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In Part A, a further analysis is made of the collective coordinate Lagrangian erst introduced in a previous
paper. This Lagrangian, which replaces the physical Lagrangian, describes a set of 6ctitious harmonic oscil-
lators whose masses and frequencies are established. We accomplish this by adding a term to the physical
Lagrangian which, however, does not affect the equations of motion. The analysis is carried out by two
distinct methods: comparison of Lagrangians and comparison of equations of motion. Both methods yield
identical results.

In Part B, the dHI5cult problem of representing the Dirac 5 function by a 6nite number of terms is handled
by the introduction of the d-function. A speci6c representation of this function is given, along with plausi-
bility arguments that it satisGes the requirements of Part A. A brief analysis and summary of the manifold
properties of the d-function is presented.

INTRODUCTION'

' 'N a preceding paper, ' we have indicated how the use
~ ~ of collective coordinates is able to simplify the
highly nonlinear equations of motion encountered in
the many-body problem. The essential idea was that
by the introduction of these coordinates, one may re-
place approximately the usual physical Lagrangian in
coordinate space by a simple Lagrangian in collective
coordinate space which can be regarded as that of a
system of one-dimensional bounded harmonic oscilla-
tors. The requirements for the validity of this replace-
ment were determined by a direct comparison with the
true Lagrangian.

In this paper we shall first re-examine the justification
for the description of the actual motion of X physical
particles in a one-dimensional box of length I with
periodic boundary conditions by means of the motion
of E one-dimensional bounded harmonic oscillators.
The conditions for the validity of the collective co-
ordinate Lagrangian are fulfilled by choosing suitable
fictitious masses f& and frequencies co& of the collective
coordinate harmonic oscillators. Next we indicate that
the equations of motion for the physical particles ob-
tained from the Lagrangian of the fictitious oscillators
are a very close approximation to the equations ob-
tained from the true Lagrangian. Such an analysis is
meaningful and necessary because the approximate
identity of the two Lagrangians does not in itself imply
the approximate equivalence of the corresponding
equations of motion, since the differentiations required
in the transition from the Lagrangian to the equations
of motion may introduce inordinately large errors.

* Portions of this Paper were 6rst presented at the Washington
Meeting of the American Physical Society, April 1954 )Phys.
Rev. 95, 624A (1954)g.' This paper is a summary of a lengthy and detailed analysis
which may be obtained at cost from the Department of Physics,
Stevens Institute of Technology, Hoboken, New Jersey.

s G. J. Yevick and J. K. Percus, preceding paper LPhys. Rev.
101, 1186 (1956)j. This paper will hereafter be referred to as
Paper I.

In carrying through both the comparison of the
Lagrangians and that of the equations of motion, use is
again made of one's ability to approximate suitably
the Dirac 8 function by means of X fourier terms. Such
an approximation to the Dirac 8 function has been
termed the "d-function" (see Paper I). The difficult
problem of finding the d-function is treated in further
detail in Part B. Highly plausible arguments for the
existence of such a d-function, and indeed for the
legitimacy of a specific representation which we ex-
hibit, will be presented in Part B.

In both Parts A and 8, we are required to keep in
mind the physical nature of the potential which we
would like to treat. It is characterized by a repulsive
core with a width of the order of an angstrom, a shallow
attractive well of several angstroms, and an amplitude
of zero thereafter. An example of this is the Morse-
type potential.

A. EVALUATION OF THE OSCILLATOR PARAMETERS

I. Comparative Analysis of the Lagrangians

In this section we shall compare the collective co-
ordinate Lagrangian with the physical Lagrangian and
so obtain the optimum values for the Qctitious masses
and frequencies of the oscillators.

Vfe assume the Lagrangian in physical space to be
of the form

However, for reasons which will soon be made evident,
we desire to replace Eq. (1) by a new Lagrangian I,
whose physical consequences are the same as those of
I., This can be accomplished by making use of a simple
theorem pertaining to the Lagrangian equations of
motion:

If the equations of motion resulting from a Lagrangian L' are
a consequence of those resulting from a Lagrangian L, then except
for certain singular values of the constant X, the Lagrangian
E =L—EL' and L yield equivalent equations of motion.
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The proof is left to the reader.
We employ this theorem in the following manner.

As is well known, the acceleration of the center of mass
of a system with the Lagrangian (1) is zero, i.e.,
Px;=0. But this result may be obtained from an L'
given by

L*'- (Z' x')'.

It follows then that we may replace Eq. (1) by

(2)

eips&. (5)

It is readily seen that this is so if f&, &o&, A and Ecan be'
chosen such that

and

Qp «pfj,k'= m —2E

Q;«;(E+ PA „p-',f k'Ie'"*'—*~&)x;x;=0

(6)

(7)

(8)

Equation (6) can be solved exactly; Eq. (8) approxi-
mately because of the existence of S wave numbers k,
and Eq. (7) only approximately irrespective of the
finite number of wave numbers. As discussed in Paper I,
the most eGective method of using the Qnite number of
k's is to introduce the d-function defined by

d(x —y) —= (1/L)+ (1/L)Z~«p«'"'* "' (9)

where the k's are integral multiples of kp=27r/L. If
d(x —y) is very narrow function we then have

V(y)=Vp+ZI «pdI, VI e "",
where

L/2

VI,—= (1/L)) V(x) exp(ikx)dx
—L/2

Since the particles never approach each other because
of the assumed highly repulsive core (Fermi-Dirac
statistics accentuates this), Eq. (7) will be closely
satisfied if

X+ga p~fgk'e"& ' *~&~d(x; x). —

(The reader may verify that only the value K=m/2E
is singular. ) As in previous work, ' we assert that a
suitable Lagrangian which takes the place of Eq. (3)
is given by

L.=Zp plf~(( Aj' —»'Iqp)')
+$E Q „o', 'f E-(E 1—)A/2j, —(4)

where

to Eqs. (6), (7), and (8) now becomes triviaL We have

and

m

nlrb (k')

E=m/2ulV, A= Vp,

(12)

(13)

where u is defined by

(14)

Equation (4) now becomes, in x-space, the following:

I.,=—,'m P;xP+ (mL/AN)Q;Q;«, d(x; x;)*-
—(m/2nS) (P;x,)'—
P'«& && (Z ~ «p(1/L) VAqe-'" ~*'-*' )+const. (15)

We observe that the coeScient of the d(x; x,)x,x-;
term is very small. Moreover d(x; x;)x—,x; has an
appreciable value only when xi is very close to xj
which, of course, is a rare event since the highly re-
pulsive core forbids this. Even when xi=xj, the con-
tribution to Eq. (15) is only mx;x, /4n, which is still
small.

IL Dynamics of the Collective Coordinates

In this section we shall analyze the equations of
motion obtained from our modified Lagrangian L,
[Eq. (15)]using real particle coordinates. Utilizing the
same masses and frequencies as in Sec. I, we shall be
able to both minimize the eGect of velocity dependent
forces and reproduce the approximately correct forces
acting on the real particles.

Thus, this discussion explicitly reinforces our in-
terpretation of the connection between the collective
coordinate Lagrangian and the physical coordinate
Lagrangian inasmuch as the methods of Secs. I and
II are distinct.

The equations of motion resulting from Eq. (15)
may be written, after elimination of the g,x; term
which appears, as

where
Wy =xPU''(x—; x;) S;—U(x;—x;), —

U(x) =—(m/nS) (1+Py, «pdge'"*),

F(x)= PgikV pdp—e'"—*

(17)

(18)

(19)

Equation (17) must be compared with the exact
equations of motion given by

(20)

' See Sec. II of Paper I.

We now observe the reason for including X in I„for mx, = —P BV(x; x~)/ex;—
it provides the necessary constant term in Eq. (11). l1

To within the approximations indicated, the solution
To within the d-function approximation, Eqs. 16 and
(20) differ only by the W terms on the right-hand side



J. K. PERCUS AND G. J. YEVICK

of Eq. (16). It must now be established that the ve-
locity dependent forces which these terms represent
are small compared to the correct interparticle forces.

To begin with, let us compare

then (26) becomes
jwi

G(x,)~(1/m)Q U(x;—x,)G(x,). (28)

V'(x; x)—++x 'U-'(x x)—. (21)

V'(x;—x;)~(~T/m) U'(x;—x;).

This comparison can be rewritten

(22)

If, for the sake of simplicity, we assume that the dis-
tribution of velocities is approximately Maxwellian,
iP is of the order of aT/m, where il, is Boltzmann's
constant and T the absolute temperature. We must
then investigate

We note that in the second expression jWi, so that
U(x;—x,)/mgU(0)/m for any term. Now if x; ap-
proaches x, then since U(0)/m=1, it is conceivable
that a term in the right hand sum is of the same order
of magnitude as G(x;) itself. This, however, is not
possible because even if xi is close enough to xj to feel
the full effect of the repulsive core, we have already
presumably chosen U(x)/m to be essentially zero in
this region.

By means of the comparisons Eqs. (21) and (28), we

have demonstrated that

V'(x;—x;) ( KT ) U'(x; —x,)

V(0) ( V(0) i U(0)
(23) P W,,«P F(x; x;). — (29)

U'(x; —x ) d'(x;-x )

U(0) d(0)
(24)

Since d'(x) rapidly goes to zero, it follows that

U'(x; —x,) V'(x;—x,)

U(o) V(o)
(25)

except for small values of the argument where, however,
the system is unlikely to be. Thus the first term on the
right-hand side of Eq. (17) is small compared to
F (x; x;). —

Next, let us consider the second term on the right
hand side of Kq. (17) and compare it with F(x; x;). —
This term may be evaluated by iteration of Eq. (16),
but since only an estimate of error is required we shall

consider just the first step in the iteration. That is,
in the term Ux( xx;) we may choose x;= (1/m)
Xgq"~iF(x; xq). Hence we com—pare

& j~ih~j

To show that the right hand side of (23) is negligible
compared to the left hand side, we first observe that
without loss of generality in any molecular problem we

can make V(0) =2000 ev. Anticipating the results of
Part B in which it is shown that we can approximate
V(x) by a finite fourier series, it follows that «T/V(0)
is of the order of 10 ' at T=300 degrees absolute. (For
small T this result is strengthened. ) Moreover, we

have chosen f~ and k' such that

There still remains the problem of showing that the
rightmost term in Eq. (16) is small compared to
QF (x, x,) S—ince.

Q Q Wi„.&LV Q Wo,
j h+j

(30)

B. PRODUCT REPRESENTATION OF d-FUNCTION

I. Introductory Remarks

(in absolute value) it will be suflicient to show that
1/(n —1) is not large compared to 1. Clearly, if a=1,
1/(n —1) becomes very large and the correction term
may be enormous, whereas for n) 1.5, 1/(a —1) is less
than 2, which is quite satisfactory. It is no accident
that E corresponding to n=1 is precisely the singular
case which was noted following Kq. (3).

Since the d-function obtained by choosing 6k= ko

and di, ——1 yields an n=1+1/E, we conclude that
serious difficulties may be encountered unless one
selects a d-function with gap frequencies. This is, in
fact, the problem which we propose to discuss in Part B
of this paper.

Let us summarize this section by pointing out that
the requirements for making the velocity-dependent
forces negligible in the exact equations of motion, as
well as reproducing the correct potential, are essentially
the requirements needed to satisfy conditions I, II,
and III in Paper I. The fundamental idea in each case
is to make the velocity potential have a small nonzero
value only well within the repulsive core of the physical
potential so that it is never felt.

Let

P F(x,—xi,)—=G(x;), (27)

P F(x, x;)~ PP F(x;—xi,) U—(x; x;). (26—)—We have already indicated in Part A that the problem
of representing the physical potential as well as mini-

mizing the velocity dependent potential depends on a
suitable approximation for the Dirac 8 function, using
only E Fourier terms. As a prototype for the d-function,
although admittedly a poor one for our purposes, let
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N ko/2

d (x) Q cise
J I=—Nl 0/2

sin[-', (1V+1)kpx j
L sin(-,'kpx)

(30)

us write down what one would naively obtain by utiliz-
ing the minimum mean square approximation to the
Dirac 8 function and assuming equally spaced fre-
quencies. This function is given by

I

I
gl

2

We observe that the first zero of d(x) occurs at
(1V—1)kpx/2=or or x=L/1V. But for the case of gases
with L=1 cm and 1V=10r this d(x) obliterates the
details of the potential and obviously cannot be used.
Moreover, in Part A, the above case, which corresponds
to n= 1, has been shown to lead to serious difhculties.

One can show that expression (30) may equally well
be obtained by choosing the frequencies k as having a
random distribution between —1Vkp/2 and +1Vkp/2.
Following this lead, we may then assume a distribution
of frequencies between —~ and ~ but with a proba-
bility distribution other than uniform. This results in
an expectation value of the d-function which possesses
all the desired properties. While the corresponding
minimization of the standard deviation of the function
does not seem to have an easy solution, evidence has
been obtained' that this is not an insurmountable
obstacle.

The major conclusions to be drawn from a more de-
tailed analysis, not presented here for lack of space, are
the following:

(a) It is necessary to utilize frequencies higher than
1Vkp/2 to obtain a narrow d-function.

(b) The distribution of frequencies needed to achieve
(a) must have a random nature which is evidenced by
the appearance of numerous gaps since all frequencies
must be integral multiples of ko ~

(c) It is not appropriate to have equal coefficients
for all Fourier terms.

(d) The probability methods mentioned above
indicate the justi6cation for the existence of a suitable
d-function which we shall now construct explicitly in
Sec. II.

Il. Product Representation

Drawing inspiration from the conclusions of the
preceding section, we shall now indicate a plausible
d-function which appears to be suitable for representing
a periodic U(x). Its main characteristic is the extreme
narrowness of its central lobe. Another advantage is
that n W 1.

Consider the case where 6k= kp, then Eq. (30) can
be written in the following form (assuming that
IV =3" 1). —

The product form of the d-function [henceforth re-
ferred to as d„(x)j is instructive from a geometrical
point of view because it shows how the d-function
approximates a 8 function. The 6rst factor produces a
peak at x=0 and is —1 at x= L/2.

The next factor [1+2 cos(3kpx)$ narrows the central
lobe [this is indicated in' Fig. 1(a) by a dashed line).
The product of these is given in Fig. 1(b). We observe
that succeeding factors produce a more and more
narrow central lobe and that side lobes are successively
reduced.

We know, however, that d„(x) cannot be a good 6-
function for our problem because the width of the
central lobe for a given physical situation is too wide
and washes out the details of the potential. It now sug-
gests itself to use the form of Eq. (31) to construct a
modified b function which can be made more narrow at
the expense of raising the side lobes to some extent. It
is this 8 function which we believe can suitably repre-
sent the potential. Consider the following:

d (*)= (1/L)II L1+f o (3+ )'ko*j, (32)
i=o

where f will be approximately 2, and by (3+e)' we
mean the nearest integer thereto; f and e are to be
determined.

First a few obvious remarks:

~L/2

d„(x)dx= 1.
—L/2

(33)

Moreover, qualitatively the geometrical appearance
does not change signi6cantly from that of the preceding
analysis, with the exception that the central lobe is
much narrower because of the higher maximum fre-
quency which is present.

If

(b)

Fro. l. Development of a d-function: (a) The first state
di(x) =1+2 cos(kpx); the next factor 1+2 cos(3kpx) is indicated
by the dashed curve. (b) The second stage da(x) results from
multiplying the curves of Fig. 1(a).

1 sin[-', (1V+1)kpxj 1 ws
d(x) =— =— Q exp(ijkpx)

I. sin(-', kpx) L i—Nls

= (1/L)g [1+2cos(3'kpx))=d„(x).

f= (2+a)

then the area underneath the centr'al lobe is approxi-
mately 1. To see this, we observe that the width of the

(31) principal lobe is given by 1+(2+ e) cos(3+ e) 'kpx=0,
or (3+a) 'kpx=2s/3, a full width of 2L/(3+e)";
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but the amplitude at x=0 is (3+e)"/L so that the area
of the principal lobe =1.The same choice of f leads to
d„(0)=(3+e)'/L which is the value at zero of a d„
whose maximum frequency is the same as the maxi-
mum frequency in d„(x), a fact which will be of some
importance in the sequel.

We also note that

n= (3+e)'/E"=exp(rc/3). (35)

We further observe from the above analysis that the
ratio of the widths of the central lobe for e/0 and &=0
is given by

The Fourier coefficients of d„(x) are related to wave
number density )normalized such that p(k)=1 when
6k= koj by the reciprocal relation

di,p(k) =1. (40)

This can be interpreted by choosing for d, (x) a Fourier
series with 6k=ho and constant Fourier coe%cients
between —k,„to +k,„,and then causing the Fourier
terms to coalesce in bunches.

Some typical forms for the density of wave numbers
for the product representation are as follows:

3"/(3+ c)"=1/n=exp( —re/3). (36)
p(k) = (k/k )-'I' '"' (41)

Let us now consider what happens when S, I.—+~
such that the density n=E/L remains constant. The
width of the central lobe is 2I./(3+e)", but we have
seen that X=3";therefore the width becomes

I 1
p(k) =

(12mn) ** b„g

3 p k y'
exp ——

(

4n t b„2)

2L/Q'~"+'"~'= (1./n)iV 'h'. (37) 3 (k—b„,)'-
+exp ——

f4a4 b„2This goes to zero as F~~ even if e is a slowly de-
creasing function of r.

The problem arises as to whether the side lobes de-
crease sufficiently so that d„(x) actually approaches
8(x) as r —&~. Recalling the dependence of I. and ItI

on r, we rewrite Eq. (32) as

3
t
k+b„ iq'

+exp ——
( )

. (42)
4m& b„, )

d„(x)=n g P+ ',f cos((3+-e)'2~nx/3") j,
i=o

which may be recast into the interative form

d~i(x) =P+—',f cos (2s.nx/3~') fd, ((1+e/3)x). (39)

Other forms involve discontinuous functions.
Another result concerns the evaluation of gap series

(38) sums of the form +~i~f(k,di,pi, ), where {k) denotes the
set of available wave-numbers. It can be shown that
for slowly varying f, one may as a reasonable approxima-
tion choose both pj, and dg, as constant

~e note from Eq. (39) that d,+i(x) is, except for a
slight scale shift, a multiple of d, (x); moreover, the
multiplying factor is predominantly less than unity,
so that all side lobes do tend to approach zero. However,
even if the above were rigorously true, it would not be
sufficient to guarantee the efficacy of the resulting
d-function because there may nonetheless exist regions
for which the totaI area under the curve does not
approach zero. A detailed argument indicating that
this diKculty does not arise is presented in the Appendix.

We thus conclude that by the use of gaps in the
wave number spectrum, it is possible to construct a
suitable approximation to the Dirac 8 function employ-
ing only E=nL Fourier terms if we allow L to become

sufficiently large. This validates the analysis made in
Part A.

III. The Nature of Fourier CoefBcients and
Frequencies of the d-Function

We present without proof a summary of some typical
results' emanating from various techniques for analyzing
the d-function.

pi, = 1/n and di, =o. (43)

for the range ItInko/2 (k—(IVak, /2
The above results, while possessing intrinsic interest,

ar'e actually needed in the analytical description of
physical phenomena by means of collective coordinates.
As an example of what we mean, the partition function
and the various thermodynamic quantities derived from
it depend explicitly on d~. A further analysis will be
presented in a succeeding paper.

I„(a)= d„(x) exp( —a'x'/4)dx.
J

If I„(a)=1 as r~~ for any value of a then it is
reasonably clear that d„(x)+b(x). This appears to be s,

valid criterion for a 8 function. First, we write d„(x)

APPENDIX. LIMITING VALUE OF THE d-FUNCTION

In this appendix we present a plausibility argument
for the transition of the d-function into the Dirac
8 function as r —+. Consider the expression
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in the following form: We conclude that

d„(x)=e(—',f)"g cos(-'b, x+-,'P) cos( 'b;—x '—P)-, (2) l„(a)=
i=p

2'~ pfq
" ~&~o—

l

—
I ( 2 expLiZ-:(;—n;)&])

a &6&

where

b;= L(3+a)']2m'/3"= L(3+&) ]4, (3)

2~~ (fq '
X (p exp(i p ~;p) =

l

—
l Lp (p exp(ie, p/2))

8 (6] j&jo &j

cosP= 1/f-
Since

cosx=2(expix+exp —ix)=-', g,e"*,

where e runs over the set (—1, 1},d, (x) is given by

d.(*)= (lf)" E pL Z'l(;+n~)b, ]

(4)

Hence,
Xexpl i P;—,'(~,—g,)P]. (6)

(fq "2g~
Z exp( —LZ (~+a)»/2~]2}

E6) g

Xexpl i P,—,'(~,—q,)P]. (7)

l 2 k(~+a)»l & 2»&»'/2+~
j=p

If j') jo, then exp —(b;/u)' is negligible and we can
neglect such terms. Therefore only terms for which

e;+g;=0 whenever j)jo contribute to the sum.
On the other hand, if j'(jp then

Let us now define a jp such that by'p=u. Such a jp
exists since as r —+~, we may assume that bp decreases
to zero and b„1 increases to . We observe that

LE (~+a )»/2o]'- (»'/~)'

where j' is the highest j for which e;+g;00; the reason
for this is that

X K exp( —i&P/2)) (II & exp(i~A))
i&io ei

I.( )=(2 V' / )(f/6)"
X t 2 cos(P/2)]"'$2 cosP]~&0. (10)

Recalling that cosp= 1/f, it follows that cosp/2
= L(f+1)/2f]* and a=bio= (3+&)"e2m/3". Equation
(10) becomes

2~m3" (f) " (f+1) ~o

"f" "
2~0(3+a)&0 E6J ( f )

1 ]f+lq &o

g~ (3+e)

If f=2+e then I„(a) is independent of a. Due to the
crudity of the analysis, the value of I,(a) is 0.6 rather
than 1.

The above discussion makes plausible our belief
that by the use of gaps, we are able to construct a
suitable representation of the Dirac 8 function, using
only S frequencies.

We should like to point out brieQy that the specific
choice of b; which we have utilized is a special case of
a more general situation in which, however, f is a
function ofjas well. It is again necessary for (b;+&/b;)) 3
in order to improve (31). With b; subject only to this
condition, the preceding analysis Eqs. (1) to (11) can
be easily carried through in precisely the same manner
providing only that one chooses

exp —(bp/a)' = 1. 1+f;= b;+~/b;. (12)


