
PH YSICAL REVIEW VOLUM E 101, NUM B ER 3 FEBRUARY 1, 1956
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Weisskopf's analysis of the electron self-energy in 1939 showed that the part of the self-energy that is
due to the spin of the particle is negative. An extension of this analysis with the addition of a Pauli term
to the Hamiltonian shows that the additional self-energy that arises is also negative and only adds to the
original spin self-energy. The physical signi6cance of this negative spin energy is discussed in detail.

With the choice of an appropriate cutoff, the total self-energy of a Dirac particle with a Pauli anomalous
magnetic moment can be made negative. A possible explanation of the neutron-proton mass di6'erence in
terms of their difference in electromagnetic self-energy, as 6rst pointed by Feynman and Speisman, is
considered in the light of such an analysis of the self-energy.

I. INTRODUCTION

'N the present framework of quantum electrody-
~ - namics, the electromagnetic self-energy of the
electron is a divergent quantity. In many problems,
however, it is possible to obtain physically meaningful
results with the process of mass renormalization,
whereby the inGnite self-energy is covariantly isolated
out as a mass "correction" and incorporated into the
observed mass of the particle. The possibility of the
renormalization procedure has not made the theory
complete and self-consistent. For example, it has not
thrown any light on the question whether the present
quantum electrodynamics can be given a mathematical
reformulation without any change in its physical
content, in such a way that only finite quantities
appear throughout the theory, or that some entirely
new and heretofore unknown Gelds come into play
when one considers the interaction between matter
and high frequency quanta, so as to make all self-

energies Gnite. In the present stage of development,
these two approaches are actually equivalent. They
merely represent diferent ways of saying that the
interaction between matter and radiation according to
the existing theory must be modiGed at high frequencies.
Exactly how it is going to be modiGed is something
completely unknown. To crudely simulate such a
modification in the theory, one may introduce a certain
cut-oG frequency, above which one assumes that the
interaction between matter and radiation becomes
negligible. H one takes such a cut-o8 procedure seri-

ously, then the electromagnetic self-energy of the
electron becomes finite (being a function of the cut-off

frequency), and assumes a physical meaning.
It was in the spirit of such an approach that Weiss-

kopf' calculated and analyzed in detail the self-energy
of the electron in 1939. It was shown there that the
self-energy of the electron according to the electron-
positron Geld theory of Dirac can be decomposed into

~ Supported in part by the joint program of the Ofhce of Naval
Research and the U. S. Atomic Energy Commission.

t Now at The Institute for Advanced Study, Princeton, New
Jersey.' V. F. Weisskopf, Phys. Rev. 56, 72 (1939),hereafter referred
to as W.
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several parts. There is the static Coulomb self-energy,
which is the direct analog of the classical electro-
magnetic self-energy of a point charge, and which
consists of terms diverging logarithmically with the
cut-oG frequency. There are two other terms which are
speciGcally nonclassical in origin: first, there is the
"Quctuation energy, "which diverges quadratically, and
which represents the kinetic energy of the electron in
its "Brownian motion" in the Quctuating electromag-
netic vacuum. And then there is the "spin energy, "
which consists of terms diverging logarithmically and
quadratically, and which represents the additional
energy arising from the electric and magnetic fields
associated with the spin of the electron. This "spin
energy" is negative in contradistinction to all other
terms, and, as shown in W, is equal to twice the static
attractive energy of a system of magnetic moment
distributions. On adding up all these terms, there is a
calcellation of the quadratically divergent terms, so
that we have a total electron self-energy that is positive
and diverges only logarithmically.

It is interesting, in the light of the analysis mentioned
above, to consider the self-energy of a Dirac particle
which possesses an anomalous magnetic moment in the
form of a "Pauli term. "The addition of the Pauli term
leaves the charge and spin of the particle unchanged,
but increases or decreases its total magnetic moment,
depending on the sign of the anomalous magnetic
moment. It is therefore not surprising to Gnd, with
subsequent analysis, that, by introducing an anomalous
moment, the spin energy alone is aGected in the self-

energy of the particle. Since the spin energy is negative,
it is made @sore megati~e by the addition of a positive
anomalous moment, and less negative by a negative
anomalous moment. As is pointed out by Feyman and
Speisman, ' this cogld be the reason why the proton has
a slightly smaller mass than the neutron. Assume that
before one "turned on" the electromagnetic coupling
the proton and neutron both had the same "mechanical

s R. P. Feynman and G. Speisman, Phys. Rev. 94, 500 (1954);
G. Speisman, Ph.D. Thesis, California Institute of Technology,
1955 (unpublished). See also A. Petermann, Helv. Phys. Acta
27, 441 {1954),for a slightly diferent approach.
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mass. "Assume further, that when the electromagnetic
field is "turned on" the proton and neutron are Dirac
particles with a "Pauli term, " and diGering from each
other only in their electric charge (+e for proton and
0 for neutron) and the anomalous magnetic moment
(+1.79 and —1.91 nuclear magnetons, respectively).
Then it will be seen that the electromagnetic self-energy
tends to decrease the mass of the proton and to increase
the mass of the neutron. By choosing an appropriate
cut-oG frequency, it is thus possible to arrive at the
experimentally observed neutron-proton mass diGerence
of 2.52 electron masses. The value of the cut-oG fre-
quency thus obtained can be related to a "radius" of
the nucleon, for distances smaller than which the
present electrodynamics breaks down. Feynman and
Speisman found a cut-oG radius of the order of the
nucleon Compton wavelength —a result that is not
unreasonable. However, the validity of adding a pure
Pauli term to represent the electromagnetic interaction
of a nucleon with such high-frequency quanta as is
involved in the self-energy must be seriously questioned.
This and other questions related to the logical basis
for such an interpretation of the neutron-proton mass
diGerence will be discussed later.

The main part of this paper will be devoted to an
analysis and physical interpretation of the various
terms that arise in the electromagnetic self-energy of a
Dirac particle with a "Pauli term" anomalous magnetic
moment. The spirit of the analysis will be the same as
in W, but calculations will be considerably simplified

by making use of the covariant quantum electrody-
namics. An understanding of the effect of the Pauli
term on the self-energy helps us in understanding even
better the self-energy without the Pauli term. While
it is unlikely that the neutron-proton mass diGerence
may be explained without bringing in the details of
meson theory, one hopes that the physical reason for
this diGerence can be understood on a simple basis.

II. CALCULATION OF THE SELF-ENERGY

(a) General Considerations

Our purpose is to calculate the electromagnetic self-
energy of a Dirac particle with an anomalous moment
represented by a "Pauli term. " The Hamiltonian
density for the system under consideration is (with
A=e=1)

H=Ho+H; i,,

where Ho is the field-free Hamiltonian of the Dirac
and the electromagnetic field, and

H;„&(x)= —j„(x)A„(x)——,'M.p(x)F p(x), (1)

that is,
J„(x)=j,(x) —B M „(x),

ZA, (x) = —Z, (x). (7)

The constant mo in (4) denotes the "nonelectromagnetic
mass" of the nucleon. It is the mass of the particle
before one "turns on" the electromagnetic interaction.

The self-energy we shall calculate is the expectation
value of X=J'Hd'x for a state in which there is one
Dirac particle at rest and no photons present, and we
shall calculate it only to order e' in perturbation theory,
treating H;„&as the perturbing operator. The calculation
will be carried out in the Heisenberg representation,
and the problem reduces to the following: Given the
Hamiltonian X=Xo+X;„&, where Xo is already di-
agonal, diagonalize 3: to second order in e. This is
achieved by performing a canonical transformation on
x:
X'=e"Xe 'P=Xo+-X ~+o[SXo]

+i[S,X;„g]——,
' [S,[S,Xo]]+

Requiring

[S,Xo]= iX;.„
we obtain

(8)

where it is understood that the right side should be
expanded to order e' only. Hence an equivalent form
of (8) is

—(B/Bxp)A, A being the 4-vector potential, is the
quantized 6eld tensor for the electromagnetic field.
The value of the anomalous magnetic moment in units
of the nuclear magneton e/2m (m= nucleon mass,
me'=931 Mev) is denoted by p. The summation con-
vention is employed whereby all repeated Greek indices
are summed from 1 to 4. Charge symmetrization of the
current operators is not necessary, as usual, provided
one always sees to it that the vacuum expectation
value of the current is zero.

The equation of motion for the 6eld operators are

(y„B„+mo)P(x)= [iey„A.(x)
+o~(e/2m) ~-p~-p(x)]4 (*), (4)

CJA. (x) = j,—(x)+B M, (x),

where B„—=B/Bx„, and H=B'/Bx„Bx.=O' —B'/Bt' is the
d'Alembertian operator. (Note that Heaviside electro-
magnetic units are being used. ) It is seen that the
effect of the Pauli term is to add to the current operator
j„of the Dirac 6eld a term —8 M „so that the total
source for the electromagnetic field is

j,(x) = oeg (x)p„y(x), (2)
(9)

M p(x) =p(e/2m)iP(x)o. pf(x). (3)

The notations are the usual ones, with f=f*P, P being
the field operator for the Dirac field, P p= (B/Bx )Ap

where K;„&' is obtained from K;„& by expanding all
operators occurring in X;„~ in terms of the free-6eld
operators, and the result taken to order e'.

The self-energy of the nucleon in its rest frame, Bm,
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is defined by the following equation:

~*—
~

3.,+bm ~
"~dsx

~

=-',X;„,*—bm ~d'x—=0.

Integrating over the time coordinate and taking the
expectation value for the state in which there is one
free nucleon at rest and no photons, we obtain

various Green's functions in (11) are defined by

S'"(x)= (y,8,—m)h'"(x),

6"'(x)=Z(x) —-', A(x),

S'-(*)= (~.a„—m) a"-(x)
gadv(x) g(x)+—g(x)

(14a)

(14b)

so that

d4x(Se;„,') bm -d4x(~) =0,

8m= -',
' d4xSe;„~* (10)

1 b(jr) 1)—
D'"(x)=&'"(x)~ = =—

4s Jr/
(14c)

(15)

and the functions Z(x) and A(x) are defined by4

is obtained as an invariant quantity. The bracket ( )i,
denotes the "one-particle part" of an operator, defined
by

p d'k
A(x) = 2s—s ' e'" *b(k'+m') c(k),

~ (2s)4
(16)

4 XK1Dg = d XBC111t d S ) 11

where on the right side the expectation values are taken
for a state with one nucleon at rest and no photons
present. The quantity (J'd'~) is singular, equal to
the limit of (2s)'8(p —p') as p„, p, ' both approach the
4-momentum of a free nucleon. Hence one can also
write

where P denotes the Cauchy principal value of the
integral, and s(k) =+1 if ks)0, and —1 if kp(0,
(ks ——ik4). The Fourier transforms of these functions
will be denoted by the same symbol, e.g. ,

Z(k) =P
k'+m'

The free-field operators obey the usual commutation
rules4:

(4'(x),W'(y)) = —iS(x—~),

t A„'(x),A g'(y)]=ib„iD(x —y),
(17)

evaluated in the limit as p„, p„' both approach the
free-nucleon 4-momentum. The "division" by the
5 function has an obvious symbolic meaning.

The operators occurring in 3'.;„&* satisfy the field
equations (4) and (5), which can be transformed into
integral equations satisfying the desired boundary
conditions as follows':

P(x) =tP'(x) —
~

d'x'S""(x x')(icy„A—„(x')

+s~(e/2m)~-p~-p(x')]0(x'), (13a)

P(x) =P'(x) — I d4x'P(x') /icy„A „(x')

+ ', p, (e/2m)a pIi p(x')-]S's~(x' x), (13b)—

where

4 (x) =4'(x)+4'(x)
0(x) =F(x)+0'(x),

A„(x)=A s(x)+A„'(x),

P'(x) = —~d4x'S"'(x x') [iey—„A „(x')

+-',p (e/2m) a.pB.'A p (x') ]P'(x'),

P'(x) = — d' Px'( )[xi'„A„(x')

where S(x)= (y,8,—m)h(x), D(x) =h(x) ~„=p.
To solve H;„~ to second order, it is sufhcient to solve

the field operators to first order. This is achieved by
iterating the integral equations (11) once. We write

(13c) +-',p(e/2m)o- pB 'A p(x')]S P (x' —x),

where its, g' and A„s are the free-field operators given
by solutions to the corresponding homogeneous equa-
tions of (4) and (5), with boundary conditions which
are not important for the present discussions. The

' C. N. Yang and D. Feldman, Phys. Rev. 79, 972 (1950).

f

A „'(x)= ' d'x'D" (x—x')J„'(x'),

where J„s is the operator defined by (6) but with p, p
For details see J. Schwinger, Phys. Rev. 75, 651 (1949).
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replacing iP, f, respectively. We shall also write

where

where the second term on the right is the contribution
due to the Pauli term. Now M p' is the magneticJ,(x) =J„s(x)+J.'(x), moment density produced under the forced motion of
the nucleon in the vacuum electromagnetic field P p'.

J„'(x)=@[icy„li(—e/2m) r7.ar.„fg' It must be of the form ciF p'+csF p', where ci, cs are

+~ [ ( y2 )~
'

]~p (21)
constants, and P p' is the tensor dual to F~p'. Hence

The interaction Hamiltonian density can alterna-
tively be taken to be —J,(x)A„(x), and to second order J
it is given by

(22)
r=ci,~d'xF p'F p' +cs d4xF p'F p'

where we have omitted the term —J„'A„' which
obviously has vanishing one-particle part.

Ke see that H;„&* is split covariantly into two parts.
The first term on the right side of (22) represents the
self-interaction of the nucleon. It is the interaction of
A, ', which is the electromagnetic field generated by the
charge and current in the nucleon, with the (unper-
turbed) charge-current distribution J„s of the nucleon
itself. This term alone represents the entire self-energy
of the particle in classical theory. It contains the
Coulomb self-energy and the attractive energy of the
"spin current" of the Dirac particle, denoted respec-
tively by "Coulomb energy" and "spin energy. " We
shall denote the whole term "interaction energy. "

The second term of (22) represents the interaction
of the vacuum electromagnetic field A „'with the charge
and current J„' of the nucleon that is produced under
its forced motion caused by zero-point Quctuations of
the electromagnetic field. It is hence a sort of kinetic
energy of the nucleon due to its "Brownian motion" in
the Quctuating vacuum. It is of purely quantum-
mechanical origin and will be denoted "Quctuation
energy" in accordance with W. Hence,

r=ci d' x(Ep' —Hs') +cs d4xEp H, =0.
J 0

This result is also veriGed by a direct calculation
Whence

where

5mf)„,= —
2

'

d xj„A„
"4 0

1

j,'=ie(0'V 4'+O'V 4')

(26)

Substituting the expression for ip' and ip' from (16),
one obtains

To evaluate the one-particle parts above, we shall find
the following relationships usefuP:

g2

~mtl =
J

d xd x L'P(x)'Y S (x x )r&P(x )
2

(x')y),S'av(x' —x)~ yo(x)]A „(x')A„(*) . (27)
1

with
8m=8m; t+8mti .,

bm;„~————,
' d'x J„0A,'

(23) ((A '(x) A~'(x')))s= ~ ~&"'(x—x')

(I P(x),Po(x') $),= —S& &(x—x ),
(28)

where ( )s denotes vacuum expectation value, and

mgiu — 2 d4gJ Sni(X)= (y 8 —m)kiri(X) Dnl(X) =5&i&(X)
~ ~ s (29)

p d4k
~ ' (x) =2~ e"'~(u+m)

~ (2~)4
(30)(b) The Fluctuation Energy

Let us Grst examine the Quctuation energy. The only
contribution to this energy comes from the term j„' in
J„', and thus the Pauli anomalous moment contributes
no "Brownian motion" to the particle in the electro-
magnetic vacuum. This can be seen by the following
argument:

Writin J„'= „'—8 M „' accordin to 6 and 21
we

In (27), only the symmetric parts of S'"(x—x') and
S'e~(x' —x) survive, so that they can both be replaced
by S(x—x') = (y„cl.—m) Z(x—x') [see (15)$. The final
expression obtained is, when transformed into mo-
mentum space, '

p d4k

mf]uc

g j g () (),
see that 6mn„, = ——',e'u(P)

~

D'"(P k)y, S(k)y,n—(P), (31)
(2s.)4

' See reference 4, particularly, page 672.
6 It is understood that P„shall be put equal to the 4-momentum

d xsM~p'F~p, (25) of a free Dirac particle at rest at the end of the calculation, i.e.,
i 1 p„= (O,O,O,ipa), where ppp=m.
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where u(p) is a normalized Dirac spinor of 4-momentum where'

u(p) (y.p„—im) = (y„p„—im) u(p) =0,

u(p)u(p) = l.

(c) Interaction Energy

(32)
dm, .=-', (s/2m)'( (d'xd'x'D(x x')—s(x)s, (x').

1

= s (e/2m)'(2~) 'u(p)

The interaction self-energy is deined by (28). The
free-Geld current J,' may be expressed diGerently by
transforming j„' into Gordon form'.

X ddkD(p —k) (k+p)'S") (k)u(p) (39)

&m,.= —-', i(1+td) (e/2m)' ddxddx'D(x x')—

where

j „=ie)P'y„)I/ = (e/2m)[ —is„+B ()P'(r „)P())), (33)
X[s,(x)By'()ps(x')o), „)Ps(x'))

s.=4'(BA') (B.P)—P. (34)

From (27) and (19) we have

Bm; = —-,'I d'xd'x'D""(x x')J„'(x)J„'(x')—
1

The space and time components of j„'are

j = (e/2m) [—is+curl()P'dr)Ps) —i(B/Bt) ()psdr(P) j,
(35)j d' ips=——(e/2') [ isd+i d—iv()PsnP) j.

The operators (B/Bt) '(ibad)r(P) and div()P'nibs) have
vanishing diagonal matrix elements, but the non-
diagonal elements do not vanish.

The term s in (35) is just the Schrodinger convection
current for a spinless particle. The second term,
curl(p'dr)p) represents the current associated with the
spin (the current from the Zitterbewegung), s and the
last term (B/Bt)(lb'mp) is the time rate of change of
the electric moment density according to relativity.
The last two terms add up to give the covariant spin
current B ()P'o. „)Ps). The fourth component of this,
i div()pen)Ps), has zero diagonal matrix elements This.
insures that the total charge of the particle is related
only to the convection current s. Note that the eGect
of the Pauli term is just to add to the strength of the
second term in (33), the spin current. Hence

+B„()P'(x)o„),)P'(x))s), (x')j
1

,'i(1+-td) (e/2m)'(22r) 4u(p)

d'kD(p —k) (p,—k,)[,),S"'(k)
—S'"(k)~.~)(p~+k.)u(p) (40)

dm..= ——,'( +2)X'( s/2)m( (d'xd'x'D(x x')—
XB (4'(*) 4'( ))Be'(4'( ') t) lt'(*'))

I

= s(1+) )'(e/2~)'(2~) 'u(P) d'k(p k). —

X (p —k))D(p —k)(r„.S&') (k)ot,.u(p). (41)

(d) Connection with Conventional Methods

Before we proceed to evaluate these expressions
explicitly, we may remark that our purpose in writing
bm; t in this form is to show its dependence on the
anomalous moment p, clearly. If p were zero, there
would be no particular advantage to this decomposition,
and it would have been better to proceed with the
origin form ie)ps7, )Ps for j s. For the part of Btl;„& that
is independent of p, , one thus gets

Bm;,2(td =0) = ——,'e'(2)r) —'u(P)

d4Xd'4X'D g—X' J 0 X J 0 X

1
(37) X d'kD(P k)y.S"'(k)y u(P—). (42)

Bm;.,=Bm„+8m,.+Bm... (38)
2 See, for example, W. Pauli, Hendbddeh der Physih (Verlag

Julius Springer, Berlin, '1933), second edition, Vol. 24, Part 1,
p. 2.38.

() K. Huang, Am. J. Phys. 20, '479 (1952).

It is only D(x x'), the symmetr—ic part of D"'(x x'), —
that survives, where

D(x x') = Z(x—x') )„p. —

Using the explicit form (36) for J„', one obtains, after
some straightforward reduction:

Together with the fiuctuation energy (31), (which has
no contribution from the Pauli anomalous moment),
one gets

Bnz(p, =0)=——'e (2 ) u(p) 'de„[D'((p)—k)8(k)

+D(P—k)S"'(k)3~ u(P)
=—sie'(22r) —'u(P)

X) d'ky„Dp(p k)S) (k)y„u(p),—(44)
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where

Sv(k) =2/(y„k„A e), Dv(k) = —(2i/k'), (45)

(e) Results of the Calculation

To calculate 8mii„, and Bm; i from (31) and (38)—(41)
we shall introduce a cutoG in the rest frame of the
nucleon by understanding the momentum space inte-
gration to be carried out as follows:

d4k =
~0

~+00

E'dE dQ dko, (46)

where E= fir f, and Eo denotes the cut-off momentum.
dQ is an element of solid angle in lr-space, and ko ———ik4.
All integrations are then elementary, and one obtains
as 6nal results:

Bm= 8miius+8m;ui,

8m;„&=Sm„+8m,.+8m...
bmii„, (n/2ir) mv——', (47)

hm. ,= 2 ( /2inr) m log[v+ (1+v') &)

+-', (n/2m) m{v(1+ v') &

—log[v+ (1+v') &)}, (48a)

8m,.= ——,'(1+ti) (n/2n. )m{v(1+v') &

—log[v+ (1+v') &)} (48b)

8m..= —(5/4) (1+ted)'( /2 nr)me{ v(1+v') &

—log[v+ (1+v') &)}, (48c)

where v=EO/m is the cut-off parameter, and

n= e'/4n. Ite = 1/137.

The first term in (48a) represents the static Coulomb
self-energy of the particle, as can be verified by a
direct calculation:

are the familiar Feynman propagation functions.
Equation (44) is what one would write immediately
for the self-energy of an electron, using the standard
techniques of Feynman and Dyson. The transformation
from (43) to (44) is based on the fact that the combi-
nation

D&'i (p—k) S(k)+D(p —k)S&»(k)

differs from Dv(p —k)Sv(k) by terms that vanish upon
carrying out the required integrations. Splitting D+5+
in the manner we do covariantly separates out the
"fluctuation" and "interaction" self-energies.

energy, in the notation of %.Thus

~mini =bmcoul+™spiuy

with bmo, „& given by (49) and

bm„; = —[1+3ti+(5/4)ti'7{ v(1+ v') &

-l gL+(1+")» (5O)

The total self-energy is then

8m=3(n/2s)m log[v+(1+v2)&]
+ (n/2~)m[v' —v(lyly)-:)
—[3@+(5/4) ti')(n/2ir)m{ v(1+v') &

—log[.+(1+")&]}, (51)

where the 6rst term, which is independent of p, is the
well-known self-energy of a Dirac particle without
anomalous moment, as given by %. The second term
is negligible for large v, and the remaining quadratically
divergent terms represent the additional self-energy to
the anomalous magnetic moment.

These results can be obtained more readily if one
uses the Feynman-Dyson technique of calculation. The
self-energy (51) is then the sum of contributions from
four Feynman diagrams shown in Fig. 1. Diagram (a)
gives rise to the terms independent of p, , the two
diagrams (b) give rise to the terms linear in ti, and (c)
gives the terms proportional to y'. The method we have
employed, however, is more adapted to a physical
interpretation of the self-energy.

III. PHYSICAL INTERPRETATION'

We have seen in the foregoing developments that the
self-energy can be covariantly separated into two parts,
8m~i„, and bm;„~. The former is independent of the
anomalous moment, and its physical significance has
been discussed in previous sections and in W. The
present discussion will deal mainly with the interaction
energy Qe; &. This can again be split into two terms:
the static Coulomb self-energy bm&, i and the spin
energy bm, p; . The introduction of the Pauli anomalous
moment sects bm, p; alone. It serves merely to put a
multiplicative constant on bm, p' while leaving un-

changed its functional dependence on the cut-oG pa-
rameter. For a physical understanding of the effect of
the Pauli term, it is thus su%cient to examine bm, p;„ in
more detail.

First let us consider the pure Dirac case, with p=0:

5m», u ———~i d'xd'x'D"'(x —x') j„(x)j„(x')
1

&p'(rt) p'(r't)
~mco 1= g drdr 4

fr —r'f where

d4xd4x'D'(x x')p(x)p(x'), (52)—
1

=2m (n/2m) log[v+ (1+v') s] (49)

All other terms in bm;„~ then represent the eGect of the
spin current, and will be denoted by bm, p;, the spin

b(t —t')
p(x) = ey(x)PP(x), D (x—x') =

fr —r'f
(53)

~ From now on we shall drop the superscript on the free-6eld
operators P', A&, etc. as no confusion will arise.
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Since the separation between bm. „. and 8m~, „i is a
noncovariant one, our use of the Lorentz gauge so far,
convenient for formal calculations, becomes clumsy
for physical interpretation. It is hence desirable to go
over to the Coulomb gauge for our purpose here. We
shall use a superscript c on the electromagnetic po-
tentials to denote Coulomb gauge. The equations
defining the vector and scalar potentials are

QpC
~ A'(x) =—j(x)+grad, ~Eq '(x) =—p(x),

(b)

vertex e 2 -ie(p f„)ld)A„
Vertex I4 1 -))4 (e/42 m) ~ ()td (T~ P) F~g

(c)

from which one obtains

A'(x) = —I(x), to'(x) = d4x'D'(x x')p(—x'), (54)

where

FIG. i. FeyIIman diagrams for the self-energy of a Dirac particle
vrith a "Pauli term" anomalous magnetic moment.

Hence

I(x) =curlM (x), divI= 0, (55)

M(x) = g (x)mP(x)+
2m 2mi

I
ddx

curl
~

D'(x x')—
~ 4x

8
X s(x')+—L)((x')&(x')7~, (56)

[d'*E '),Coul 2

dm„;„=—, d'x(H' —Eu'))

(6o)

with s(x) as defined in (34). Thus we have divA'—=0
as an operator identity. If the matter field under
consideration were a classical 6eld, we would have I(x)
equal to the transverse part of the current vector j(x),
which would be just (e/2444) curl()t4E2)(). However, the
transverse part of the operator j (x) contains extra terms
which are not identically zero (only their diagonal
matrix elements are zero). This very fact is responsible
for the additional term in (56), which involves the
convection current s and the electric moment )ting. It
has, of course, zero diagonal matrix elements. I(x) then
is the eGerctive transverse current density responsible
for the magnetic field and the transverse electric field
of the particle.

The magnetic and electric fields set up by the
particle are given by

H= curlA', Er—— BA'/Bt, —
(57)E= Er+ EI., Ez, ———gradino',

where Er, Ez, are the transverse and longitudinal
electric fields, respectively. It is easily verified thatfEr Erd x=0. The quantity fd'x(H' —E') is both
Lorentz invariant and gauge invariant:

r
d4x(H —E') = ' d xj„A„=J d x(I A' —p(3)'), (58)

dS
1

t d4 xd4 x' D"'( x—x') I(x) I(x')

The last equation justifies the term "spin energy, " for
it clearly shows that bns, ~;„ is the attractive energy of
the system of transverse currents I(x) which owes its
existence to the spin of the particle. The transversality
of I(x) enables one to picture it as a collection of
current loops, the mass motion associated with which
gives rise to the intrinsic spin.

For the case p, =0, it has been shown in W that (60)
can even be reduced further. There is a close cancellaxm

tion of terms to give

dm, ; (x=o)= —-'(er2 )'( [d'*d'*'22 ( ')'—
Xcurl[dx4(x) j curl[4xd(x')]) . (61)

Thus for this case bm, ~;„ is twice the static attraction
of the spin currents. The simplicity of this result is also
reflected in the fact that, as shown in W, the total
energy in the transverse electromagnetic field is zero:

from which it can also be deduced that ~d4X(H'+ ErE) =Q, (fOr p=Q),J (62)

d4xI A'= ' d4x(H' —ErE)

t'd*~ = I'd. E,

from which one can immediately conclude that
(59)

1
63

1
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whence,

bm, v;„(tt=0)= — d4xH'
~J 1

(64)

d4x(H'+ Er')

The simplicity of this result, unfortunately, is not
carried over to the case when p, is not zero. It will be
seen from (54) and (55) that by making tt different
from zero, A' and I are not simply multiplied by
(1+tt) as one might expect if the system were classical.
The electric and magnetic fields, then, are not simply
multiplied by (1+tt)' when we put in the Pauli term.
The term which contains s in (56) is independent of tt,
and is the cause of the complication. This term, as we
have seen, is quantum mechanically necessary to insure
the transversality of the magnetic field. With the
addition of a Pauli term, (62) and (63) are no longer
true. Instead, one obtains, after some straightforward
calculations,

However, such a viewpoint is heIpful in the under-
standing of why bm, ~;„ is negative when p, is not zero:
the addition of p to the Dirac intrinsic moment increases
the absolute magnitude of the negative spin energy,
just as an increase in the current of two loops increases
their energy of attraction.

It may be well to discuss in this connection a fact
which at first sight appears paradoxical. The results of
our calculations show that 8m, v; = ——,'(1'd4x(H'
—Er')) &, which differs from the total energy residing in
the transverse electromagnetic 6eld rs(J'd'x(H'+ Er')) t.
In fact, for @=0, the total transverse electromagnetic
energy is zero, while bm, ~;„ is nonzero and negative.
How are we to understand this difference in terms of
the usual intuitive picture that the self-energy is the
work required to "create" the particle in question?
Let us first consider the building up of a charge aggre-
gate classically. If one assembles elementary charges,
originally infinitely far from one another, and build up
a single charge, then the work one must do is

I de (O' —Er')
2 J

where

= [1+3tt+(5/4) tt'jm(n/2~) [f(v) —g(v) ), (65b)

f(v) =v(1+v')', g(v) =log[v+ (1+v')lj, (66)

and v is the cut-off parameter. The introduction of an
anomalous moment changes the gyromagnetic ratio so
that the delicate balance that produces result (62) is
upset. Nevertheless, the interpretation of 8m„;„as a
spin energy still stands. We must now imagine that in
addition to the static attraction between the spin
"current loops, " there is also an interaction with the
convection current of the particle in intermediate
states —a purely quantum-mechanical effect.

To talk in a more picturesque way, one may perhaps
make the following semiclassical picture: Drawing
again from the interpretation of the Zitterbewegung as
a circular motion which give rise to the spin and mag-
netic moment of a Dirac particle, the Pauli term
merely adds to these "current loops" responsible for
the magnetic moment. Thus it can be said that there
are two kinds of current loops: the Dirac current loops
and the Pauli current loops. Now we can write bm. „.
in the form

bm„; =—m(n/2a)[f(v) —g(v))[(1+tt)'+tt(1+-'tt)).
The first term expresses the effect of simply adding the
Pauli current loops to the Dirac current loops. The
presence of the second term demonstrates the fact that
such a semiclassical picture is only qualitatively correct.

= —2tt(1+tt)m(n/2w) [f(v)+g(v) j (65a)

and from (60), (50):

E'dsx

equal to the energy in the field set up by the final
system. Thus all the work goes into setting up the
electric field, and this work is the self-energy of the
final system. Now imagine that one tries to assemble a
system of closed-loop currents. To make the picture
even more concrete, imagine that originally one has a
number of identical thin charged Qywheels, which
rotate about the same axis but are infinitely separated
from one another. Now one wishes to bring them
together along the axis to form a single Qywheel. How
much work is required? The answer depends on whether
the angular velocity of these Qywheels during the
assembling is kept constant. If each Qywheel maintains
the same angular velocity throughout, then the work
done is equal to the field energy set up by the system
(ignoring the electric effect), i.e.,

In so doing, one also finds that the total angular
momentum of the system (mechanical+field) is difer-
ent before and after the assembling. On the other hand,
if one stipulates that no external torque shall be in
effect, so that the total angular momentum shall be
kept constant, then one must take energy away from
the Qywheels, allowing them to slow down, with the
result that one does a negative amount of work, equal
to wings evict, the field energy of the final system, "

'e See, for instance, J. A. Stratton, Electromagnetic Theory
(McGraw-Hill Book Company, Inc. , New York, 1941).
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IV, THE NEUTRON-PROTON MASS DIFFERENCE

Feynman and Speisman' pointed out that the
neutron-proton mass difference of 2.52 electron masses
may arise from a diGerence in their electromagnetic
self-energy. Experimentally, the proton and neutron
are observed to possess anomalous magnetic moments"
pz, pz respectively (over and above the Dirac intrinsic
moment of +1 and 0 respectively), with

y v ——+1.79 Nuclear magnetons,

p,~———1.91 Nuclear magnetons.
(67)

One way to account for the moments is to introduce
Pauli terms with the proper respective strengths (67)
in the equation of motion for the proton and the
neutron. Such a Pauli term represents correctly the
interaction of the nucleon with radiation of long wave-
length (long compared to the nucleon Compton wave-
length).

Suppose now one takes this Pauli term seriously, and
compares the self-energies 8m~ of the proton with 8m~
of the neutron. Since the neutron possesses no charge,
bmN will be solely proportional to p,', corresponding to
the Feynman diagram (c) of Fig. 1. The proton, on
the other hand, will have contributions from all Feyn-
man diagrams of Fig. 1.From (51) one can immediately
write down:

bmv ——(n/2m)m{3 logLv+ (1+v') «j+ Lv' —r (1+v') «j

L~v v+ (5/4)I —v'jLv(1+ ~)'
—lo ( +(1+ ')«)]} (68)

bmN ———(n/2n-) m(5/4) yN'L v(1+v') '
—log ( + (1+v') «)j.

Since p, ~ and p~ are almost equal in magnitude, the
main difference between 8m~ and 8m~ comes from the
quadratically divergent term linear in p, &. With a
suitably chosen cut-oG parameter v, bm&, bm& are both
finite and represent corrections to the nonelectro-
magnetic masses m~', m~', which appear in the equa-
tions of motion (4) (leaving out the term icy„A„ for
the neutron). One assumes that

mJ' ——m~'

in accordance with the principle of charge independence.
That is, the proton and the neutron are assumed to
interact is exactly the same manner with field other

"We are indebted to M. Gell-Mann for an illuminating
discussion concerning this point.

'~ J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics
(John Wiley and Sons, Inc., New York, 1952).

which is the proper interpretation of bm, ~;„. Now if
one wants to form a semiclassical picture of the "crea-
tion" of the Dirac particle by assembling elementary
charges and elementary "Qywheels, " one must keep in
mind that the total angular momentum of the system
is quantized, and must always be ~A."

20
2v

Fzo. 2. ¹utron-proton
mass di6'erence, taken as
the difference in their elec-
tromagnetic self-energy, cal-
culated as a function of the
cut-o8 parameter v =Eo/ss&
where Xo is the cut oB
momentum. I.5

t-Off
eter I

ol
Am= 2.52 electron masses,

/

hm/m = 1.23 (n/2'), PO)

is seen to occur at v=1.12. This yields a cut-off mo-
mentum To=1.12mc, or an "eGective radius" of the
nucleon:

vo= 5/&o =0.95/mc= 2X 10 cm. (71)

Our philosophy here can be stated as follows: In
ignorance of a consistent 6eld theory which would give
a 6nite self-energy, we attempt to simulate the actual
state of affairs by using the existing quantum electro-
dynamics together with a cutoG. Our procedure consists
of retaining only the electromagnetic interaction outside
of the cut-oG radius, and discarding the "inside"
contributions (which diverges in the existing theory).
The radius (71) hence defLnes a sphere surrounding the
nucleon, in such a way that the electromagnetic self-
energy in the region outside of this sphere, calculated
with the existing electrodynamics, would account for
the neutron-proton mass diGerence.

We have further assumed, in the present model, that
in the "outside" region the electromagnetic properties
of a nucleon are reasonably accounted for through the
Pauli term. For our model to be valid, the cut-off radius

the electromagnetic 6eld—a fact which has been sup-
ported by numerous experiments in nuclear and meson
physics. "The observed masses will then be

mv=mv +8mv, m~=m~ +8m~,

and the neutron-proton mass difference is just the
difference in electromagnetic self-energy:

Am= mN —m~= bmg —8mp.
From (60):

am/m=3(n/2m) {[jup (5/1—2) (@No—pv')$
X Lv(1+ v') «—log(v+ (1+v') «)7
——o,Lv' —v(1+v') «j—log(v+ (1+v') j}

= (n/2s) {6.15v(1+v') «—v'

—8.16 logLv+ (1+v') «j}. (69)

A plot of hm/m as a function of v is shown in Fig. 2.
The observed value" of
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should be of the order of, or not much smaller than,
the extension of the virtual meson cloud about a
nucleon. Otherwise one cannot employ the Pauli term,
and must explicitly bring in meson theory. "

The smallness of the value (71) is a happy result
from the point of view of the magnetic moments of
nuclei. Experimental evidence seems to point to the
deduction that the intrinsic magnetic moment of
nucleons are not affected when they are in nuclear
matter. "This means that the internucleon distance in
normal nuclear matter (about 10 " cm) must be large
compared to the size of the meson cloud about a nucleon.

To make a better model, one probably should use
two diGerent cutouts, one for the charge distribution
and another for the current distribution as Feynman
and Speisman did. However, since the main eGect comes
from the current distribution, the self-energy is not
sensitive to such a modification, as borne out by the
fact that Feynman and Speisman obtained about the
same radius (71) for the nucleon.

Recently, there have been attempts to estimate the
radius of the proton from experiments. Zemach, " and
others, have tried to deduce the size of the proton
magnetic moment distribution from the hyperfine
structure of hydrogen. Zemach obtains an upper bound
for the proton radius of about 5)(10 "cm, and a lower
bound of zero. The neutron radius as deduced from
experiments on the neutron-electron interaction" also
points to a "small" meson cloud (less than 10 " cm).
These seem to be reassuring. However, experiments on
the elastic scattering of high-energy ( 200-Mev)
electrons by hydrogen performed by Hofstadter and
co-workers" yield an effective proton radius of the
order of 10 "cm, or about five times our cut-off radius
(71). There is at present no quantitative way to relate
our cut-oG radius to the various effective radii deter-
mined from experiments. However, the largeness of
Hofstadter's radius makes one feel unsafe in ignoring
the detailed structure of the meson cloud about the
nucleon.

It is generally believed that the nucleon acquires
additional electromagnetic interaction via virtual emis-

sion and absorption of mesons in intermediate states.

'e W. G. Holladay and R. G. Sachs LPhys. Rev. 96, 810 (1954)7
have considered the neutron-proton mass difference in a specihc
meson theory.

'4 A. C. Zemach (private communication). Note added in proof.—This work has now been published PMoellering, Zemach,
Klein, and Low, Phys. Rev. 100, 441 (1955)g.

"Hughes, Harvey, Goldberg, and Stafue, Phys. Rev. 90, 497
(1953)."R. Hofstadter and R. W. McAllister, Phys. Rev. 9S, 217
(1955).

On the basis of I orentz covariance, one can argue that
the added interaction that is linear in the electro-
magnetic field must be of the general form"

P (e„(x)j„(x)0 "A.(x)+-',tt„(x)M tt(x) 0 "F tt(x)), (72)
n,=1

where e„(x), tt„(x) are invariant functions whose
explicit forms can only be obtained from meson theory.
For interaction with photons of long wavelength, one
can make a Taylor expansion of these functions and
retain only the constant terms ei(0), es(0), , tti(0),
tts(0), . The constant tti(0) is identified with the
anomalous magnetic moment, and ei(0) with the
intrinsic electron-neutron interaction. ' One may rea-
sonably expect that using the form factor tti(x) instead
of tti(0) for the anomalous moment will not yield results
qualitatively di6erent. It probably would still give a
neutron-proton mass diR'erence of the correct sign, with
the same physical reasons. However, we have no idea
as to how important the rest of the terms are in (72).
We can only say, by virtue of the relation C]A„=—j„,
that their contributions to the self-energy can all be
written in the form

d xd x G(x-x) j„(x)j„(x)
4 1

(73)

indicating that they also represent current interactions
(since they cannot contribute to the charge of the
particle), similar to the anomalous moment term, but
with some function G(x—x') replacing D"(x—x').
Until the explicit form of G(x—x') is calculated from
some reliable meson theory, we have no sure way of
telling whether these terms are negligible.

One may hope that in the very end it is only the sort
of "current-loop attraction" that we have discussed
that is important for the neutron-proton mass diR'er-

ence. But one can never quite guess the devious ways of
nature. For the moment, the model discussed here serves
to point out that in spite of the fact that the proton is
charged while the neutron is not, it is possible, on
account of their structure as Dirac particles, for the
proton to have less electromagnetic self-energy than
the neutron.
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