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where I's(pgk) is the renormalized full vertex function.
From Eqgs. (4.1) to (4.3) follows that

Ts(pgk)~Zrysti=0, k—o. (4.4)

For p? or ¢—>w, the corresponding relation involves
the other constants too, so that a clear-cut statement
is not possible without the knowledge of the magnitude
of these constants.

YOICHIRO NAMBU

The results obtained in this paper need not neces-
sarily be restricted to the specific model we have chosen,
in view of the general character of the approach. It is
conceivable, however, that not exactly the same con-
clusions may be obtained for other theories. In quantum
electrodynamics, for example, the Ward identity
Z1Z5'=1 would be an additional relation which must
be taken into account.
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The dynamical behavior of IV interacting particles may be simplified by the introduction of 3V collective
coordinates. A geometric interpretation of collective coordinates is described which is analogous to a type
of random walk problem. Considerations on the validity of the transformation from ordinary spatial co-
ordinates to symmetrical collective coordinates are discussed. The difficult problem of the boundary of

collective coordinate space is touched upon.

In the second half of the paper, the Lagrangian formulation for the dynamical problem is carried out by
means of colleetive coordinates. Conditions for the equivalence of the physical Lagrangian and the collective
coordinate Lagrangian are established. This leads to the problem of the Fourier representation of a potential
by a finite number of terms. Finally, preliminary remarks on a modified Dirac 8§ function are presented.

INTRODUCTION!

N this and the next few papers, we shall be concerned
primarily with describing the collective aspects of
the many-body problem and how they arise out of the
individual particles. Little or no emphasis will be placed
on the actual evaluation of immediate, concrete,
physical phenomena. Our aim is to furnish a sequence
of analyses, each more refined and deeper than the
preceding. Applications will be considered at the con-
clusion of each major stage of development. We hope
to discuss at some future time the interaction of the
individual with the collective and the description of
deeper collectives such as the nucleus.

Our approach to the many-body problem is by means
of a transformation from the individual to the collective.
The possibility of focusing one’s attention on a par-
ticular particle and following its behavior in detail
appears to be destroyed. The collective coordinate
places all particles of the same nature on an equal
footing. Lengthy probing will be necessary to obtain
familiarity with the dynamical behavior of the col-
lective coordinates. In the zeroth order of the collective

* Abstracts of this paper were presented at the New York
Meeting of the American Physical Society January, 1954; see
G. J. Yevick and J. K. Percus, Phys. Rev. 94, 787(A) 1954.

T Visiting Research Professor at University of Sad Paulo, Sad
Paulo, Brazil, during Summer, 1953.

1 This paper is a condensation of a lengthy and detailed analysis
available at cost from the Department of Physics, Stevens Insti-
tute of Technology, Hoboken, New Jersey.

approach to the many-body problem (which is the
primary concern of our first set of papers), only the
collective manifests itself; higher order approximations
lead successively to the individual manifestations of
the collective in the same way that the usual individual
approach leads in higher order approximations to the
collective.

PART A. CONCEPT OF COLLECTIVE COORDINATES
I. Many-Body Problem

We desire to replace the N-body problem of inter-
acting particles by an equivalent problem which is more
amenable to analytical treatment. This apparently can
be achieved by the use of 3N, 2N, or N (depending
upon the dimensionality of physical space) one-
dimensional, bounded harmonic oscillators, which we
shall label as g. This will be done in Part B.

Let us consider the following Lagrangian [Eq. (1)]
which describes N particles in one dimension. These
particles are considered to lie within a box of length L
with periodic boundary conditions.

Ly=5§ X mi2 =33 sV (wi—xj). 1)

Equation (1) is much too difficult to treat analytically
in any detail because of its nonlinear character. Instead,
if one seeks its solution, one must attempt to transform
the nonlinear equations into some sort of linear prob-
lem. This apparently can be done by the use of col-
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lective coordinates first explicitly introduced by Bohm
and Pines? in the treatment of the many-body problem
for long-range Coulomb forces. In all of their methods,3
no attempt was made to place the total emphasis upon
collective coordinates as bona fide dynamical coordinates
of the system. For example, Bohm and Pines in their
work found it necessary, in order to describe the thermal
motion of particles, to introduce individual-particle
variables as well as collective coordinates.

The collective coordinates which we propose to use
are the simplest possible in form although it is con-
ceivable that, for a particular problem, better collective
coordinates may be devised. We indicate, at a later
stage of the analysis, a general method of procedure for
obtaining a suitable description of a dynamical system
with arbitrary collective coordinates.

However, we shall here restrict ourselves to the
following collective coordinates:

qe=2_: €, 2

where x; denotes the position of the ith particle in the
periodic cell of length L and % is an integral (positive
or negative) multiple of ko, defined by

ko= 27I'/L. (3)

Since the above ¢. are complex rather than real
quantities, one may also use real coordinates which are
defined in terms of the real and imaginary parts of the
gr’s, namely

=2 .4 osk 4.
ck=z‘c. x., @
Sk=2_; sinkux;.
II. Some Elementary Remarks on Collective
Coordinates

Before employing collective coordinates to transform
the physical problem, we shall devote some space to
elucidation of both the properties of these rather novel
coordinates and of the legitimacy of the transformation.

Let us briefly discuss at this point some properties
of the gi. We observe that if the x; are randomly dis-
tributed, the mean values of the g¢’s are clearly zero.
This should not be interpreted as meaning that the
gx’s spend their time about zero. One observes, in fact,
that the ¢’s and si’s have root mean square values
equal to v/N, if the x; are randomly distributed. One
immediately notices that when % is exceedingly large,
the phases of the kx;’s will in general have a random
appearance (mod 2m) so that the /N criterion will
prevail. For low %’s where the concept of periodicity
enters more importantly, the ¢;’s may have a value
extending to N, which is the maximum value possible
for any g¢r. For example, suppose there is a periodic
effect of wave number % extending over a distance d;
then ¢ will have an absolute value of the order of
(NVd)/L instead of zero. gi’s whose indices are multiples

2 D. Pines and D. Bohm, Phys. Rev. 85, 338 (1951).
3D Bohm and D. Pines, Phys. Rev. 92, 609 (1953).
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of %2 will also center about this value. This is clearly
important for the solid state. Since exact periodicity
cannot exist in reality, we shall expect that this effect
will be distributed over a narrow band of &’s.

A geometrical way of looking at the above is the
following: ¢, may be regarded as the terminus of a
chain of N unit vectors in the complex plane, the ith
vector being at angle kx;. It is seen that near random-
ness of the x;’s cause the ¢ to cluster around the origin,
more so for the higher %’s since a small motion in co-
ordinate space tends to alter violently the direction of
the links. The relation of this effect to the random walk
problem is evident. Secondly, although each ¢ has a
maximum possible value of N, its attainment of this
value fixes the other ¢;’s; thus the boundary in gx-space
is one in which the gi’s are intimately connected.

The complicated boundary of the g¢’s is an unfor-
tunate concomitant of the collective coordinate ap-
proach. However, before considering this boundary in
more detail, it is certainly incumbent upon us to verify
that the ¢i’s constitute a valid coordinate system. To
this problem we now turn our attention.

III. Discussion of the Validity of ¢;’s as a
Coordinate System

We are now prepared to investigate the sense in which
the ¢’s (or cx’s, si’s) constitute a valid coordinate
system. The transformation

Q=2 e (2)

is implicitly multivalued in the sense that the inter-
change of two or more particles clearly does not affect
the value of the ¢i’s. In fact, for a given set of values
of the g¢:'s, there are certainly N! points in the N-
dimensional x space to which this corresponds. Due to
indistinguishability of particles, this is no drawback,
for we shall show below (see Appendix) that the region
in the N-dimensional x-space,

1> X > x> 0 DAy (5)

(or any of the equivalent V! regions obtained by inter-
change of particles), maps in a one-to-one manner. onto
all of gx space. Thus the behavior of the particles in this
region is completely determined by the corresponding
behavior in ¢ space.

Restating the problem: Is the transformation from
g-space to x-space one-to-one except for order? First,
let us restrict the term g-space to that region of infinite
g-space which is the image of x-space. (The precise
location of this bounded region in ¢-space, especially
the boundary, is an important matter to be dealt with
in detail later.) To each point in ¢g-space there is at least
one sequence of x;s for which x;>x>x3> -+ >ay,
but is there more than one? We treat this problem,
first, essentially by means of the implicit function
theorem which, for our purposes, will be used in the
following form: If a set of simultaneous algebraic
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equations is solvable uniquely at a point, then it is
solvable uniquely in the vicinity of the point providing
that the Jacobian is not equal to zero.

The Jacobian J=|dqy/dx;| = |ik exp(ikx;)| is zero
whenever x;=x;; but in addition J possesses factors other
than «;—x; which can vanish. These can be spurious
as in the vanishing of the Jacobian of y=#® when x=0,
or they may correspond to natural boundaries in g¢-
space. Our task is to show that except for the obvious
natural boundary corresponding to x;=ux;, the singular
surfaces on which J vanishes do not destroy the uni-
valence of the collective coordinate transformation.

In the Appendix, the uniqueness proof is presented
for an arbitrary sequence of wave numbers. To ac-
complish this, we first show that there exists a point in
g-space at which the inverse transformation is single
valued. Next, a lengthy but straightforward analysis
proves that the property of uniqueness of the inverse
at a point may be extended to a neighborhood of the
point, irrespective of the proximity of singular surfaces.
Thus the adequacy of the collective coordinates g for
the representation of the state of a physical system
containing identical particles is firmly established.

IV. Boundary in g-Space

We have seen, from the definition gx=_ ;1" exp(ikx;)
that not only is each ¢x bounded and less than N in
amplitude, but also that g, does not wander much past
A/ N ; this suggests a boundary of some complexity, and
we would like to know the nature of the true boundary
surface in order to determine, e.g., to what extent it
can be approximated by an N-dimensional sphere or
cube. For the present, however, we limit ourselves to
some general considerations; in particular, we verify
explicitly a property which has already appeared in-
directly in several places: the relation of the boundary
to the transformation Jacobian.

Consider then the expresssion ¢,=2_; cospx;; the
boundary surface is determined by the condition that
¢p is stationary under variation of the ;s for a fixed
set of values of the remaining ¢x’s and si’s. Using the
Lagrange method of multipliers, we can express this
in such a form that the following quantity must be
stationary:

cot 2 Mcet 2 NSk, (6)

k#p 13

where A\ and N\ are Lagrange multipliers. Thus,

dcp ek oS
—+ T Nt X W—=0 (7
ox; k*p 0Ox; k ox;

for all j; these N equations in the N—1 unknown
{M, M’} are solvable providing that the full determinant
is zero. Since a nonsingular linear transformation does
not affect the singularity of a determinant, this may
equally well be written as | d¢gz/0x;| =0: at the bound-
ary surface, the Jacobian must be zero. If we can now
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show that the additional surfaces on which the Jacobian
is zero are physically extraneous, the boundary will be
given by the equations x;=x; alone. This is, of course,
a condition in x-space, but, in principle, there is no dif-
ficulty in converting to g-space. Since the order of #’s is
immaterial, the bounding surface may be specified sim-
ply by setting xy_1=xx. We then have gi=73_; /N 2e™i
~+2¢#N for each k, and eliminating the (W—1) x;’s
between these, a surface of dimension N—1 thereby
results. The case N=2 yields a simple circular domain,
but unfortunately, it is very difficult to carry out such
a calculation for large V. In a succeeding paper, several
indirect methods will be presented for estimating the
major physical characteristics of the g-space boundary.

PART B. LAGRANGIAN FORMULATION OF THE
MANY-BODY PROBLEM

I. Introduction

The physical basis for our problem lies in the Lagran-
gian given by Eq. (1). The resulting equations defy
conventional techniques of solution because of their
intricate nonlinearity. We seek to replace this Lagran-
gian by an equivalent Lagrangian leading to linear
equations which approximate the real problem. This
is done by using the collective coordinates gr. We
assume that the ¢x’s may be regarded as representing
a set of one-dimensional elementary harmonic oscillators
and we shall now verify the extent to which this as-
sumption is valid. Expressed otherwise, we maintain
that the real motion of IV particles is intimately related
to the motion of N bounded harmonic oscillators, g.
For nonequilibrium processes, the first-order theory,
not given in this paper, reveals that coupling between
oscillators exists which contributes to irreversibility.
It should be clearly stated that the exact theory con-
tains coupling between all the oscillators irrespective
of the type of physical process encountered.

II. Equivalence of Lagrangians

Since we maintain that the motion of N bodies having
a Lagrangian given by Eq. (1) can be represented
approximately by the motion of ¢x’s regarded as N
independent harmonic oscillators, then the most general
form which the Lagrangian in ¢-space can take is

Lo=2 k0 3 fu(| Ge]*— | x|+ B
=Y 100 Lfi(@@— ') He(St—wdsi) 1+B,  (8)

where the constant
B=N ¥ i 30fi—3N(N—1)4 )

has been inserted for convenience and A4 is another
constant to be determined later. Since |gx|%=]g_x|%
we may choose fr=f_; and wx=w_ in Eq. (8). This is
not unrelated to the invariance of the exact Lagrangian
under spatial reflection. The fi can be looked upon as
the fictitious masses and the i as the fictitious fre-
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quency of the oscillators. These frequencies can possibly
be imaginary.

To what extent does this Lagrangian represent the
true Lagrangian given by Eq. (1)? If we substitute
ge=2_: exp(ikx;), we get

Lq= Zi %(Zk;so fka)a':iZ__. Zi Zj#i(zk#() %wk‘.’,fkeik(x;—xi))
F200 Diwi 2ok 3 frkPe* G
—IN(N—-1)4. (10)

This is to be compared with Eq. (1) which we rewrite
Lo=2% i 3mid—3 i 3 i 3V (20— ;). 1)

For the kinetic energy terms to coincide, we must

have
2kxo fik=m, @

whereas the ‘“‘velocity-dependent potential” terms must
be close to zero:

26 Dji ko 3fik€™ 0 = 0. (1)
Finally, for the potential energy terms to coincide,
V (i— ) = 2o Wi fre* @i 4- 4. (I11)

Condition I can obviously be satisfied exactly. Our
problem now is to select V parameters f at our dis-
posal, V other parameters w? also at our arbitrary
disposal, and 4, in such a fashion that conditions II
and III are satisfied in the best possible way. If we
have enough degrees of freedom (i.e., enough ¢’s), then
in principle we could satisfy condition III exactly,
whereas we can never satisfy totally condition II.
Because condition II cannot be satisfied exactly, its
neglect would be expected to play a role in certain
physical processes, which, we will demonstrate in a
future paper, are connected with nonequilibrium and
nonuniform states. The fact that the number of particles
is so large (for one dimension, > 107 per cm) allows the
possibility of satisfying quite closely conditions I, II,
and ITI. The succeeding paper will be devoted to veri-
fication of this; we shall content ourselves for the
present with an analysis of some of the problems in-
volved in optimization of the correspondence between
the true Lagrangian and its harmonic oscillator counter-
part.

III. Nature of Potential

The first problem which we shall consider briefly is
the following: To what extent are we able to represent
the potential V(x) with N ¢;’s? Or how can we satisfy
condition ITI?

Clearly
V(x)= 3 Vies, (11)
all &
with
L2
Vi=(1/L) f Y (), (12)
—L/2
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where all & refer to integral multiples of ko=2x/L, and
this is valid for —L <x <L because V(x) was con-
structed as having period L. But the number of g¢x’s
available is only N, so that the number of positive
k’sis N/2. If we take Ak=Fk, (the most obvious choice,
corresponding to taking every point but the origin of
the k-lattice), then the %’s can run only between
—Nko/2 and +Nko/2.

A simple example will easily convince one that this
choice fails to satisfy condition III for many physical
problems. Since we have NV particles per length L, the
average interparticle spacing is d=L/N. For a gas,
liquid, and solid, the major portion of the potential lies
inside d. If the potential, for example, is constructed
from terms of the form 1/(x*+a?), then terms must be
included for which « is smaller than d. Now if we
attempt to represent such a potential by choosing only
k’s between —Nko/2 and +Nko/2, an explicit com-
putation using the criterion of minimum mean square
deviation shows that the portion of the potential for
x#<d is “washed out” by the approximation.

It would seem to be possible to dispense with the
minimum mean square criterion and to attribute more
general validity to the effects appearing in the above
example by making use of the results of the Heisenberg
uncertainty principle. However, one can show that it
is not legitimate to use the Heisenberg uncertainty
principle as a proof of one’s inability to construct a
narrow wave packet, because the restriction AkAx > 1
comes about by weighting too heavily small fluc-
tuations at large distances from the origin. There is
no reason to believe that the physics of the problem
is sensitive to such small fluctuations. Nevertheless,
we have been unable to exhibit with Ak=£%, a suitable
Fourier expansion for the class of potentials in which
we are interested.

IV. Preliminary Remarks on the d-Function

Since we are restricted only by the number N of the
coordinates g, and not by the particular %’s, we are at
liberty to choose %’s other than those with Ak= k.
This allows a wide choice of possibilities, some of which
may be unexpectedly effective in satisfying condition
III. It will simplify matters greatly if we observe that
the problem reduces itself to that of finding a repre-
sentation of a Dirac § function by means of N Fourier
components. To show this, we can write

L2
V(y)= V()6 (y—x)dx.

—L/2

(13)

Now for our problem, it is not necessary to employ the
exact 6(y—x); rather, any function d(y—x) which is
sufficiently sharp compared with V(x) will suffice as
an averaging function.

Now if d(x) can be expanded in the form

d(x)= (1/0)2 dre™, (14)
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where N different %£’s in addition to #=0 have been
utilized, it then follows that

L/2
V*(y)= V(x)d(y—x)dx

—L/2

=3 dk<1/L>( f_ ZV(x)e-i’”dx)e""% (15)

which has the desired form. We note that this also can

be written as
V*(y)=3 diVie™v.

Another important consequence of a satisfactory
d-function is that, when buttressed by physical argu-
ments, it provides for the treatment of condition II.
Again, because of the lengthy analysis, we present our
arguments in the succeeding paper.

The problem of actually obtaining the d-function is
a serious one and considerable analysis is required.
This is developed at some length in the succeeding
paper. There we shall indicate that a narrow d-function
can be constructed by the use of gaps in Ak, and that
its form is improved by allowing L,N— such that
n=N/L remains constant.

(16)
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APPENDIX. ANALYSIS OF JACOBIAN WHEN Ak#1

In this Appendix, we indicate a method, of necessity
indirect, for analyzing the Jacobian and establishing
the uniqueness of the collective coordinate trans-
formation for a wave number spectrum in which gaps
may appear.

The evaluation of the Jacobian is readily reduced to
that of the determinant |y;*|, where

y;=exp(ikox;) ; 1)

by multiplying various rows by appropriate powers,
this may be converted into a determinant in which only
non-negative powers exist. Computation of determi-
nants of this type has been carried out by mathe-
maticians?; we merely state the final result. If C; now
denotes the elementary symmetric function of the y,’s

4 A. C. Aitken, Determinants and Mairices (Interscience Pub-
lishers, Inc., New York, 1946), fourth edition, p. 116.
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taken #'—j at a time, where #’ is the largest power of
the y’s present, then

Cv1 Cllz Cvn
Cv1 -1 . Cvn -1
Cu] -2

Cvn -2

[y =11 (yi—y5) , (2

>7

where the »; are the positions of the missing powers.
(It is to be noted that the expression for the determinant
in (1) is independent of any preliminary multiplication
—negative powers of y; affect only the factor outside
the determinant.) The determinant tells us the location
of the singular surfaces. It must then be established
that they play no physical role.

We now present an infinitesimal analysis, which it
would be pointless to carry out in complete rigor, for
showing the uniqueness of the g-space transformation
and thus the physical unimportance of the interior
singular surfaces. No increase in complexity is oc-
casioned if we consider generalized collective coordi-

nates:
=2 g (). (3)

To initiate the proof, let us show that, given the g
of (3), a unique solution for the x; (to within order)
exists in the vicinity of some point. We shall restrict"
our attention to those sets of gi(x) whose real maxima
my, occur at a common point x=ga, and for which only
x=a has this property; further we assume that the
Wronskian of the dg;/dx does not vanish at x=a. As
long as the totality of %’s does not have a common
factor greater than ko, the set {¢**} is included in the
category. Consider then the point

(all &); (4)

under the conditions just delineated, this highly singular
point clearly has the unique inverse x;=x= - -
=a. Nearby, we have

Qk=lec

=XN

Nmtdg=2_; 2 & (a) (dx;)*/p!,
=0

or if ¢, is the sum of pth powers of the dx’s, then re-
stricting to Nth-order infinitesimals,

N
dgr= Z=1gk“’) (@)ap/p!. (5)

Since the determinant of (5) is just the Wronskian at a,
(5) may indeed be solved uniquely for the o, and hence
for the wx; to within order. It is also useful to observe
that the Jacobian at (a4-dx;) is not identically zero;
to see this, we need only note that

[g' (a+dxj)| = | g ® (a) | g(dxi— dx;)/I1(—7)!,

to lowest order infinitesimals, and this expression
vanishes only on the natural boundary x;=x;.
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The remainder of the proof consists in showing that
uniqueness of the solution of (3) at a point implies
uniqueness along sufficiently short paths leading from
the point, not excluding paths which cut across internal
singular surfaces. To accomplish this, we shall base
ourselves at a point {«;}, assume uniqueness of solution
at {x;—3dx;}, and try to prove uniqueness at {x;
—+3dx;}. Since

Ge(- o, @itbdas, -+ )= ge(- -, wi— b, <)
=2 (g (w)dait-(1/24) """ (v) (dx)*+- - - 15 (6)

we must then verify unique solvability of
dg=[g'+ (1/24)g"" (6x)*+- - - Jdw; ™

here dq and dx refer to the vectors dgx and dx;, the
matrix of g, (x;) is denoted by (gx:®), and the diagonal
matrix dx.0; by (8x:). To analyze (7), we consider two
cases.

Case I.—The Jacobian |[g'|0; then, dropping
infinitesimals higher than first order, we have at once
the unique solution

dv=(¢)dg. ®)

This is the usual case.
Case II.—The Jacobian |g’'| =0. The rank of g’ may
be assumed as precisely N—1, for the cofactor

Go'= g | ab )

does not contain x;, so that no single relation can cause
all cofactors to vanish; thus the rank is <N—1 only
on surfaces of dimension <N—2, and these are of no
consequence in assessing the connectivity of ¢-space.
We now write (7) in the form

2 g+ 1/24)g" (6x)*+ - - - |ridqu
=g+ (1/24)g" (6x)*+ - - - |dxj.  (10)
Since |g’| =0, the lower order terms in |g'+ (1/24)g""’

X (8x)*+ - - - | are proportional to (dx)?; thus dg is a
third-order infinitesimal with respect to dx. Dropping
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fourth-order infinitesimals and higher in (10), we then
have

2 Gildge=|g'+ (1/24)g"" (5x)?| dx;

~{ 1+ /298" 620

5 (dx,-)zalg +(1/24)g (6x)2ldx=o}dxj

d (dxl)z
- ]z (A ¢+ (1/20)g" (52"

9 (g’ +(1/24)ga""" (d23)?) }
d (dx,)z d

X5y

=0
yielding
2 Gildgr= (1/24)dx; 3= (G'g" )w(dn)?,

the basic equation for Case II.

Since |g’| =0 corresponds to a singular surface, we
are interested in paths connecting points on opposite
sides of the surface. A relation of the form 3, Gj/'dg,=0
which we have seen is nontrivial, implies that the vector
dgi is along the singular surface (d¢ is linearly de-
pendent on the vectors dg/dx; which span the surface)
and so merits no consideration. Hence Y (G'g¢")w
X (dx)* in (11) does not vanish. But on squaring (11),
we obtain

2 [(Z Gi'dgn)*(G'g"") 1]

(11)

=(1/29[X (G'g")w(dx)" P =0, (12)
so that (11) may be solved at once as
dx,-= 4)(3%[25 (Z Gbklqu)z
X (G w3 2 Ga'dgr.  (13)

From the reality of x, this solution is unique, and our
proof of the diffusion of uniqueness throughout ¢-space
is now complete.



