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90° the interference with even-/ states and with the
potential and Coulomb scattering vanishes. This would
imply that the other resonance is also formed by /=1
protons as an interference effect of such magnitude due
to more remote resonances is unlikely. Interference
between these two levels might be expected to occur in
the Li’(p,n)Be’ reaction also. However, the predominant
interference as indicated by the angular distribution of
the neutrons?® is between states of opposite parity.
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The scattering of low-energy neutrons by molecules is investigated by a method which facilitates the
treatment of inelastic processes. Dynamical systems characterized by the degrees of freedom of gas molecules
are examined in detail. The formalism is applied first to the derivation of the differential cross section for
scattering by an ensemble of coupled harmonically oscillating nuclei in thermal equilibrium. Rotator scatter-
ing is investigated in the limits of high and low energy, and inelastic corrections to the static approximation
are also calculated. The cross section of a thermally excited monatomic gas is presented in a closed form
which shows its dependence on the ratio of the mean velocity of thermal motion to the neutron velocity.
Results appropriate to large and to small values of the velocity ratio are derived. Quantitative estimates for

the validity of the various approximations are given.

1. INTRODUCTION

N recent years, the diffraction of slow neutrons by

gases has grown in importance as a research tool,
providing a useful complement to other techniques for
the determination of nuclear scattering lengths and
various molecular properties. But precise theoretical
formulas for the differential cross sections have been
exhibited, heretofore, only under the restrictive as-
sumption of elastic scattering, or more accurately, the
assumption that the energy transferred in a neutron-
molecule collision is negligible in comparison with the
incident neutron energy. In practice, molecules in
thermally excited quantum states may impart to the
neutron, and molecules of small inertia may absorb,
energy in amounts which bear a significant ratio to the
neutron energy. For these reasons, in many cases of
experimental interest, the explicit consideration of
inelasticity is necessary for a quantitative understand-
ing of the neutron cross sections.

In principle, the cross sections can be computed by
an explicit summation over contributions from all the
scattering processes that occur. But the large number of
molecular states encountered in a gas at thermal equi-
librium and the large number of energetically permis-

* Preliminary accounts of this work were presented at the New
York and Washington meetings of the American Physical Society,
1954, Phys. Rev. 94, 790(A) (1954) and Phys. Rev. 95, 605(A)
(1954).

1 National Science Foundation Predoctoral Fellow.

sible quantum transitions of the gas molecules will, as a
rule, render such a procedure impractical. Recourse to
more general and implicit methods of performing the
required summations must then be sought.

A convenient step in achieving this is the use of
operator representations in the description of the
internal and external coordinates of the scattering
molecules. Expressions for the cross section may then
be developed which implicitly sum, in closed form, the
contributions of all transitions permitted by the con-
servation laws. This device is the central one of the
present work. We return to it repeatedly, considering
in turn interactions with the various molecular degrees
of freedom.

The operator techniques to be used are formulated in
Sec. 2. In the three succeeding sections, they are illus-
trated by separate applications to problems involving
vibrational, rotational, and translational degrees of
freedom. The assembly and generalization of these
results for application to the full problem of diffraction
by gases is given in the paper which follows.

2. GENERAL FORMULATION

The scattering of neutrons by the nuclei of chemically
bound atoms may be accurately treated by means of the
familiar Fermi pseudopotential approximation.! The
short-range potentials acting between neutrons and

1 E. Fermi, Ricerca sci. 7, 13 (1936).
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nuclei are replaced by point interactions (delta func-
tions). The latter are treated using the formalism of the
first Born approximation, a procedure whose accuracy
rests upon the adjustment of the interaction strengths
to yield correctly the amplitudes for scattering by
isolated, fixed nuclei. The interaction between a neu-
tron at r, and a nucleus at r’ is then?

V(tayt’)= 2ma/m)é(r,—1’), (2.1)

in which m is the neutron mass and ¢ the bound
scattering length. The effects of the spin-dependence of
the scattering length are treated in detail in the paper
which follows; for the present work we assume the
scattering independent of spin.

The potential experienced by a neutron traversing
a molecule is effectively the sum of the contributions
(2.1) due to each of the nuclei »=1, 2, ---, N:

V() =2,0(tnt,)=2r/m)>, a,6(t,—1,).

We consider a collision in which the neutron momen-
tum changes from ko, to k, while the molecule simul-
taneously undergoes a transition between the initial
and final states y; and ¢y, for which the molecular
energies are E; and E; respectively. The differential
cross section in the laboratory system for such a process
we denote by a:(6) :

a7:(0) = (m/2m)*(k/ ko)

(2.2)

X || S e iR Y (r)dr |y |2 (2.3)
=20 Gy (k/k0)<¢il ¢tk q"[‘Pf)
X sl emitkkorme [y, (2.4)

It is convenient to introduce notations for the neutron’s
gain of momentum and its gain of energy. We write

K=k—ko,
e= (1/2m) (B—k¢).

We note the restrictions on the energies entering (2.4):
The conservation of energy,

e=FE;—E}, (2.6)

and the requirement that the final neutron energy be
non-negative,

(2.5)

e — &, (2.7)

where 8o=k¢/2m is the initial neutron energy. Since
the various molecular transitions accompanying scatter-
ing processes remain unseparated experimentally, the
complete differential cross section is obtained by sum-
ming the contributions of transitions to all admissable
final states of the scattering molecule. The cross section
oi(6) so defined depends on the initial state of the
molecule; we shall later determine its average (a,(ﬁ))T
over a d1str1but10n of molecular states in thermal equi-
librium at temperature 7.

2 A system of units in which % has unit magnitude is employed
throughout the present paper and the one that follows.
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The conditions (2.6) and (2.7) may be incorporated
into the expression for ¢;() by making use of the delta
function and its Fourier representation in carrying out
the final state summation3:

70)=3 j deﬁ(Ei—Ef—e)aﬁ(ﬁ)

= (2m)1 z f de f dt e et B~ BNty (6). (2.8)

— &
Introducing the molecular Hamiltonian H, we may, by
using the relations exp(—iE)y;=exp(—iHt)Y;, etc.,
rewrite (2.8) in the form
ai®)=Q2m)1 X a.a. ff(k/ko)e“"“

v f

X (Y:| e Bt exp(ix-1,)eHt| )

X | exp(—ix-1,)|¢s)dide.

Assuming the final states form a complete set,* we may
immediately sum over them.

(2.9)

LORICORDIRY f f (kR

X (] et exp (i 1,)eH exp(—ix- 1) |¥s)dide. (2.10)

The energy spectrum of the scattered neutrons is con-
tained in the integrand of (2.10). If we define o;(6,¢) as

the differential cross section for scattering of neutrons
with energy transfer e, we may write

a:(0,e)= (k/2wko) 3 a.a. f et
X ;| et exp(in-1,)e He exp(—ix-1,0) |[:)di (2.11)

together with the integral relation

oi(6)= f oi(0,6)de.

— 8

(2.12)

The expressions (2.10) and (2.11), representing the
cross sections in terms of expectation values in the
initial state of the molecule, furnish a convenient start-
ing point for the development of a number of techniques
to be used in treating the various molecular degrees of
freedom. The Hamiltonians for these coordinates are
sufficiently simple to permit the exact or approximate

3 This device was first used in a similar context by W. Lamb,
Phys. Rev. 55, 190 (1939).

4 When identical nuclei are present in the molecule, the final
states will be restricted by symmetry requirements. The summa-
tion may nevertheless be carried out over the complete set since
the interactions are symmetrical among the like nuclei, and
matrix elements for yy of symmetry character different from
¥; vanish.
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evaluation of the required operator products by ele-
mentary methods. In this way we characteristically
avoid all explicit use of the molecular wave functions.
The expression (2.10) implicitly computes and sums
the transition probabilities corresponding to all non-
vanishing matrix elements, a property particularly
convenient when, as is frequently the case, large num-
bers of different transitions take place.

To simplify the operator products entering (2.11),
two devices® will later prove useful. We may introduce
the time-dependent position coordinate r,(f) of a
nucleus as an operator satisfying the Heisenberg equa-
tion of motion:

1d(r,())/di=x,()) H—Hr,(2). (2.13)

The solution, written in terms of the time-independent
operator r,, is

1, (t) =eHir,e 1L, (2.14)

The expectation value required in (2.11) may then be
expressed more compactly as

(W:] €t exp(ix-1,)e " exp(—ix-1,) [{:) _
={y;|exp[ix-1,() ] exp[—ix-1,,(0)][¢:), (2.15)

where the time-independent coordinate r,» has been
written in the time-dependent notation as r,-(0).

Alternatively we may note that in virtue of the canon-
ical commutation relation between the coordinate r, and
its conjugate momentum p,, the function exp(ix-r,)
acts as a translation operator on the momentum:

(2.16)
The same transformation performed on the molecular

Hamiltonian H yields a new Hamiltonian, which we
denote as H,'. This is

exp(ix-1,)p, exp(—ix-1,)=p,—x.

Hy'=exp(ix-1,)H(p,,1,) exp(—ix-1,)
=H(p,—x,1,) (2.17)

in which only the dependence of H on p, and r, has
been indicated. The expression H(,)’ may be regarded
as the effective Hamiltonian of the molecule after the
incident neutron has gained a momentum x in a col-
lision with the »th nucleus. The direct scattering terms
(v=7') of (2.11) may now be simplified by noting that
they contain the same transformation, applied to an
exponential function of the Hamiltonian H,

i) e'Ht exp(in-1,)e"Ht exp(—x-1,) | ¥s)
= (Y| eHigm HO t ;). (2.18)
To illustrate the application of the foregoing work we

begin by discussing the interaction of the incident
neutrons with the vibrational degrees of freedom.

3. SCATTERING BY VIBRATING SYSTEMS

Taking the molecular center of gravity as origin, we
represent the equilibrium positions of the vibrating

5 These have also been noted by G. C. Wick, Phys. Rev. 94,
1228 (1954).
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nuclei by the vectors b, (v=1, - -+, N). The displace-
ment of the »th nucleus from its equilibrium position
b, at any instant ¢ we denote by u,(¥), so that the posi-
tion vector r,(¢) is

r,()=b,+u, ().

In a rotating molecule, the equilibrium positions b, are,
of course, themselves dependent on time. We shall save
the consideration of the b,’s as dynamical variables,
however, till the next section and the succeeding paper,
where the effects of rotation will be treated in some
detail. For the present we confine our attention to the
vibrational degrees of freedom by assuming the vectors
b, fixed. Then, by applying (2.11) and (2.15), we may
find the scattering by molecules in the vibrational state
¥, from a knowledge of the expectation values

Wil explix-1,(£) ] exp[ —ix-1,,(0) ]| ¥s)
=explix- (b,—b,) J:|expLix-u, (4]
Xexp[—x-u,r(0)]] ).

However, the target molecules are in general in thermal
equilibrium at a given temperature 7" rather than in
predetermined initial states. The quantity desired for
the prediction of experimental cross sections is therefore
the mean value of (3.2) computed for a thermal dis-
tribution of initial states ¥,. We denote such average
values by the brackets ( )7, and introduce the abbrevia-
tion x,, for the products of the exponential functions of
the displacement coordinates. The quantities to be
calculated then take the form

(o= (explix-w,(1) ] exp[ —ix-wyr (0) 1.

These expressions may be evaluated exactly without
difficulty for harmonically oscillating systems.

The molecular vibrations may be resolved into
normal modes by introducing the set of normal coordi-
nates ¢, where A=1, 2, ---, 2N—6 (or 2N—5 for
linear molecules), together with the amplitude vectors
¢,® for each particle and each mode:

uva) :Z)\ C,()‘)Q)\(t).

The dynamical independence of the normal modes
makes it possible to separate their effects on the
scattering. Since the normal coordinates of different
modes commute with one another, exponential func-
tions of u,(#) may be factored into products of exponen-
tials, one for each mode,

explic-w, () =11 exp[ix-c, M@ ].  (3.5)

A further consequence of the independence of the modes
is equipartition of energy among them. The Maxwell-
Boltzmann thermal distribution function for the
molecule as a whole may likewise be expressed as a
product of factors, one for each mode. The mean value
(3.3) of the product of two exponentials may accord-

(3.1)

(3.2)

(3.3)

(3.4)
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ingly be separated into a product of mean values:

<Xw’>T =H)\ (XW' ()\)>T
=]Tx {exp[ix- ¢,V qr(t)]

Xexp[—ik-c, M (0) 7. (3.6)

Since the averages to be evaluated take the same
form for all modes, we may confine our attention to
one of them and omit the index X. To exhibit the time
dependence of a normal coordinate more explicitly,
it is convenient to introduce the time-independent
operators @ and @' which are conventionally used in
the quantization of the harmonic oscillator. These
obey the commutation relations

[d,(ﬂ] =1,
[a,a]="[at,at]=0.
The normal coordinate ¢(f), which we shall take to
have the same formal properties as the coordinate of a

one-dimensional harmonic oscillator of unit mass and
angular frequency w, may then be expressed as

g(0) =12w) *(ae~t—aleiv?).

3.7

(3.8)

This defines the normalization of the amplitude vectors
c, ™.

Exponential functions of the normal coordinates
such as occur in (3.6) may be multiplied by means of
the rule

¢AgB = gA+BHi4,B] - (3.9)
which holds for any operators 4 and B which commute
with their commutator [4,B]. Hence, for each of the
modes we may write

(x»w)r=(exp[ix-¢c,q(1) ] exp[ —ix-¢,,q(0) ))r
= (exp{i[x-¢,q(1) —x-c, ¢(0) ]}
Xexp{3(x-c,) (x-¢,)[¢(),q(0)]}) 7.

The thermal averages which must be evaluated are
thereby reduced to those of single exponential functions
whose arguments are displaced oscillator coordinates.
The evaluation of such averages may be performed im-
mediately by use of a corollary of Bloch’s theorem on
the distribution function of an oscillator coordinates:
If we let Q be any multiple of an oscillator coordinate
or linear combination of them, we have

(expQ)r=exp{3(Q*)r}.

" A simple, self-contained proof of this relation using the
methods of the present section is given in Appendix A.
Employing this evaluation of the thermal average in
(3.10) and noting that expectation values of ¢2(¢) are
the same as those of ¢2(0), we find

(xow)r=exp{—3[(x-¢,)*+ (x-¢,)*](¢*(0))r
+ (x-¢,) (x-¢,/)(¢(1)¢(0))r}.
6 F. Bloch, Z. Physik 74, 295 (1932).

(3.10)

(3.11)

(3.12)
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The averages of the expressions bilinear in the co-
ordinates which occur in (3.12) may be found directly
from the expansion (3.8) and the commutation rules
(3.7). These yield

(¢(9)¢(0))r= (2w)~{(aat) re~i*+(ata) re™*}
= (20){ ((m)r+1)e "+ (n)re’t}  (3.13)

in which we have introduced the thermally averaged
excitation quantum member (1)y. With the notation’

z=exp(w/T), (3.14)
{n)r is given by
(m)yr=(z—1)7, (3.15)
and (3.13) becomes
(q19(0))r=[2w(z—1) I (ze~*+-€™7). (3.16)

The thermal average (3.12) is therefore given by

(o) r=exp{—3[(x-c,)*+ (x-c,/)]
X (54+1)/2w(z—1)} exp{(x-c,) (x-¢,)z*
X (zeiot4-z74ei0t) /20 (z—1)}.  (3.17)

As we have shown in the previous section, the dis-
tribution of energy transferred by the neutron to the
scattering system is given by a Fourier integral over
time of the thermal average (3.3). The latter, by means
of (3.6), may be expressed as a product of factors of
the form (3.17), one for each mode. Since the scattering
system is equivalent to an assembly of harmonic oscil-
lators, energy transfers must be confined to the dis-
crete values e= mwy, where the wy are the normal
mode angular frequencies and the 7, are integers. This
restriction of the energy transfers may be seen to
follow, in the present context, from the fact that the
expressions (3.17) for the different modes are periodic
in time with the fundamental frequencies wy. Fourier
integrals of these expressions are easily evaluated by
expanding them first as complex Fourier series. As we
shall see, the coefficients of the series may then be
identified with the probabilities that the different quan-
tum transitions take place.

To expand (3.17) as a Fourier series, we need only
note that the second of its two exponential factors
already has the form of the generating function for the
modified Bessel functions® 7 ,:

e%x(y+1/1/)= i y”[n(x).

n=—o0

(3.18)

Carrying out the expansion as indicated, and eliminat-
ing z via (3.14) we find for (3.17)

(e =exp{—[(x-¢,)*+ (x-c,)*](4w) ™" coth(w/27)}

. () (s-¢.)
X Z eznwte—(nw/ZT)In(———————). (319)
2w sinh (w/27)

7 By measuring the temperature in units of energy, we eliminate
explicit occurrence of the Boltzmann constant.

8 G. N. Watson, Bessel Functions (The Macmillan Company,
New York, 1948).

n=—00
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To find the distribution of scattered particles we sub-
stitute this expansion, performed for each of the modes,
in the appropriately specialized form of Eq. (2.11),

k
Z a,ay fe—'iet
2mko v.v’
Xexplix: (b,—b,) T 11 {xorr ®)rdt.  (3.20)
x

(0(6,6))r=

The individual Fourier components of the product
IT G @) in (3.20) will contribute delta functions of
the energy transfer e. From the coefficients of these we
may identify the partial cross sections for any given
excitation processes. In particular, for a scattering
characterized by the energy transfer e=3 ) mw), we
find the partial differential cross section?

(ot 10)) 7= (k/k0)D_,, » @s0s
Xexp[i- (b,—b,)W,,, (3.21)
where

W, =TI exp{—[ (- c, )2+ (x-¢,, ®)2]
X (4on)™ coth(wn/27)} exp(—mwn/2T)

®- y()\) ®-C, N
I(L_)ﬁ__>) (3.22)
2wy sinh (w)\/ 2 T)

For many of the cases occurring in practice the argu-
ment of the modified Bessel function is sufficiently small
to permit approximation of the function by the first
term of its power series expansion:

Ln(@)~(G2)!" (|| D7 (3.23)

4. SCATTERING BY ROTATORS

The scattering of slow neutrons by a gas may induce
large numbers of different rotational transitions among
the molecules. In this situation, which prevails charac-
teristically for neutron energies larger than the rota-
tional level spacings, the labor of computing the cross
sections by direct summation of the transition probabili-
ties becomes prohibitive. The present section is devoted
to the development of convenient approximation
methods for finding the cross sections and energy dis-
tributions of neutrons scattered by rotators.

Many features of the problem may be understood by
treating the simplest model of a scattering system
possessing only rotational degrees of freedom. We
consider the collisions of neutrons with a single point
scatterer constrained to move on the surface of a sphere.
Let b denote the position coordinate of the scatterer,
9N its mass, @ its scattering length, and &= |b| the
radius of the sphere. The Hamiltonian for the rotator

¢ Equivalent results are quoted by N. K. Pope, Can. J. Phys.
30, 597 (1952). The present procedure of treating all the inelastic
processes at once and performing the thermal averaging before

computing the individual transition probabilities considerably
simplifies the derivation.
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is given by
H=1?/(2mb*) = (bXp)*/ (20m%),

where L is the angular momentum of the scatterer.
This model proves of considerable practical use in
treating the scattering by spherical top or linear mole-
cules. Molecules of both these types with moment of
inertia I rotate with energy L2/(27). The direct scatter-
ing by a nucleus at distance b from the center of mass of
either of these is described by the model if an effective
“rotational mass’ 9 =1/8% is given the nucleus.

A number of approaches will be developed for treat-
ing the rotator. For sufficiently high neutron energies
the scattering may be described in an essentially classi-
cal way. Using the techniques of Sec. 2, the classical
limit may be taken as the starting point for an approxi-
mation method which computes successive quantum-
mechanical corrections to the cross sections and energy
distributions. Alternatively, for the frequently occur-
ring cases in which (m/9)<<1 an expansion of the
general expression for the cross section in powers of the
mass ratio may be performed. These methods are de-
veloped in turn and compared. The interference effects
which arise when the rotator consists of more than one
scatterer are treated at a later point. In Appendix C
another approximation method is introduced which
treats neutron scattering in the very low energy regions
where the other methods are unsuitable.

For the rotator, the Hamiltonian after collision,
defined in the sense of (2.17), is

H'=[bX (p—x) ]/ (29mb*)
=[I24x- (bX L—LXb)+ (bXx)2]/(29152). (4.2)

The scattering by rotators with angular momentum /
may be described in terms of an expectation value of
the form (2.18) averaged .over all orientations of the
axis of rotation. Writing this as {x);, we have

(4.1)

1
<X>l= T m§l (Ylml ethe—iH’t[ Ylm> (4.3)
- (ethe—iH’t>l, (4.4)

where the wave functions V,»=Y;"(8,¢) are normal-
ized spherical harmonics.

A classical description of the scattering is obtained
by considering the limit of large values of k¢, or
effectively, by neglecting the contributions of the
operator L in H’ and H. Then (4.4) reduces to the form

)= {exp[—it(bXx)2/ (291b2) ),.

Since this form no longer contains operators which fail
to commute with the coordinate b, the average over
orientations (4.3) may be performed classically. If «
is the cosine of the angle between x and b, we have

+1
x)i=% f exp[ —iix?(1—2) /291 ]dx.
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Substituting this in the expression (2.11) for the cross
section and integrating over time yields

ca(0,e)=%3a*(k/ko) S5 (e+12(1—22) /290 dx.
Performing the integral of the delta function, we find

aMm k2
oo(fe)=a*— ———— for ———<e<0,
ko k(k2+29€)? 291
(4.5)

=0, otherwise.

In terms of the neutron momenta, the inequality in
(4.5) becomes

ko> k2> ko[m cosf—+ (NME—m? sin2) ¥ (M —+m) L,

which states the bounds of the outgoing neutron spec-
trum. The differential cross section ¢.,;(8) = S (0,¢)de,
which may be found by a numerical integration, is
more easily determined, in most cases, from an expan-
sion in powers of the mass ratio m/91:

ca(8)/a=1— (m/M)[(4/3)— (4/3) C050]
+ (m/9M)2(1—cosB)[ (4/3)— % cosf ]|
— (48/35) (/M) (1— cosh)?
~+ (16/315) (m/9)*(1—cosh)?
X (27—10 cosf—S5 cos?) — - - -

These terms occur in the calculation of the cross section
of methane, described in the following paper.

A cross section ¢® (6,¢) taking into account the first
quantum corrections to ¢.(0,¢), i.e., corrections of
order (xb)~2, may also be calculated. We record here
only the result; the derivation is given in Appendix B:

c®(8,e) =0 (0,6)[ 143 (xd)2V (y)],
where
y=r?(k2429Me) 7,
Y (y)=y+49>—5y*+1(1+1) (6y*+2y).

For a development of the general expression for the
differential cross in powers of the mass ratio (m/9M),
we return to (4.4).

Consider a Taylor expansion,

Gon= nﬁ:ﬁo cn(;—;) ",

in which the coefficients ¢, are functions of x and /.
Then o,(f,¢) can be expressed formally in terms of
derivatives of the § function as follows:

(4.6)

g1(0,) =— — Z “i“dt

7rko"

=a?(k/k))2n (—IM)~"cad™ (¢).

fmde

Integration over the variable e may now be performed
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so that the differential cross section becomes!¢

g (0) kg lzm_"(d/dé) (kcn)e=0
=a%kg Y (m/M)"(kd/dk)"(kca)k=ko. (4.7)

Thus the expansion of the expectation value in powers
of the time expresses the differential cross section as a
power series in (m/9). This ratio measures the in-
elasticity of the scattering. A small amount of inelas-
ticity means a slowly varying time-dependence of the
expectation value. This, in turn, implies small coeffi-
cients of ¢ in the time expansion and rapid decrease of
the successive terms. The zeroth-order term of the
expansion is the well-known static approximation which
neglects inelasticity entirely.

We must now develop a technique for evaluating the
coefficients ¢, for the case of a point scatterer constrained
to move-on a sphere. For states in which the scatterer
has angular momentum /, the expectation value (4.4)
may be written as

OOr= QU+, (Y| et @=ED [ Fm) - (4.8)

where E;=1(l41)/ (2916?) is the energy of the rotational
state. Making use of the expression (4.2) for H’, we
may write

H'— Ey= (H— E))— (ix/Mb)B+ (x*/291)y, (4.9)
where the operators 3 and vy are defined as
=2%ix- (bXL—LXb)/xb
=x- (b+ibXL)/«b, (4.10)

v= (Xb)*/ (%),

and the commutation relation between b and L has
been used in deriving the second expression for f.
Explicit representations of these operators may be con-
structed by choosing a system of polar coordinates'
(?,¢) with its polar axis in the direction of x. Then we
have the angular momentum components:

L,=1sinp(3/3%)+1 cotd cose(d/d¢),
L,=—1icosp(d/d8)+1 cotf sing(8/d¢),
Lz’: _1(6/659))

in terms of which we may evaluate H, 8, and . Letting
%=cosd we find

L? —1(1 9 9 m?
H=——= [-—~ sinz?—) — }
291b? 2912 Lsind 9 99/ sin%d
—1¢(9 d m?
= l—(l——xz)——m—], (4.11)
291b2  dx ox 1—x?
B=sin?#(3/ %)+ cosd= (x2—1) (8/9x)+x, (4.12)
y=sin%¥}=1—2a2 (4.13)

10 A similar procedure was employed by Wick (reference 5) to
derive the approximation of Placzek for total neutron cross
sections, G. Placzek, Phys. Rev. 86, 377 (1952).

11 The azimuthal angle ¢ is measured from the x axis.
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Since, owing to the choice of coordinate system, these
operators are independent of ¢, the spherical harmonics
Y™ occurring as wave functions in (4.8) may be re-
placed by the associated Legendre functions P;™(x),
multiplied by suitable normalization constants Ny, !
We now define the “quantum number” operator 91
and the “raising” and “lowering’’ operators ® and £ by

NP (x)=1P"(x),
®RP™(x) =P (x),
LP(x)=Pr_1"(x),
=0 if |m|=L
By means of the recursion relations

(= 1)(/d) Py ()= (= m+ D Prsa(2)
+ ()P () =0

and

Q2I+1)xPy(x)— (I—m~+1) Pra™(x)
— (l—|—m)Pl_1’"(x) =0

we infer
H=3(n+1)/(20m7),
&(9”6+1)(91+1—m) £ﬁl(91+m)’
29t+1 291+1
v=2(90+N—1+m? /(290 —1) (291+3)
(OU2—m) (U+1—m) _£2(3l— 1+4m) (fn+m).
(29t+43) (291+1) @a—1)(29t+1)

Further, if f(97) is any function of 9,

and
LR=1, RLOV—m)=9—m>  (4.14)

We now expand exp[ —it(H'—E;)] in powers of ¢,
retaining only those terms with diagonal matrix ele-
ments (terms which may be reduced to a form inde-
pendent of ® and £). Note that only even powers of 8
contribute to diagonal matrix elements. Moreover, as
H—E,; yields zero when standing adjacent to P;"(x),
the only terms involving A — E; which need be kept are
those in which it has factors of 8 or v on both sides of it.
The use of the ®, £, and N representation, with the
simple prescriptions (4.14) for commutation relations
provides a straightforward method for evaluation of the
time expansion coefficients to any order. We exhibit
here the calculation to terms in £.

Keeping only terms with diagonal matrix elements,
we have

(P |exp[—it(H'— Ey)]| Py™)= (Py| 1—% (it/ M)y
+ (it/M)? (Fry> — 3636%7 )+« - - | Py™).
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The part of 82 which contributes is
(OU+1—m) (91+1) (91+m)I
® £

291+1 290+1
. (Sl—l—m)fjlm(f)l—i— 1—m)(N+1)
291+1 29141 '

Hence,
N w(P™| B2 Pi™)
—B(—m?) [0 —m](1)?

(21—1)(2141) (2143) (214-1)
Since
1 l
_ m?=%l(l+1),
2l4-1 m=1

it follows that
A1) T Ny (P | 2] Pimy= — 3 (P+I41).

Spatial averages of powers of v unmixed with powers of
B or H—E; are easily obtained from the representation
(4.13), so that

(sin’®)n =%, (sin?®)n=38/15.

Thus,

it k2 i\ et kK2(PHI41)
o T
an 3 aMm 15 652

Therefore, by (4.7), we obtain

01(6)/a*=1— (m/IM)[ (4/3)— (4/3) cosd]
—+ (m/M)*{ (1—cosh)[ (4/3) — £ cosh ]
FEEHA ) (k) — .

Each power of (m/9)" in the series development multi-
plies a sequence of # terms of which the first is solely a
function of angle. The further terms contain successively
higher powers of (k¢b)~2 as well as polynomials in I. For
a gas in thermal equilibrium, thermal averages of these
polynomials must be computed. The leading terms
represent the formal expansion in powers of (m/9) of
the classical cross section, ¢.;(6). The calculation of the
diffraction cross section for methane discussed in the
paper to follow requires the consideration of terms of
the latter category to order (m/9M)* The sum of the
second terms constitutes the first correction ¢®(6) to
oa(f). For low energies, k<1, the last terms of the
sequences multiplying powers of m/M predominate. A
low-energy approximation to the cross section given in
appendix C is shown to constitute a selective summation
of precisely these terms of the mass expansion. The
closed expression representing this sum indicates that
the mass expansion fails to converge for neutron energies
smaller than the rotational level spacings.

We consider next the interference terms which result
from the presence of more than one scattering center in
a rotating molecule. Since particle interference is in-

(4.15)
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herently a quantum phenomenon, there is no classical
approximation analogous to (4.5).

Let by, a; and by, @ be the position coordinates and
scattering lengths of two nuclei rigidly bound to a
molecule that rotates as a spherical top or linear con-
figuration. Let I be the moment of inertia of the mole-
cule. We employ a device earlier applied to the treatment
of direct scattering by introducing a Hamiltonian H (s,

H(2),= exp(mbg)H eXp(—iK' bz)
=[L242x- (boX L—iby)+ (kX by)?](21)~L
The expectation value for an interference term,
averaged over all states y; of angular momentum /,

(ximt)r= (Y1 €t exp(ix-by)e Ht exp(—ix-by) [Y1)a,
can then we written as

(Xint)1= (1| exp(ix-b1o) exp[ —it(H ) — Ei) ][¥1)n (4.16)
with bja=bi—b.. To first order in £, (4.16) becomes

(Xint)1= (1| exp (ix-buo) [Yo)n— (it/21)
X <¢z ’ exp (iK : blZ)[_ 2ix-bst- (KX b2)2] l ‘/’l>»\v
— (it/ )] exp(ix-bio) (kX by L) [¥2)a.  (4.17)
In the third term of (4.17) the operator L acts directly
upon a wave function ;. As is easily seen by choosing
the axis of quantization along (xXbs), the indicated
average of a component of L over all orientations of the
rotation axis vanishes. Averages of the other terms can
be performed classically. The integrations which occur
give rise to the spherical Bessel functions
Fo(x)=a"" sinx,
J1(x)=—2x7" cosx+a2 sinz.
With these definitions, we find

(1| exp(ix-bu2) [¥a)n= (4m) LS exp(ix-b1)dQ
= Jo(kb12),
(zﬁl ] exp (ik . blg)ik -b, [l//l>Av= kbys™ (1722—171 : bz)jl (Kbm),
and

1| exp (ix-bys) (X b2)? [¥i)a
=x2h152(b1 X b)2 7o (kb12)
+kb157 [ 2652 — 301572 (b1 X b2)2 ] 71 (kb12)-

The portion of the differential cross section arising
from interference effects is derived from the expectation
value (4.16) contributed by scatterers 1 and 2, which
we have computed in first order, plus an equal term in
which the roles of 1 and 2 are interchanged. To find
the interference cross section contributed by this pair
of scatterers, we substitute the averages computed
above into an obvious adaptation of the time expansion
formula (4.7), to interference terms, obtaining

(4.18)

oint®? (0)/a102=250(xb12)
m 1 d kK2(b1Xb2)2 .
—— — —{————Jo(kb)
I ko2 dk 0122

+{;£2[2(b1-b2) 3( lb ; b2y’ J]l(wa)l (4.19)
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Further corrections would be rather lengthy expressions
involving Bessel functions of higher order. However,
inelastic effects are manifested characteristically as
corrections to wide angle scattering while interference
itself, for wavelengths smaller than molecular dimen-
sions, is a forward angle effect. Thus, in (4.19), we find
the combinations x27o(kb12) and «7,(xb12) whose deriva-
tives with respect to & are small for both large and
small angles. The static approximation,

Ting™? (0) = Zaldzjo(Kb12) ,

is in fact adequate for the analysis of many diffraction
experiments.

5. SCATTERING BY A MONATOMIC GAS

Neutrons scattered by a gas exchange energy with
the molecules via translational recoil. To study the
effect of such processes upon the cross sections, we
consider the scattering by a gas of single particles which
have no internal degrees of freedom. The techniques
thereby developed, which apply directly to the case of
a monatomic gas, will later be of use in treating the
scattering by complex molecules.

To obtain the cross section for direct scattering, we
utilize the form (2.18) of the expectation value. For gas
densities which are not too great, we may neglect the
possibility that a scattering atom collides with another
during the time associated with a neutron collision.
Accordingly, an atom participating in a direct scatter-
ing event may be treated as a free particle with a
Hamiltonian which consists solely of its kinetic energy.
(However, certain interference effects, to be discussed
later, require a more careful examination of inter-
particle interactions.) If M is the atomic mass, we have

=1%/2M, H'=(p—)?/2M.

Choosing wave functions ¢ for the atom which are
eigenfunctions of momentum as well as energy, we have

<¢, ethe—iH't,¢>= exp[it(zp'K_K2)/2M]

where p now specifies a momentum eigenvalue. The
particle momenta are distributed with the Boltzmann
weighting factor fr(p)= (2xMT)~% exp(—p*/2MT) for
a gas in thermal equilibrium. Hence the thermal average
becomes

ety [l 4) 2 (o) (@)
12T k2
2M

— k2

e
2M

], (5.1)

so that we obtain

@k N\ 2T
= EXP[ ( +—)_ oM ]dt

2
(o) 1o oo
2w Tk? 2T«? 2M

2]. (5.2)
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The operator formalism thus provides a compact
evaluation of the energy spectrum of neutrons scattered
at any angle.

In order to carry out the integration over final ener-
gies, we introduce a dimensionless variable z=£%/k, pro-
portional to the scattered neutron momentum and a
parameter « defined by

o= (mT)/ (M ).
An equivalent relation is
a=(3)!(vn/v0), (5.3)

where v,, is the mean thermal gas velocity and v, the
incident neutron velocity. We also write A for the mass
ratio m/M. We find then, by (2.12) and (5.2),

C

(c(@))r= (o(6,€))rde

= f (0(8,€)) 7 (ko?/m)zdz

=a'nha ! f ¢ (0,2) exp{—[4(0,2)/a1*}dz, (5.4)
where °

¢(0,2) =22(1— 2z cosf-+3%) %,
22(14+X)—2\z cosf— (1—2)

h(8,5)=
) 2(22—2z cosf+1)?

(5.5)

Thus, the details of the differential cross section are
determined by two physical parameters, the ratio A of
the masses of projectile and target, and the mean ve-
locity ratio a.

In many experiments on neutron diffraction, the
relevant velocity ratio is rather small. An expansion of
(5.4) about the value assumed at =0 is therefore of
practical value. The cross section for scattering by a
monatomic gas may, in any event, be computed
numerically from (5.4). However, the approximation
for small « is applicable, as we shall see in the second
paper, to the treatment of more complicated scattering
systems where analogous but more complex integrals
appear.

Because the integrand in question is not analytic at
a=0, the expansion of {¢(6))r about this value need not
be a simple Taylor series in powers of a. As « approaches
zero, the function o exp[%(6,2)/a > vanishes strongly
for all values of z save those which satisfy

h(6,2)=0. (5.6)

Thus, the dominant contributions to the integral come
from the neighborhoods of the roots of this equation.
The expansion of (5.4) is accomplished by a device
which approximates the integrand well in the vicinity
of these roots, though crudely elsewhere.

The extrema of %(6,z) as a function of z are determined
from (d/dz)h(6,2)=0 which is a cubic equation. Its
sole real root, which we denote by 2., corresponds to a
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minimum value %,,(6) of %(0,z). If we define a new vari-
able of integration s by

s=h(8,2)/a, 5.7
the implicitly defined function z=z(as) has two
branches. These are specified by the notation

z=zM(as) for 2>2m,
2=2(as) for 2z<zm.
An inspection of (5.5) shows that 3, is positive and thus
within the region of integration of (5.4) only when
6<90°.
Introducing the change of variable into (5.4), we
obtain

O _

a’rt

f exp(—s)dM (as)ds
hm(8)/a

2(8,0)/a
+ f exp(—)BO (as)ds for 0<90°, (5.8)
ko (0) /e
and
@) =
= exp(—s)®M (as)ds for 6>90° (5.9)
art R(8,0)]
where
L OD (as) = (3 (as) )dzt/d (as).
et

©
q;(:l:) (as) = Z Cn(:l:)a’ﬂsn

n=0

(5.10)

be the formal Taylor series for & and &) about
s=0. Upon substitution of these series into (5.8) and
(5.9), we encounter integrals over terms of the general
type exp(—s*a”s”. It is now assumed, as part of the
approximation, that « is small enough to permit the
replacement of the (negative) limits of integration
h(6,0)/« and %, (0)/a by — . This corresponds to the
neglect of contributions to the cross section of order
a exp[ —%(8,0)/a]? and a exp[ —kn(6)/a 2.

Then the differential cross section takes the form of a

power series in o?,
0

(c(0))r=ar"% f exp(—s)®M (as)ds

—00

o
=1t Y a0 DT (n+3),

n=0

(5.11)

the odd powers of (as) canceling in the integration. The
computation of the initial terms of the series is straight-
forward, if tedious, and yields

(@@))r=(@O)r+ (P O)rt -,
[\ cosf+ (1 —A2 sin?6)2 2
(14N (1 =22 sin%)?
{e®0))r=5a2 1+ A+322) (3 cos?d—1)
+30% sin%9 (5 cos?—1)4+-0(\%)].

(5.12)

(@@ ©))r=a*
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Because of the complexity of the exact expression for
(e (0))r it is written here as a power series in the mass
ratio. The cross section for =0, or equivalently, zero
temperature, is given by the leading term of (5.12).
It is just the result ordinarily derived by kinematical
transformation to the rest system of the scatterer from
the center-of-mass system, in which the cross section is
isotropic.

We have noted earlier the nonanalytic dependence
on « of the function whose integral determines the cross
section. In consequence, the series (5.11) likewise fails
to behave analytically at a=0. Convergence of (5.11)
for any range of values of a implies that ¢, tends to
zero with increasing # with sufficient rapidity to assure
that 3~ cs,F)s?" is an entire function. Since the even part
of ®®)(as) is manifestly not an entire function, we
recognize that (5.11) and (5.12) represent an asymp-
totic series.!?

The utility of the expansion of the cross section is
limited by its asymptotic character; its region of ap-
plicability is dependent on the accuracy desired. For
scattering by particles whose mass is at least twice the
neutron mass, the use of solely the zeroth-order term
of (5.12) may be shown to cause an error of less than
19, when a<1/10. The cross section for somewhat
heavier scatterers, e.g., A< 1/5, is given to within 19
by retaining only the first two terms of (5.12), provided
that «<1/5.

It may be remarked that the series (5.12) is precisely
the result which would have emerged had the time
expansion method of Sec. 4 been applied to the cross-
section formula. The present method of deriving the
expansion indicates the extent to which the former
procedure represents the cross section accurately, and
permits a study of the analytical properties of the
series. These considerations will be seen in the next
paper to apply equally well to the scattering by com-
plex nuclei. The application of the time expansion
method in the more general context yields additive
corrections to the static cross section which are asso-
ciated with the different molecular degrees ot freedom
with which the neutron may exchange energy. Among
these corrections will appear the terms of (5.12).

The form of the approximate cross section in the
limit of large a, i.e., high temperature or low incident
neutron energy, is easily derived. If the region of inte-
gration in (5.4) is separated, for example, into (0,al)
and (a},«), then for o>>1, the integral over the first
region is less than

1

At f * (22— 2z cosf+1)"¥dz
0

12 See, for example, E. T. Whittaker and G. N. Watson, 4
Course in Modern Analysis (The Macmillan Company, New York,
1945), pp. 150-159.
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which goes to zero, whereas the inteqral over the second
region becomes

ot f 2 exp[ — 22(14+-\)2/4e?]dz.
1

a

Setting y=22(14-1)%/4a?, the latter integral becomes
simply that of an exponential, and as & becomes large
the lower limit goes to zero. Hence we find asymptoti-
cally for large o,

(¢ (0))r~a*(14+N)2(2anH).

For intermediate values of @ a weak logarithmic
singularity in the forward direction is contributed to the
differential cross section by scatterers moving with
nearly the same velocity and direction as the incoming
neutron. The scattering by these particles is clearly
elastic and confined to small angles.

Interference between the amplitudes scattered by
independent atoms of the gas (the ‘“outer effect”)
produces a change in the intensity well known in the
case of x-ray diffraction. To calculate the intensity
exactly, however, requires detailed information on the
interparticle interactions and the position correlations
they lead to. In particular, to treat the inelastic part
exactly a knowledge of the time dependence of the
position correlations is required as well. Since the inter-
ference effect varies as the square of the density of the
scattering system it is not often of great importance in
gases. Furthermore, at the neutron energies commonly
employed the effect is confined to very small scattering
angles. Since high accuracy is not required for its esti-
mation we may employ the simple model introduced by
Debye!? for the x-ray case. We assume the interparticle
correlations vary relatively slowly with time and
replace 1,(¢) by r,(0) in (2.15). If now the particles are
treated as hard spheres of diameter d, whose overlap is
forbidden, we have for the interference cross section
per atom:

oint(0) = —a®p (4w d?/3) (3kd) ' j1(xd) | & = 0.

Here p is the number of particles per unit volume, and
71 1s the first-order spherical Bessel function (4.18).

(5.13)

APPENDIX A

In Sec. 3, use was made of the thermally averaged
expectation value of an exponential function of a har-
monic oscillator coordinate. The theorem employed is

(expQ)r=exp{3(Q°)r}, (A1)

where Q is any multiple of a harmonic oscillator coordi-
nate. This relation, a corollary of Bloch’s theorem, may
be demonstrated quite directly by employing the
operator representation for Q. We express Q in the form

0=\a+Nat
13 P, Debye, Physik. Z. 28, 135 (1927).



128 A. C.
where ¢ and ot are the familiar quantization operators,
obeying the commutation relations (3.7), and the
coefficients A and A\* may contain an oscillating time
dependence. To find a matrix element of a function of
Q it is convenient to carry out first a rearrangement of
the operators ¢ and a' which collects the powers in
which they occur and fixes their order. For this purpose
we employ the identity (3.9), by means of which the
function expQ may be expressed as

expQ=exp(A*at) exp(\a) exp(3[|7]?),

a form which is chosen so that the annihilation operators
precede the creation operators. The diagonal element of
expQ in the nth excitation state is then found by intro-
ducing the series expansions of the functions exp(A*af)
and exp(\a), which may be terminated at the nth order
since no more than # quanta may be annihilated.

. Al
(exp@)n=2_

= (p1)?

((@")?(a)7)n exp(3[A[3). (A.2)

Using the elementary rules for the application of the

quantization operators to the state vectors ¥,
a¥,=n*,_;, a¥,=@n+1),,,

we have

((@hrar)a=nl/(n—p)!
which, substituted in (A.2), yields

n n!
xpQ)n=> ——— |\ |22 exp(3|1]|?). (A.3
T T LGNS

The thermal average of the operator exp( is given by

(expQ)r="Trace[exp(—H/T) expQ]/
Trace[exp(—H/T)]
=[1—exp(—w/T)]3¥ exp(—nw/T)
X{expQ)n. (A4)

Letting s=exp(—w/T) and combining (A.4), (A.3), we
have

pQ)r=(1-2) ¥ —
= o vp

® [)\1211217 dar

=9 T S e,

n!|\|2Pgn
exp(3[A[?)

In the latter form, the summation over # is seen to be
that of a geometric series, which yields

yr=(1 flk[z?zrdﬂ “Lexp(3[A|?
{expQ)r=( Z)Fo e d—z;( —z)"texp(3[A[?)
=2 (DM N[?Pzr(1—2)"? exp(3|\[?)

=exp{|A[*[3+2z(1—2)""]}.
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The argument of the latter exponential may im-
mediately be identified as 3(Q?)r for

(@)= N *2n+1)r=2|N*[G+=2(1—2)"]
which establishes directly the result (A.1).

APPENDIX B

A classical approximation to the cross section o (6,¢)
for scattering of neutrons at a given angle and at a
given energy, valid for large kob, has already been
derived in the text. To compute ¢V (6,¢), which includes
the first quantum-mechanical correction, we begin by
examining the operator function f(\),

) = Cer4+B+O)

where, in terms of previous notation, A=H—FE;,
B=(—ix/bM)B, C= (x2/29M)y. The classical approxi-
mation consisted of treating the term C exactly and
neglecting 4 and B. To find corrections of relative order
(kb)~2, we note that C contains implicitly a factor of k.
Hence we expand f(\) to first order in 4 and second
order in B. Since the commutators [[4,C],C] and
[B,C] commute with C, we find, after a short calcu-
lation,

F)= iﬂ AR 1) (0)/n !

=1+A(4+B)+P([A+B,C1+BY)
+80([[4,C],CT+2[B,CIB+BBL))
+a¢([B,C))~

Noting that the expectation values of terms containing
either a factor of 4 adjacent to a wave function or odd
powers of B vanish, we have

(X)i= (e a+B+O =1 [1,t exp[ —it(1—a?)x?/291]
X1 (—it)2X 2 (%) 4 (—18)3X 5 () + (—it)* X 4 (x) Jd
with
Xo(w)= (M) [ 3—Tw*+ (1—a)I(14-1) ],
X3(x) =M% 2 (T2t — 8a2+1),
Xa(x) = —3SM 22 (1 —a2)2,
Employing the formal relation

—ite~it=(9/de)e "¢,
we infer

o (0,€) =3a*(k/ko) St [1+ (8/0€)* X2 ()
+(8/0€)*X5(x)+ (8/9€) X 4(x) ]
Xo(e+x2(1—42)/29M)dx

92 L ot
= [1+ —‘Xz(i‘)—l- ——~X3(92)+—X4(9'3)]Ucz(9,€),
dé e dét

where
B=«2(®+2Me).
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Applying the indicated differential operations to all
explicit occurrences of e lying to the right of the oper-
ators, we obtain the expression for ¢ (f,¢) given in
the text.

APPENDIX C

The approximations thus far used in treating the
rotator have been aimed at summing the effects of the
large number of rotational transitions which occur for
all but very small neutron energies. When the neutron
energies are low the convergence of these methods may
be slow or may fail entirely. To supplement them in
this region it is convenient to develop the cross section
as an expansion in positive powers of (k¢b)2. This may
be accomplished either by summing explicitly the
partial cross sections due to the individual rotational
transitions, which are few in number in the lowest
approximations, or by using operator techniques
similar to those described earlier. For example in
the approximation to order (k¢)? the operator
exp[A(A+B+C)] (using notation defined in Ap-
pendix B) is expanded to second order in B and first
order in C before carrying out the required integrations.
In this approximation the scattering cross section of a
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rotator of angular momentum / is
a1(6)/a2=1—%(keb)?(1—cosh)
+30(20+ 1) (Rob)?[ 14207 ]}
X {14Ir—cosf[ 1+ 217 ]#}
+30+1) (204-1)7 (ko) [1—- 20+ 1) 7]
X{1— (+1)7—cosb[1—2(I+1)7]%}
where 7=m/(9Mk?b?). The contributions on the first
line represent the partial cross section for the transition
/—!, while the remaining terms correspond to /—/—1

and /—I+1 respectively. For (m/9M)<1, it is of interest
to expand this result in the mass ratio. We obtain

a1(6)=1— (4/3) (m/M) (1—cosh)
/T PHAD) (ki)

which is seen to contain the terms which dominate at
low energies in the more general expansion (4.15).
Since the present series fails to converge for values of 7
larger than (2/+2)~', the expansion (4.15) may be
expected to break down for (k¢b)2< (m/9M)(214+2) or
for energies & less than the rotational level spacing
AE;=E;.;—E,;. The expansion in positive powers of
kob, together with the earlier methods, covers the
entire range of neutron energies of interest.
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The methods developed in the previous paper for the treatment of neutron scattering by simplified molecu-
lar models are extended to form a unified description of scattering by real molecules. The generalization takes
into account the influence on scattering of the interactions that appear among the different molecular degrees
of freedom. The effect of spin correlations within molecules due to symmetries occurring in the presence of
like nuclei is explicitly determined. The slow-neutron cross section of methane is calculated and compared

with experiment.

1. INTRODUCTION

OLECULAR scattering of neutrons is of principal
interest at neutron energies low enough to pro-

duce significant interference effects. These energies are
in practice comparable with those of thermally excited
molecular degrees of freedom. Therefore, single colli-
sions often suffice to alter the neutron energy by
amounts comparable to or larger than its initial value.
In the preceding paper,' the scattering of slow neu-
trons by various simplified molecular systems was
studied by a method which facilitates the treatment of
inelastic processes. The method utilizes operator repre-
sentations for the dynamical variables of the scattering

* National Science Foundation Predoctoral Fellow.

L A. C. Zemach and R. J. Glauber, preceding paper [Phys. Rev.
100, 118 (1955)7, hereafter called I. In references to equations of
this paper, the numeral I will precede the equation numbers.

system and yields simple formal expressions for the
cross sections. The systems treated include coupled
harmonic oscillators, rotators, and a gas of particles in
thermal equilibrium.

By combining these results we construct, in the
following sections, a unified description of neutron
diffraction by gases. Certain new features are en-
countered, principally the interactions of the various
dynamical modes, e.g., the rotation of the axes of
vibration during a collision. At the same time, con-
siderations of the spin dependence of neutron scattering
and of spin correlations within the molecules are
introduced.

The diffraction of neutrons by methane is studied in
detail in the last section. The inelasticity of the scat-
tering by this gas is an important feature in virtue of the
small rotational inertia of the methane molecules.



