
1 1(p Iv2" 1

+—ln 1+ + +—InN
E . Ivj" Ivg' E

1
&~—lni e "'iv e~i '~tt"»dv i+—lnlV,

)

K~e '~" (vssN)N(N+1)

EsN+ Qt
(13)

To obtain a lower bound for I.~'&, we use the fact that

[ PV (D) Not)"/N!-
Q~(D) &~

for v ~~0!)

where n is the volume of a sphere of radius d3, where da
is the maximum range of the forces." If we choose
v~ ~&a, we have

~os NN(v ~)x
I vg) l

&
—sNv

Et
iv (v'sN)'-

e siva' p-
ESN+i & 0 I

e
—asN-

(14)

'e A. Zygmund, Trig orsormetrical Series, Morsografj e Mathe
matycsee (M. Garasinski, Warszawa, Lwow, 1935), Vol. 5, p. 66.

"See reference 3, Sec. 2 (e).

with (11)

I s t—eN( eo+f(tr, D—))dv

The term (1/N) ln J'i"'e i '"+f&"i'dv approaches, for
the largest value of sv+f(—v)." Thus limiv „

&& (1/N) lnCiv(s) exists if the terms Io"&/Iri's and
I„"/I,ps are of order co&~i, with 0(N) defined by
limiv „O(N)/N=O.

We consider 6rst the term Ies"/Iei"s, and find an
upper bound for Iv2", and a lower bound for Iv~'2, and
then show that for a given s a value of v~ and v2 obeying
the inequality (10) can be found such that the ratio of
these two terms approaches zero as X—&~.

Using the inequality Qiv(D) ~& K~V (D)~/N!, we get,
for s~&ti&0,

+N+N ~ooI„-( &
—sNvV NJV

N! ~os
KNe sives iv (v -sN)s

(12)
EsN+' &=0 k!

If we choose v2s&1, the last term in the sum is the
largest. Replacing the sum by (N+1) times the last
term, we have
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with v'=—v2 —e. If we now choose v's&1 the last term It was stated in Sec. III that
in the sum is again the largest, so we have

e e'~-(v'sN)N(N+1)
eg ) f ~

—slav'

gsx+1 ~r

exp(N (—sv, +ns+ in'+ ln (vss)+ 1+0 (1))}
Isl 2 1—exp(N( —sv'+in(v's)+1+0(1)) }

We therefore have for an upper bound of Ivs"/Ivi"'

~vg

n
' e~( '~~('&dv

approaches as N~oo the largest value of —sv+f(v).
Let U be the set of values of v for which —sv+f(v)
assumes its largest value in Pvi, vsj. (There may be only
one such value. ) Let vo be some number in U. Then

Ivt"0 ~&exp(N( svo+—f(vo) —0&"(vt, vs) —eoi) }, (19)

where hm~ 0(1)=0. Since we have already chosen
v, (~ and v,)n+s ', we now need only to choose vs

suKcjently large to assure limni (I~0"/Ivt") =0.
We next consider the term Io"'/Ivi'0 in the inequality

(11).The behavior of this term for large s depends very
sensitively on the behavior of f(v) in the neighborhood
of v; . The results of van Hove are not sufhcient to
prove that Io"/Ivi"' is of order ei i~i i for every value of
s that leads to a state of the system different from that
of minimum volume. In particular, the following possi-
bility is not excluded by van Hove's results:
lim» v; f(v) = for (a finite number) and there exists a
b) 0 such that f'(v) exists and is a constant (=p,„)for
v;„(v&v;„+b. This is physically a condensation
phenomenon at pressure p in which the system is
condensed into its minimum volume. "Ke cannot prove
that this particular phase transition, if it exists, arises
from roots of Cio(s). We can prove, however, that all

other phase transitions can be described in terms of the
approach of roots of C~(s) to the real axis in the limit

Q—+Do.

To prove the above results, we obtain an upper
bound for Io" and a lower bound for I~~"&, It can be
shown (Appendix II) that

f(N, D) ~& f(vi)+ex'(») «r v;.&v &vi, (16)

where limio „ea'(vt) =0. Then

~h~~~ hmx~„ear"(vi, vs) =0, and, therefore,

Io"'/I»"&exp(N(svo sv;„+—f(v,) f(v, )+—.0(1))}.
(2o)

If, for a given s, a value of v& can be found which obeys
the inequality v~& v;„, and such that

«(vo v--)+—f(vi) f(vo) &—o,

then the term Io"/I. i"' does not contribute in the limit.
It is clear that, if limv-v; f(v) = —~, such a value v,
can always be found. To show under what circumstance
this can be done if limv v;„f(v)=for, we compare
f(v) with the linear function s(v —v; )+b where b is
an adjustable parameter. Van Hove has proven that
f(v) is a continuous, nondecreasing concave" function";
for a given s smaller than some s, we can therefore
find a b such that s(v —v;„)+b intercepts f(v) at least
two points v, ' and v, '; we have

f(v) & s(v v„;.)—+b, v
' & v & v, ',

f(v) &s(v —v;„)+b, v;„&v&v,'.
(21)

(22)

If we increase b until the equality sign holds in Eq.
(21), then the new closed interval Lv„v,f (which may
degenerate into a point) is the set 'U. We denote by
b this value of b and we have

f(v) =s(v vmin)+bmaxi (23)'ve ~& v ~~ vcrI ~i & z&vj'~»+~&'&+»&
0

f(v) &s(v v;„)+b .„, v;„—&v(v, . (24)
exp(N (f(v i)+sir'(vi) svm;. )}—

~
—eNedv~ (17)

&Ã(-~Mf (~) )dv

X We can now prove the conclusion stated in the be-
t)min ginning of this section. For a given s we obtain a value

or se't of values 'U. There are two possibilities we mustFrom the uniform convergence of g~~V, Dp in t e
interval v~, v2 we ge

consider:
(a) The points of 'U have a lower bound diGerent

ping

from v; . We can then pick a v* in the open interval
T.P*&~ e-+ N (Ig) v; &v*&v, and using v* in Kq. (24) and vo in Eq. (23)

we have
» We believe that for a system of molecules which possess a

6nite impenetrable core, a Rnite range of attraction, and a
bounded attractive poetential, limII~; f{v)= —~ or, more
precisely, there esists a 8 such that f(v; +8) & —M for arbitrary
3E&0. However, we have been able to prove this only for the
special case that the impenetrable cores of the molecules are
oriented cubes, and the attractive part of the potential is Gnite
and of finite range (see Appendix III). For this case, f(v) has as
an upper bound:

f(v) &in(v —v;,)+C,
where C is independent of e.

f(v ) f(vo)+s(vo v )(0. (23)

If we let v~ approach v; the strict inequality in Kq.

» Van Hove uses the term convex, but concave seems to be the
accepted terminology for a function whose values are never below
any of its cords.

'4 The fact that continuity of f'(v) has never been proven
necessitates the following proof of two statements which are
intuitively obvious.
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(25) is preserved and

f~ f—(vp)+'$(vp 'v ' ) (0. (26)

Therefore there exists a ei& v;„such that

f(v&) —f(vo)+s(vo —v ) =0 (27)

Thus the term Ip"'/I~~"o does not contribute in the limit.
(b) Points of 'U come arbitrarily close to v;„.In this

case Eq. (24) does not apply and the inequality in Eq.
(23) becomes v;„(v&~v,. In this case the system
undergoes a phase transition with constant pressure
into the minimum volume. If we use, in Eq. (23), a
value no* and eo obeying the inequality v;„&so*(vo(e,
we obtain by letting so*—&~;

f~ f(vp)+—s(vo v--) =—o (»)
Therefore there exists no suitable n~ and the term
Ip"'/I~~'o cannot be neglected in the limit.

We have thus the following results: all phase transi-
tions arise from roots of C~(s) unless there is a phase
transition which brings the system to its minimum
volume at constant pressure. If a system has a phase
transition of this type, we cannot prove that this par-
ticular phase transition arises from the closing in of
roots of C~(s), but even for such a system, all other
phase transitions arise from roots of C~(s). In the
special case of molecules whose incompressible cores
are oriented cubes, we can rule out the possibility of a
phase transition of this type.
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APPENDIX I. PROOF OF UNIFORM
CONVERGENCE OF f(N, D)

Van Hove has shown the following inequality to
hold":

t V(r&) —d'q pV(I" &) p dpq—
pi 1——

i
& f(N, D)

N ) Nd E d)

(V(ro) y pv(ro) ( dpq t' V(ro) q

+ +p 1—+pa
) Nd E d) ( Nd')

(IA-1)

where p(x) is a function which depends only on the
intermolecular forces and approaches zero for x—&1 and
ds is the maximum range of the intermolecular forces.
p depends only on the intermolecular forces and the
temperature but is independent of the number of
particles X and of the number of cubes Xg which contain
the surface of D. F& is the domain formed by the cubes
of a cubic lattice of length d entirely interior to D and
V(r&) the volume of r&. Fo is the domain formed by Fz
and the cubes which contain boundary points of

"See reference 3, Kq. (14).

~ V(r~ )—d'~ pv(F~') ( dp&

d)
pv(r, )~ pv(r, ) ~v(r, )q

) Nd ( Nd')
(IA-2)

The following inequalities follow from the definition of
Fi and I'2 and are valid for both the primed and
unprimed systems:

V(r ) V(r )

E E
N d' V(I' ) Nsd'

&~ v+
E S E

Using these relations in Eq. (IA-2) and using the
properties of the foregoing functions we have

Nsd'y
If(N', D') f(»D) I

&—fd] v+
N )

( (Ns+1)d') t d )
I+2pl 1——

f] & d)
2pv pNsd' ( v Ns)+ + + gi

—+—(. (IA-3)
d N (d' N$

For fixed d and E, we will replace the terms on the
right with the maximum value they assume in the
interval v~ ~& v ~& vo, with vq ——V (D~)/N and v, = V(Do)/N.
From our assumption in A, Ns(Do) ~&Ns(Dq). The

. term p(1—dp/d) is independent of v. The terms 2pv/d
and pNsd'/N are obviously a maximum at vo. The term
"See reference 3, Fig. i.

Dr V(rp) = V(rg)+Nsd'j. py(x) is a monotonically
increasing function and p(0) =0. The graph of fq(v) is
a concave polygonal contour which has for extreme
sides a vertical line on the left and horizontal line on
the right. '6

We next prove that for a given arbitrary p, there
exists an No(g) such that ~f(N', D') f(N—,D) ~&rl for
1P &~ N ~&Np(q) for all v in the closed interval v~ ~& v &~ vo

with v; (v~(vo& ~ where V(D)/N= V(D')/1P=v,
i.e, , uniform convergence. F~' and I'2' are defined for D'
in the same way as I'~ and I'2 for D. As stated at the
beginning of Sec. III-A, we restrict the limit process to
sequences of domains such that Ns'/1P~&Ns/N, in
addition to van Hove's requirement lim~ „Ns/N=O.
Applying Eq. (IA-1) to the domain D with N particles
and D' with N' particles (V(D)/N= V (D')/N'= v], we

get

Lf(N', D') f(N, D—)I
r

f v(r, ')
~ pv(r, ') p d, q

I+ +2pl 1—
I

1P ) N'd ( d )
(V(rp) i - (V(r~) d') pv(r~)

+pl fd +4N'd' ) E N ) Nd
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e& is also a maximum at ~2 since e& is a monotonically
increasing function.

Using first the concaveness of f~, then the fact that
it is nonincreasing, and the assumption Ns (D) ~& Ns (D,)
vre get

(V(D) Ns(D)d'~ (V(D) l Ns(D)+1)d'~

(V(Di) Ns(D)d'l
& f~l —+

& N N i
(V(D ) $N (D)+1)d'q

(V(Di) Ns(D2)d'~

If we go to the limit N~~ with v fixed in Eq. (IIA-1),
we have

L„(v)= fg—(v) pv—/d e(—1 da—/d) & f(v). (IIA-2)

We thus have

f(N, D) « l:U&(v,)—L.(vi))+ L.(v,)
&~f(»)+3&~(»)—L-(»)j (IIA-3)

The quantity LU~(») —L„(v&)$ can be made arbi-
trarily small by choosing d and S large enough. There-
fore

f(N, D) ~& f(vi)+a~'(vi) for V(D)/N=v ~&vi, (IIA-4)

with

(V(Di) (Ns(D2)+1jd')

Using these results in Eq. (IA-3), we obtain

Ns(D, )d'y
I f(N', D') f(N,D)—l

& f~l ~ +
E. X

l N, (D,)+1]d3~

foal
vi-— +2'(1—d,/d)

N )
(v2 Ns(D2) q

+2pvm/d+ pNs(D2) d'/N+ ail
—+ l. (IA-4)

&d' N )
Equation (IA-4) is true for all v (V (D')/cV'= V (D)/N

=v) between vi and v, and, since the right-hand side is
independent of v and can be made as small as we choose

by first choosing d and then E suKciently large, we

have proved the uniform convergence of f(N, D).

APPENDIX IL PROOF OF EQ. (16)

From Eq. (IA-1) and the inequalities following

(IA-2), we have

with

Q~(V) ~& Z' ll Q-,

APPENDIX III

|A"e can disregard the attractive forces and need to
prove only that, for a gas of hard-oriented cubes, an
upper bound for f(v) is given by

f(v) ~& In(v —v;„)+C,
where C is independent of v. Consider N(= No') "par-
ticles in a square cylinder of cross-sectional area Ã0'a'
and length J. The centers of the particles are allowed
to reach the surface of the container. The container of
smallest length which can accommodate Eo' particles
has a volume per particle (No —1)NPa'/No'.

YVe divide the parallelepiped into Eo' square cylinders
with a cross-sectional area a' and a length L. Neglecting
interactions between the cells and counting a particle
in the jth cell if it is inside or on one of two adjacent
surfaces of the jth cell, we then have

f(N, D)

—( Nsd')
& foal v+ l+e(1—d3/d)

N )
(IIIA-1)

where U is the interaction energy of the e, particles in
(v Ns) p the cell. The sum is taken over the set of integers e;

+~il —+ l+-(Nsd'/N) = U~(i) such that(d' N ) d (IIA-1)

( Ns+1) f~l v — d'
l

—pv/d —e(1—d3/d))
—=L~(v),

where V(D)/N=v. From the properties of the function

given in Appendix I, the right-hand side of the
inequality is a nondecreasing function of v. Therefore,

f(N, D) &~U~(vi) for V(D)//N=v ~&v,.

The potential energy U' is a function only of Z&, Z2,
Zn; and is equal to zero if for all pairs lZ; —Z, l)a
and infinite otherwise.

The integral over the Z coordinates is thus the par-
tition function of the gas of hard rods of length a on a

'~ By a more laborious derivation our result can be proven for
numbers E which are not cubes of an integer.
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line of length I., i.e.,

II d~« "'=—LJ-—(+1—1)Gj"'
X-1 nest

and
&o~ g»y

where K is the number of terms in the sum and is equal
to the number of ways of placing Xp3 indistinguishable
particles in Xp' boxes; therefore

(IIIA-2) 0+~0 —1 Ãp'

QN(V) ' LL P'0 —1)Gj
F02![X02—1J!lX0!

QN(v) &P' II Ll.—(~,—1)Gj . (IIIA-3)
(n, } ~=& S;!

With I.= (X0——1)/, we then have
(IIIA-5)

It is easily shown that the largest term in the sum is the
term with all 22; equal (i.e., 22;=%0 for all j).Then

AN p

l
N02

QN(v) &x Ll.—Pr, —1) jN, (IIIA-1)
o. f(s) & ln(tt —e;.)+1. (mA-7)

f(s) = lim lnQN(V) ~& ln(lu2 —as)+1 (IIIA-6)
Np-+m g 3
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Refiriement of the Brillouin-Wigner Perturbation Method*
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New variational parameters are introduced into the wave function employed in the Brillouin-Wigner
perturbation method, and determined to minimize the total energy. The original and modi6ed procedures are
illustrated by a numerical example.

HE variational perturbation method for bound in which
states generated by the operator P+V can be

developed in terms of the complete set of functions f1
generated by the eigenvalue equation

&@=Eh!i, Eo&E1~Et+1 . ..

Vp, V pI
62

Vo.V ~v~p
I

(E—E,) (E Es)

(5)

The prescription' '1, Vo~t"'=—&0+XV. +Res
(E—Es)(E—E )

V)r, ~ Vap+.. +Z'p (2)
(E «) (E Ek) —(E—E.)—-

inserted into the variational integral for the energy,

E= (~l ~+V 1~v(~l 1
I ~),

yields

E=Es+ V00+ 02+ 08+ ' ' '+ 02++1&
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and so on. Here E in the energy denominator is identi-
ied with the approximate value of the energy given by
the variational integral. The prime on the summation
symbols in Eqs. (2), (4), and (5) signifies that the value
0 is excluded;. the variable indices range through the
values 1, 2, I, ~ independently. Because the
indices are independent, repetitions occur; i.e., two or
more indices may take on the same value in a single
product of V matrix elements. The proof that &2~&0 for
E. (Ep is fairly immediate.

The Brillouin-Wigner perturbation procedure just
described. can be improved in accuracy and rapidity of
convergence by a simple modification of the wave func-
tion which entails no additional complications in the
actual calculations. The wave function of Eq. (2) is
replaced by

2 Vp Vs.v o4't"'= —A+G ZV. +G ZV
X (E—Es) (E E.)—

Vo
+ +G Q'$1 (6)

(E E1)(E EA). . . (E E )


