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Angular Distribution of Betatron Target Radiation
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An attempt is made to combine the bremsstrahlung intrinsic energy-angle distribution for radiated
photons with Moliere s multip1e-scattering theory for the incident electrons.

The angular distribution of betatron radiation is essentially characterized by a function I(tt), which is
given as a series in inverse powers of Moliere s parameter B. The first term of this expansion, which is
dominant for small angles, is equivalent to a combination theory developed on the basis of a Gaussian
approximation for multiple scattering. This term is worked out exactly and its final expression may be
compared with previous theories which depend upon mathematical approximations. The term of order B '
becomes important for larger angles and gives the transition to the contribution of single-scattered electrons.
Expressions for the forward radiation and energy-angle distribution are given. The angular distribution
predicted by these results was found to be in good agreement with an experiment performed by Lanzl and
Hanson.

INTRODUCTION

~ XPRESSIONS for the intrinsic energy-angle dis-
- ~ tribution of target bremsstrahlung have been

derived by Sommerfeld and Schi6' on the basis of the
Bethe-Heitler radiation theory. ' '

It has been pointed out that in the range of target
thickness that is more frequently used in betratrons
and synchrotrons, the energy-angle distribution of the
radiation is modified by the elastic multiple scattering
of the electrons in the target. On the other hand, energy
loss of the electrons and absorption of the radiation in
the target can be neglected. '

There are a number of papers in which the inQuence
of multiple scattering is taken into account. ' ' It is a
common feature of these papers that they consider the
problem on the basis of a Gaussian approximation for
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multiple scattering. " There is, however, some experi-
mental and theoretical evidence for the necessity of a
more complete and detailed theory (for example, see
discussion in Sec. II-C of reference 7).

In the present paper we consider the combination of
the scattering and radiation theories on the basis of
Moliere's complete theory of multiple scattering. ""
Our main results depend essentially on two parameters,
8 and A. The former is identical to the parameter
introduced in Moliere's theory, while the latter is
given by the square of the ratio of the angular width
of the intrinsic radiation to the angular width of the
multiple-scattering distribution. In the cases of main
interest, X and 1/8 are small numbers (usually smaller
than 0.2).

The angular distribution is essentially characterized
by a function I(8) [Eq. (7)j which is given as a series
in 1/B. The first term of this expansion is exactly the
expression we would obtain for the combination theory
on the basis of a Gaussian approximation for multiple
scattering. This zeroth-order term, "which is dominant
for small angles, is worked out exactly and its final
expression may be compared directly with previous

'OHereafter, the combination of the radiation theory with a
Gaussian approximation for multiple scattering will be called for
brevity "zeroth order approximation" or "zeroth-order term. "
(This denomination will become clear later. )"G. Moliere, Z. Naturforsch. Ba, 78 (1948).

n H. A. Bethe, Phys. Rev. S9, 1256 (1953).
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1220 A. SIRLI N

theories which made use of mathematical simplifica-
tions. Next we consider the 1/8 term in an approximate
'way, retaining only the main contribution in the limit
of small X. This term becomes more and more important
when the angle increases and, in the case of X (1/(28),
it turns out to give the dominant contribution in the
asymptotic region.

The present results were found to be in good agree-
ment with the experimental angular distribution as
determined by Lanzl and Hanson (reference 7, Fig. 12).

where 8—g is the vector in the plane representing the
direction of the electron before the radiative collision,
dS„=ydydg/24r (&t: azimuth of the vector y, in the
plane) and E is the number of scattering atoms per
cm .

In this paper, f(8,t) will be given by Moliere's theory
of multiple scattering; we can then write (see Sec. 5
of reference 11)

t &0&tx. (&)

f(8,t)8d8 =8d8
4o

Ndl J p (844)

~'x'(t) ( ~'x'(t) &

Xexp
'

~

—b(t)+»
4

where y, (t) and b(t) are complicated functions de6ned
in references 11 and 12. The quantity Op, which repre-
sents the total number of elastic collisions and is usually
a very large number, does not play a significant role
(later on we will set Qp ——~).

The next step is to put Eq. (2) into a more con-
venient form in order to perform the operations indi-
cated in Eq. (1). Observing Eqs. (10) and (22) of

FORMULATION

Let o(k,8)8d8dk be the intrinsic differential cross
section for the emission of a photon into the angular
interval d8 and energy interval dk (8 is the angle between
the directions of the photon and incident electron),
f(8,t)8d8 the number of electrons in the interval d8

about an angle 0 with the original beam after traversing
a thickness t, and P(k,8)8d8dk the 6nal number of
photons emerging from the target in the intervals d8

and dk. For small angles, as is obvious, the angles of
the photons and scattered electrons can be represented
as vectors in the plane perpendicular to the direction
of the incident electron. Then the energy-angle dis-
tribution of the radiation from a layer of thickness dt
at a depth t is given by the convolution of o.(k,8) and

f(8,t) over that plane. Since the electrons radiate at all
values of t from 0 to T (total thickness of the target),
it is necessary to perform an additional integration
over t. Thus, we have

P (k,8)8d8dk

= V8d8dk dt f(6—g, t)o-(x)dS„, (1)
J ~

reference 12, we immediately realize that x,' is propor-
portional to t and that —b(t)+lntI'x, '(t)/4) is inde-
pendent of t. Using these simple facts, introducing
r= t/T and defining the parameter 8 through the tran-
scendental equation

8(T)—lnB(T) =b(T),
we get

p 9oolxe &t )

f(8,t)dt= dr I 44dg Jp(844)TJ,

&&exp ——g,'(T)Br~ 1——ln—x,'(T)8
~

. (2b)
4

By restricting the series (2d) to a 6nite number of
terms, we are allowed to set the upper limit of the
integration over y equal to infinity. "

The next step is to express Schiff s intrinsic differ-
ential cross section 0- as a function of the reduced angle

o.(k,8)8d8dk = o (k, r't) rMt'tdk

drt 2Z' (e' y't=Id'—
I
—

~
DnM(8) (2—2rt+rP) —(2—rt)')

rt 137(t4) I

2/)& 12K/X'
X +-,'(1—~)L4—in%(e))

(1+a'/)&)' (1+8'/X) 4

where

(3)

(3a)
M (t)i) 111(1+8'/X) 2Eo(1—rt)-

)& = t4'/%o'x'8) (3b)

Here p, is the rest energy of the electron, Ep and k are
the energies of the incident electron and the photon and
rt =k/&o

"See discussions after Eqs. (5,5) and (7,3b) in reference 11,
and after Eq. 20 in reference 12.

Following Moliere, we introduce now the reduced angle

&=8/Lx. (T)8'(T)) (2c)

Setting y=s4x, (T)8'* and expanding the second ex-
ponential in Eq. (2b), the following result is obtained:

tId8

T J, f(8,t)dt=F(a) ada

=adaLF &'& (a)+8-'F &»(e)

+8 'F&"(0)+ ), (2d)
where

1 pOO

F (r't) = I d ydy—J,(t)&y)
nt~p ~p

Xexp( —ry'/4)
(

7 ln—
~

. (2e)—
&4 4)
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The parameter X will play an important role. It is
essentially the square of the ratio of the angular width
of the intrinsic radiation (p/Ee) to that of the multiple
scattering distribution (x,B&). Its physical meaning is
simple. Roughly speaking, the value of ) measures the
relative importance of the multiple scattering and
radiative distributions: when )—+0, the former is the
dominant one; the contrary occurs when 'A~. In the
cases of interest here, X is a small number (usually
X&0.2). This fact will prove to be important for main-
taining simplicity in the main results.

The first term in the expression for 1/M (&7) represents
the inQuence of the screening of the nucleus by the
outer electrons. For the moment we will not consider
the slow angular dependence of lnM(t)t), an approxi-
mation also used in all previous calculations. Of course,
this procedure does not introduce any error when the
screening is neglected $i.e., when we set Z=O in Eq.
(3a)). Moreover, when X is small, the final angular
distribution does not depend very sensitively on the
intrinsic distribution and, therefore, we may expect that
this approximation will introduce only a small error.

Equation (1) may be written now in the abbreviated
form'4

I (a)au =I'(S)ede=It/TeuI'(e) g~(a). (4)

We obtain immediately for the combined energy-angle
distribution:

convolution factors of Eqs. (Sa) and (Sb), as may be
readily veriied by di6'erentiation.

It is well known that the angular distribution of the
radiation is essentially given by the function I(tt,X)
(see reference 7). In order to evaluate this function, we
observe that the Bessel (Fourier) transform of the
second convolution factor of Eq. (Sa) may be written
as follows (see Appendix A):

2
tMt)t Js(yet) (1+%/X) '

4o
e- exp(=)&y'/4c&)d&r (6.)

I(8,)&) =I&'&+B 'I&"+B 'Its&+ (7)

a
I &

"& (tl, )&) =— dr
eI~s

e d&r ydy Jp(t)ty)
Jo

( r'
)&exp ——(r+X/&r) ] r In—

I
. —(7a)

& 4

Now we make use of the folding theorem: the convolu-
tion of the two functions of Eq. (5a) is given by the
Bessel transform of the product of their Bessel trans-
forms. Remembering Eqs. (2d), (2e), and (6), we imme-
diately obtain

l2P
J(tt,X) =Ii(tl) g (1+a'/)&)-4.

X'

X(LlnM(Xt) (2—2rf+rP) —(2—tl)'1I(tl, )&)

+-;(1—
&)L4—in'(») )J(a,),)),

where"
2

I(a,)t) =F (a) g-(1+as/)t)-',
X

(Sa)

(Sb)

It is interesting to note that if we eliminate the inte-
gration over r and set r=1 (i.e., t=T) and X=O in
Eqs. (7) and (7a), we reobtain Moliere's theory of
multiple scattering in its expanded form, as should be

. expected from the physical interpretation of X. In the
next section the leading terms of the series (7) will be
discussed in detail.

Let us observe that in the derivation of Eq. (2d),
and therefore of Eq. (7), we have proceeded from the
integral representation of Moliere's theory rather than
from its expanded form:

f(«f, t)&Mt'f= tldetL2 exp( —&7')+B '(t)f&" (tl)
+B«& 'f&" (t'1)+ ' j. (8)

In Eq. (5), zt and xs are two conveniently chosen angles
which will be discussed later. It is easily seen that the
functions J(8) and I(8) are related by a simple
expression:

(5c)

In order to prove Eq. (5c), it is sufhcient to observe
that an identical relation holds between the second

'4 Here, the symbol F(d )+o(d) means the convolution of F(8)
and a(&1) in the plane of 0'.

's The convolution factors in Eqs. (Sa) and (Sb) are already
normalized to unity, i.e.,

f F (a)6dt = (2/X) (1+8'/X) ~t'tdll = ~ ~ = 1.
0 0

The main difFiculty in constructing the convolution
factor J'srf(t'1, t)@d«ddt from this series is the fact that,
in Eq. (8), B(t) is a rather complicated though slowly
varying function of the variable of integration t. (In
Eq. (8) the angle tl also depends on t in a complicated
way, «f(t) =0/Lx, (t)B&(t)).) Through the procedure
indicated in this section, this difhculty is completely
avoided because both B(T) and t'f(T) are now inde-
pendent of the variables of integration. '6

We turn now to a brief discussion of the two angles

'~ This exact elimination of the dependence of 8 on the variable
t results in the fact that, for a &~1, the convolution factors F&"'(&1)
are not exactly equal to j'o'(dr/r) f&"&(0/rtt). (The equality of
these expressions should be expected from the simple expansion
(g), if the slow t dependence of 8 were neglected. )
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and zs introduced in Eq. (5). These angles arise
from the angular dependence of 1nM(8) which has not
been considered in the previous mathematical deriva-
tions. As was pointed out above, when the screening is
neglected, lnM(tt) does not depend any longer on 8
and there is no problem at all. In general, however, x~
and xs will depend on X, 8, and rt in a rather complicated
way. It is not dificult to see that, when X is small,
inM(x;) is almost independent of t'f. Therefore, it does
not appreciably affect the angular dependence of the
combined distribution, which is the point of main
interest here. The dependence of 1nM()f;) on rt has,
however, some eGect on the shape of the spectrum. As
we are mainly interested in small values of ), a way of
determining approximately the x; is to consider the
case X=O. It is well known that in that limit the
theoretical spectrum is almost independent of the angle
and is essentially given by the integrated spectrum of
the intrinsic distribution. ""Taking into account this
last fact and using some results of reference 2, we find

the following approximations":

lnM()fi) = lnM(0)+2 —(2/p) tan 'p, (9)

InM(xs) =lnM(xi)+L4p '—3p ' ln(1+p')
p'( p—') 'p—'3 ( a)—-

p =2Ep (1—it) Zi/(1 11rtp) .

Equations (5), (7), and (9) give an approximate
description of the combined energy-angle distribution.
In the next section the evaluation of the fundamental
function I(8) will be considered in detail.

This expression is clearly equivalent to a theory based
on a Gaussian approximation for multiple scattering.
In fact, let us suppose for a moment that, instead of
considering the complete theory of multiple scattering,
we make use of a Gaussian law:

t' exp( —8'/r)
Ii(8) 2 ' dr.

Jo
'r However, Warner, and Shrader (reference 9) have found

reproducible and rather large variations in the experimental
angular distribution of diferent spectral components of betatron
radiation.

'SThe parameter p, introduced in reference 2, measures the
relative importance of the screening; p=o means no screening
while p= ~ means complete screening. For all values of p, the
function between brackets in Eq. (9a) is small and, for p(3, it
can be neglected.

EVALUATION

Let us consider the first term in Eq. (7). Performing
the integration over y (see Appendix (A, 1)j, we readily
obtain

! i dr expL —tts/(r+), /n) j
I(oi(0) 2 e ~dn (10)J, r+X/n

we get

2 2I i dne dr exp—( tt'—/r) Q —n exp( —ntt /X).
X

(11b)

Using the well-known convolution properties of the
Gaussian function, Eq. (11b) leads again to Eq. (10).
This proves our assertion.

Two simple methods of working out exactly Kq.
(10) will be considered. The first one gives the develop-
ment of I&"(6,X) as a power series in 8 and is outlined
in Appendix B.

A second and more interesting, though mathemati-
cally equivalent, procedure is the following": Intro-
ducing s=nr as variable of integration instead of 7 and
interchanging the order of integration

one gets

dn f,

00 g
—g

I&'& (es) = 2 expL —sa'/(8+X) )ds
& p s+X+tts

~00 d$
=2 exp(X —8') e & exp(htts/t)

X $+gs

Developing in powers the second exponential, inte-
grating by parts and setting x= P, the following result
is obtained:

I&'& (x,X)/2= —Ei(—X—x)

—e *Q (—A)" R (x)—
n=1

where

e"Ei(—x)
A. t(x),

e~
(12)

~oo ~
—f

Zi( I—) = — dt, —
t

(12a)

w (v—1)! 1 x gn —1

R„(x)=P x" —+ + +
(v+n)! v! (v+1)! (v+n —1)!

(12b)

A„(*)=+ —.
~=0 pl

(12c)

"This second method was developed by Professor G. Moliere.
The author is very grateful to Professor Moliere for the comrnuni-
cation of the essentials of this proof. The leading terms of the
expansion (12) turned out to be identical with an incomplete
expansion previously developed by the writer in a more com-
plicated way. It is also mathematically equivalent to the exact
development given in Appendix B.

Then, according to the general definition (Sa) and taking
into account the elementary integral representation

2 2
—(1+0'/X) '=—

~' ndn expL n(1+tt'/X) j, (11a)
X ~ ~0
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Alternately, Ri(x) and Rs(x) can be simply evaluated
from the closed expressions (see also Table I)":

(e'-1)
Ri(x) =Ei(x)—ln(yx) —— +1, (12d)

2Rs(x) =LEi(x) —ln(yx) J(x—1)—e'

(e*—1—x) 5 3
+-x+-. (12e)

$2 2 2

J&'l (x,X) I&'& )&e &"+*& (+
()&+x) E

A i(x)
+e—e Q(—)&)" tt'R„(x)—

n=1

XL2n+)&+ e"Ei(—)~)(tt'+ (2n+1))&+)&')) (13)

n For the definition and properties of the functions Ei(n) and
Ei( st), see E. Jahnke and —F. Emde, Tables of Fnnctions (Dover
Publications, New York, 1945). For numerical applications, see
Tables of Sine, Cosine, and Exponential Integrats, 2 volumes
(Mathematical Tables Project, New York, 1940).

A method to reduce the R„(x) to closed expressions is
given in Appendix C.

In spite of its rather complicated form, Eq. (12) has
a simple interpretation. For X=O, I& l(tt) reduces to
—2Ei(—x), which is essentially the result of Schiff s
theory for the angular distribution. The first term of
Eq. (12) has the advantage that it does not diverge for
8=0. Besides, it must be pointed out that, when 8
increases, )ie *Ri(x) becomes more and more important
and is the dominant term of I(') in the asymptotic
region; it behaves asymptotically as )&/tt'. Due to the
mathematical approximations used in previous papers,
this feature was never present. The behavior of Eq.
(12) can be easily understood from an intuitive point
of view. When X is very small, the angular width of the
multiple scattering distribution is much larger than
that of the intrinsic radiation. Therefore, for angles
X&8 &1, its contribution is the dominant one. On
the contrary, for large angles 8'))1, the convolution
factor (2/)&)L1+(tts/)i)j ' tends to zero much slower
than the exponential integral term and therefore it
determines the asymptotic behavior of Eq. (12). On
the other hand, for small values of tt (tt&)&), both con-
tributions are important and their detailed combination
is necessary in order to avoid logarithmic divergencies in
the limit 8=0.

Equation (12) is very useful for numerical calcula-
tions. H X&0.2, it is usually sufhcient to consider the
first and second terms in the series in X. Remembering
Eq. (5c), we readily get the corresponding approxi-
mation for the function J(tt, )&):

TAnLz I. The functions Ri(x), Rs(x), and tt(n).

0
0.01
0.05
0.1
0.2
0.4
0.6
0.8

2
2.5
3
4
5

R1(g)

0
0.005
0.025
0.051
0.103
0.214
0.333
0.462
0.596
0.998
1.489
2.107
2.896
5.268
9.516

Rg(x)

0
0.002
0.008
0.018
0.038
0.084
0.140
0.206
0.282
0.523
0.849
1.274
1.822
3.402
5.943

0.577
0.575
0.568
0.$56
0.526
0.439
0.328
0.198
0.054—0.191—0.739—1.135—1.511—2.197—2.795

In the important case of the forwa, rd radiation (x=0),
Eqs. (12) and (13) reduce to closed functions:

I' ' (0)/2 = —e"Ei(—)&),

J&'&(0)/2 = —e"Ei(—)~) (1—)&—)&')+)&, (14a)

which are exact and valid for all values of X. Equations
(14) and (14a) may be seen more directly from Eqs.
(8, 5) and (8, 9) of the Appendix. For X—+0, both
I&'t (0) and I&'&(0) tend to —2 ln(y)i) (where y is Euler's
constant). For )&-+oo, I&'& (0) tends to zero as 2/)& while
I&'&(0) tend to zero as 2/)&s. Inserting Eqs. (14) and
(14a) into Eq. (5), we get the expression for the forward
spectrum.

Equations (12), (13), and (14) complete the study of
the zeroth order contribution. As the various Gaussian
approximations of multiple scattering depend on the
variables r and tt in almost the same way $i.e., as in

Eq. (11)), these results are independent of the par-
ticular Gaussian theory used in the calculation. (Of
course, the width x,'8 is defined in diferent ways
according to the various Gaussian theories, but its
dependence on r is essentially the same. ) Therefore, the
exact results of Eqs. (12) and (14) may be compared
directly with previous theories that are based on
Gaussian laws and depend upon mathematical approxi-
mations.

Let us consider now the contribution of order 1/If
in Eq. (7):

~oO

I&"(8,X)= ' rdr e
—dn

~0 ~0
ydyIo(~y)

Xexp (r+),/ot) ——l—n1 —1. (15)i4)
A method of working out this integral is outlined in

Appendix D. The general result LEq. (D, 2)j is rather
complicated. Fortunately, it simplifies considerably in
the limit of small ). Retaining only the main contribu-
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kd6'Jo(y@) exp( —0'nlrb) =—exp( —y9/4n).J, 2H

(A, 1)

By multiplying Eq. (A, 1) by ne and integrating with
respect to n from 0 to ~, Eq. (6) is obtained immedi-
ately.

APPENDIX 8
Consider Eq. (10).By integrating over 7 we get

xnan ( xn i
~"'(x)=2

~

X ) E X+n)
(B, 1)

where @=6'. The first integral is easily evaluated by
means of a partial integration:

percent or less. This similarity is due to two reasons.
In the first place, the angular distribution predicted by
Schiff s intrinsic theory does not depend very sensi-
tively on the energy. On the other hand, when ) is
small, the behavior of the function J(8,)~) is very
similar to that of I(P,X).

In general, the theoretical predictions on the angular
distribution are in very good agreement with the experi-
ment of Fig. 1. In the large-angle region, the theoretical
curve is somewhat below the ion chamber points, but
it its very closely the film data.
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APPENDIX A

Consider the well-known Bessel transform of the
Gaussian function:

In order to evaluate the V„(X), we introduce cc=n+X
in Eq. (8, 4) and obtain

(V„=e" e
~

1—— ~dm
B)

"(P&
~ (—Z) d~. (B, 6).=o (v] N"

By partial integrations, Eq. (B, 6) leads to

- (Pi
V,=1+ "Z'(—X) P~

=i E v) (v —1)!

(p) (v —~—1)-2(-&)" Z I
I(-1)" (B, 7)

=~+i 0 v) (v —1)!

Of course, in the case of interest in Eq. (B, 5), P=n is
an integer and the series of Eq. (B, 7) reduce to simple
polynomials in li, which may be readily evaluated (in
that case, replace the upper limits of the first, second
and third summations by m, N —1 and e, respectively).
From the definition (B, 4) we find also the following

relation for integer e:
1 ( dy"

V„(X)=
~

X'—
~

e"Ei(—X). (B, 8)
(e—1)!li"4 dX)

Using Eqs. (Sc) and (B,8), the expansion for J~o'(x,X)

is obtained:

J&'~(x,X) I&'~

+ +A+he"Ei( —X) (1+X)
2 2 (x+X)'

(—x)" —

( 1y
+Z V.—)

2+- (V~
~=i (B 1)!, — 0 '0)

xn) (
J, & y) E xj

(B, 2) (+i 1+- ~V (B, 9)
N)

Remembering the series development of Ei(—N) (see
reference 20), the following expression is obtained:

( xn ) (X)
e—Ei

(
— )dn = ln

]
—

)
—e"Ei(—X)

~x)

Equations (B, 5), (B, 2), and (B, 9) are especially useful
for the case of small angles.

APPENDIX C

where

(—x)" In this section, a simple method for reducing the
functions R (x) to closed expressions is outlined. Con-e.'e
sider erst

V (&)=
0 p (n+g)

(B, 4)
s 1 f

R, (x) =P =- LEi(x) —ln(yx) $dx. (C, 1)
=i (v+1)!v x "0

Combining Eqs. (B, 2) and (B,3), we get

I&"(x) ( xi (—x)"
= —ln] 1+—

(
—e'Ei( —X)—P V„(X).

X) -=i e!n

This integral may be performed by partial integrations
and Eq. (12d) is readily obtained.

Now consider E (x). This function, according to its

(B, 5) definition (12b), consists of e series. Let R„,; be the jth
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series of R„(x). Then, obviously, we have

r
R, g(x) =—i R g, g(x)x"-'dx,

X Q

R„,;(x)= R„,; g(x)dx.
4p

(C, 2)

(C, 3)

Here V ' is an abbreviation for (8V„/Bp)~ „and
Vo"= (O'V~/Bp')„0 =T. he functions V„as well as their
derivatives may be easily calculated from Eq. (B, 7).
The function L(N) is defined in Eq. (15c); the following
are useful expressions:

L(N)= —P —for )m~ &1,
n=l n2

These integrals may be reduced again to closed ex-
pressions by means of partial integrations. In this way,
for m=2, Eq. (12e) is obtained. For the sake of com-
pleteness we give the result for R3(x):

6R,(x) = LEi(x)—ln(yx) )L1—2x—x'/2]

——
i

2——x3+—i+—(1+x+x'/2)

L(1—u) =ln(1 —I) lnu —L(u) =~'/6 for 0&v&1,

( (D, 3)
—

~

= —L(—N)+-', Lln(1+u) j' for N&0,
E1+ul

L(N) =-', (Inu)' —L(1/e)+1n( —1) inn ~'/3

for N&1.

7 5———-x(1—x). (C, 4)
6 3

These closed expressions usually involve diGerences of
large numbers, but, with the use of accurate tables,
they greatly simplify the problem of evaluating the
leading R„(x).

APPENDIK D

The general result given in Eq. (D, 2) is very com-
plicated. A great simplification is attained if terms of
order ) or higher are neglected in the expression for V„
and its derivatives. This is equivalent to the simpli-
fications V =1, V„'= Vp"=0. Using these approxi-
mations and performing a similar simplification in the
first term of Eq. (D, 2), then Eq. (15a) is readily
obtained. In Eq. (15b) the following relation has been
used:

In order to evaluate Eq. (15), we first develop in
series the Bessel function and perform the integration
over y. This leads to

(—x)"
P(x) =e-*LEi(x)—lnx]. (D, 4)

~ (—x)" p' I." e dn
I&'&(x) =2 P (v+1) ' rdr

n=p "0 &0 (~+&/a)"+'

&& Q (m+1) —ln(r+X/n) j. (D, 1)

It is not dificult to prove directly that the series in

Eq. (15b) behaves asymptotically as

( x)n
P(e—1)~ —2 1ny lnx ——', (lnx)'

Performing the remaining integrations in the order v

then 0,, the following result is obtained after a lengthy
calculation:

n=a n '.n
3

+———(lny)' —P . (D, 5)
12 2 =o (m+1)x"+'

I&"(x)/2= Le"Ei(—X) (1+X)+1)lny
x

+-,'L(in~~)'+~'/6j —V,'——;V,"+LI

By using the well-known asymptotic development of
e *Ei(x), we readily get

n!n
+ln(1+x/X) Lln(y9, )+(1/2) ln(1+x/X) J

(—x)" p V. q
4(~)l V~~+

n! n)

h(x) —+ Q
~=i (m+1)x"+'

—2 lny lnx

1 m2 3——(lnx)'+——(lnp)'. (D, 6)
2 12 2

V„' V„
+V~x'+ ——. (D, 2)

n n'
Inserting Eq. (D, 6) into Eq. (15a), we reobtain Eq.
(15d).


