Neutron Absorption Cross Sections of Pa²³¹ and Pa^{232*}

R. R. SMITH, N. P. ALLEY, R. H. LEWIS, AND A. VANDERDOES Atomic Energy Division, Phillips Petroleum Company, Idaho Falls, Idaho (Received October 24, 1955)

Activation studies of Pa^{231} in the graphite region of the Materials Testing Reactor have resulted in a value of 200 ± 15 barns for the thermal neutron absorption cross section of Pa^{231} . Resonance neutron effects were eliminated by the method of cadmium differences and by conducting the irradiations in a region where the ratio of resonance to thermal neutrons is small.

Measurements of the Pa^{232} and Pa^{233} activities produced in a highly intense neutron irradiation of Pa^{231} have resulted in a value of 760 ± 100 barns for the absorption cross section of Pa^{232} .

I. INTRODUCTION

DDITIONAL measurements of the thermal neutron cross section of Pa²³¹ have been conducted in an effort to resolve the large discrepancies existing among previously reported values. At least six independent measurements, conducted over the past ten years, and giving values ranging from 107 to 290 barns, have been reported.¹⁻⁴ A rigorous intercomparison of these results is prevented by the widely varying conditions under which the measurements were conducted. Some measurements were based on determinations of the induced Pa²³² activity, while others were based on alpha assays of the U²³² daughter. The use of a wide variety of flux-monitoring techniques introduces additional uncertainties. In some instances effective flux values were computed from power-flux calibrations; in other instances fluxes were measured with gold foils calibrated in terms of a known neutron source strength; while in a third series of measurements the flux was calculated from the Pu^{238} content of Np^{237} monitors irradiated with the samples. An additional ambiguity, perhaps the most serious, concerns possible extreme differences in the energy distribution of neutrons in the various reactors used for the measurements.

The values reported here were based on absolute measurements of the Pa^{232} activity produced in a highly thermalized neutron irradiation of Pa^{231} . Resonance neutron effects were eliminated by conducting the irradiations in a region where the resonance neutron population was relatively low, and by the method of cadmium differences. Additional irradiations conducted in an extremely high neutron flux were used to evaluate the absorption cross section of Pa^{232} .

II. EXPERIMENTAL

A. Absorption Cross Section of Pa²³¹

About 25 microliters of a nitric acid solution of Pa^{231} , having a specific activity of 4×10^4 disintegrations/ min ml, were sealed in quartz ampules and were irradiated for periods of up to 80 hours in a thermal neutron facility of the Materials Testing Reactor (MTR). In their irradiation positions, the ampules were located approximately on the vertical center line of the reactor and were separated from the lattice by approximately one foot of beryllium and four feet of graphite.⁵ Moderation in the beryllium and graphite is sufficient to give a cadmium ratio of about 10⁸ for gold.

Following the irradiations the samples were diluted with 6N HNO₃ and the protactinium was purified by a series of extractions with di-isopropylketone (DIPK) and thenoyltrifloroacetone (TTA), 0.05M in benzene. Finally, the protactinium was stripped from the TTA with a series of 0.1N HNO₃ washes and was concentrated by evaporation. The activities were prepared for absolute beta counting by vacuum evaporation from a tungsten filament onto aluminum foils having a weight area ratio of 120 micrograms/cm². In this manner uniform and extremely thin specimens of the activity were obtained. Beta-particle absorption in the sample itself may be regarded as negligible. A small fraction of the weaker particles are, however, absorbed in the backing material. Absorption studies made with foils equivalent in thickness to the backing showed the effect to be of the order of two percent. Accordingly, the activity measurements were corrected to this extent. Although corrections made in this manner are not exact, disintegration rate measurements involving such corrections are expected to be more reliable than those conducted on solvent evaporated deposits where sample localization effects, hence large self-absorption effects, are almost certain to occur.

The decay of the Pa^{232} was followed over a period of 10 half-lives with a windowless 4π beta counter. The presence of alpha emitters (the parent Pa^{231}) under an operating voltage corresponding to the midpoint of the beta plateau is noted by an increase in the background

^{*} Research carried out under contract with the U. S. Atomic Energy Commission.

¹Q. Van Winkle, Argonne National Laboratory Report, ANL-4281 (unpublished). ² Seller, John, and Elson, Argonne National Laboratory Report,

⁻ Seler, John and Lison Argoine Partonal Laboratory Report, ANL-4282 (unpublished). - * A. H. Jaffey and Q. Van Winkle, Argonne National Laboratory

Report, ANL-4283 (unpublished).

⁴ Chalk River, Canada Progress Report, PR-CRR-24, 1954 (unpublished).

⁵ J. R. Huffman, Nucleonics 12, No. 4, 20 (1954).

FIG. 1. Decay of Pa^{232} produced in a thermal neutron irradiation of Pa^{231} .

counting rate over the usual room conditions. This increase, however, presents no problem since the increased background may be established without ambiguity after the 1.32-day Pa^{232} has disappeared. A typical decay curve is given in Fig. 1. Coincidence loss corrections, amounting to 0.4 percent per 10⁵ counts/min have been applied to the data shown. Subtraction of the background from the gross decay gives the decay of a single activity having a half-life of 1.32 days in agreement with the value reported by Jaffey and Hyde.⁶

Assuming the Pa²³¹/Pa²³² ratio to be unchanged in the post-irradiation chemistry and in the process of foil preparation, the Pa²³² produced per unit amount of Pa^{231} may be established from the 4π beta measurements and from direct observations of the alpha activity on a given foil. Measurements of the alpha activities were conducted with a 4π windowless counter under a voltage corresponding to the midpoint of the alpha plateau. Since the range of Pa²³¹ alphas in aluminum is approximately fifty-fold greater than the backing thickness, practically all particles emitted under the 2π solid angle in the direction of the backing are recorded. From the range of Pa²³¹ alphas in aluminum and the backing thickness, it may be shown that particles emerging at angles less than 1.3° in the direction of the backing are absorbed. Geometry considerations lead to a correction factor of 1.0 percent which may be applied to the activity measurements.

Particle counting under these conditions was shown

to be quantitative by repeating the activity measurements in a conventional 2π alpha chamber. The $2\pi/4\pi$ counting rate ratio, averaged for several samples, was found to be 0.51, somewhat lower than the 0.52 geometry commonly assumed for alpha counting from infinitely thick backings. Because the exact backscattering factor for the 2π measurements was not known, the 4π measurements were considered more reliable and were, accordingly, used in the cross-section calculations.

The results of five runs conducted over a period of thirty days are summarized in Table I. A cadmiumcovered irradiation, run No. 5, was used to establish the magnitude of the resonance neutron absorption effect. Column 2 lists the disintegration rate A_{12}^{0} of Pa²³² extrapolated to zero time and corrected to irradiation saturation. A correction amounting to two percent has been applied to account for beta absorption in the backing. Column 3 gives the Pa²³¹ disintegration rate A_{11}^{0} determined from 4π counting. A one percent correction has been applied to correct for absorption effects in the backing. An additional correction has been applied to correct for the growth of the alpha emitting U²³² following the post-irradiation purification of protactinium. Column 4 lists the ratios of the Pa²³² and Pa²³¹ activities, A_{12}^{0}/A_{11}^{0} . Subtraction of the value of A_{12}^0/A_{11}^0 for run No. 5 (cadmium-covered) from the respective values for runs 1-4 gives the Pa²³²/Pa²³¹ activity ratios corrected for resonance activation, column 5. Column 6 lists values for the thermal neutron flux $\phi_{\rm th}$ and column 7 gives the values of the thermal neutron absorption cross section $\sigma_{\rm th}$ found from the relation

$$\sigma_{\rm th} = \frac{\lambda_{11} (A_{12}^0 / A_{11}^0)_{\rm th}}{\phi_{\rm th}}.$$
 (1)

A simple average of the results gives as a final value $\sigma_{\rm th} = 200 \pm 15$ barns for the thermal neutron absorption (activation) cross section. The precision limits assigned to this value are based on estimated uncertainties of ± 15 and ± 10 percent in the values used for $(A_{12}^0/A_{11}^0)_{\rm th}$ and $\phi_{\rm th}$, respectively.

The thermal neutron flux values were established from measurements of the Co^{60} activity produced in Co flux monitors irradiated with the samples. Measurements of the specific ionization were carried out in a high pressure ionization chamber calibrated with National Bureau of Standards samples of Co^{60} . Conver-

TABLE I. Activation analysis of Pa²³¹.

Run No.	$A_{12^0} imes 10^3$ dis/min	A ₁₁ 0 dis/min	A_{12^0}/A_{11^0}	$(A_{12^0}/A_{11^0})_{ m th}$	$\phi_{ m th} imes 10^{12} n/ m cm^2 m sec$	$\sigma_{\rm th}$ barns
$\begin{array}{c}1\\2\\3\\4\\5\end{array}$	14.2 66.4 18.1 73.3 0.95	53.3 232 71.2 252 351	266 286 254 291 3	263 283 251 288	$\begin{array}{c} 0.831 \\ 0.852 \\ 0.886 \\ 0.914 \end{array}$	205 215 176 203

⁶ A. H. Jaffey and E. K. Hyde, Phys. Rev. 79, 280 (1950).

sion of specific ionization values to thermal flux involved the use of the following constants: $T_{\frac{1}{2}}(Co^{60}) = 5.30$ years, and $\sigma_{th}(Co^{59}) = 37.0$ barns. Corrections for self-protection and flux depression were applied to the thermal flux values in the manner outlined by Hughes.⁷

B. Absorption Cross Section of Pa²³²

A measurement of the pile neutron absorption cross section of Pa²³² was made from determinations of the Pa²³² and Pa²³³ activities produced in a prolonged highflux irradiation of Pa²³¹. In this instance the sample was irradiated for 386 hours in a lattice position of the MTR in an average thermal flux of $1.56 \times 10^{14} \ n/\text{cm}^2$ sec. Following the irradiation the protactinium was purified as previously described with a series of DIPK and TTA extractions. Since Pa²³² has a large thermal neutron fission cross section substantial quantities (activity-wise) of fission products relative to Pa²³³ are formed. Accordingly, special precautions were taken to eliminate those fission products whose activities would interfere with the determination of the 27.4-day Pa²³³. Three DIPK extraction cycles followed by three with TTA were found adequate for this purpose. Zr⁹⁵ which follows protactinium chemistry was eliminated by the addition of Zr holdback carrier prior to the solvent extraction cycles.

The decay of the sample, given in Fig. 2, is separable into two components, one corresponding to the 1.32-day Pa²³², and the other corresponding to the 27.4-day Pa²³³. Corrections for resolving time losses and for room and counter background have been applied to the data shown. The identity of the 27.4-day activity as Pa²³³ was further verified by pulse-height analysis of the sample with a NaI(Tl) spectrometer. The absence of gamma active impurities, particularly Zr⁹⁵, was also demonstrated by the pulse height data.

The zero time counting rate intercepts of the separated activities, obtained from Fig. 2, may be used to evaluate the neutron absorption cross section of Pa²³². The production rates of Pa²³² and Pa²³³ in a neutron flux of ϕ neutrons/cm² sec are given by

$$dN_1/dt = \phi \sigma_0 N_0 - (\lambda_1 + \phi \sigma_1) N_1, \qquad (2)$$

$$dN_2/dt = \phi \sigma_1 N_1 - (\lambda_2 + \phi \sigma_2) N_2, \qquad (3)$$

where the subscripts 0, 1, and 2 refer to Pa²³¹, Pa²³², and Pa²³³, respectively, and where N, σ , and λ have their conventional meanings. The flux destruction terms $\phi \sigma_1$ and $\phi \sigma_2$ have been included since for fluxes of the order of 10¹⁴ n/cm^2 sec the product $\phi \sigma$ may be comparable in magnitude to λ .

Dividing the solution of Eq. (2) by that of Eq. (1) and multiplying the result by λ_2/λ_1 gives a lengthy but straight-forward expression for the Pa²³³/Pa²³² activity ratio in terms of ϕ , t, σ_1 , σ_2 , and the decay constants.

FIG. 2. Decay of Pa²³² and Pa²³³ produced in a high-flux irradiation of Pa²³¹.

Substitution of values for these terms and a value of 5.82×10^{-3} (corrected for absorption in the backing) for the Pa²³³/Pa²³² zero time activity ratio (from Fig. 2) into this expression results in a value of 760 ± 100 barns for the absorption cross section of Pa²³².

The values used for the decay constants were those corresponding to half-lives of 1.32 and 27.4 days; the value used for ϕ was $1.56 \times 10^{14} n/\text{cm}^2$ sec; and t was taken as 386 hours. The value used for σ_2 , i.e., the cross section of Pa²³³, was 130 barns, an average of the 152-barn value reported by Halperin *et al.*⁸ and the 107-barn value reported by Smith *et al.*⁹

III. DISCUSSION

Within the approximation that Co^{59} and Pa^{231} are 1/v absorbers in the thermal region, and that resonance absorption effects are eliminated by the method of cadmium differences, the cross section of 200 ± 15 barns for Pa^{231} corresponds to an energy for which the cobalt cross section was measured. Since the value used for Co was the thermal value of 37.0 barns, the cross section of Pa^{231} also corresponds to thermal energy, or 0.025 ev.

Since cadmium-covered irradiations were not conducted in the high-flux irradiations of Pa^{231} the value of 760 ± 100 barns for the Pa^{232} cross section must be

⁷ D. J. Hughes, *Pile Neutron Research* (Addison-Wesley Press, Cambridge, 1953).

⁸ Halperin, Stoughton, Ellison, and Ferguson, Atomic Energy Commission Report TID-2010, Vol. 3, No. 3, September, 1953 (unpublished).

^aSmith, Passell, Reeder, Alley, and Heath, Atomic Energy Commission Report IDO-16226 (to be published).

regarded as that corresponding to a pile neutron distribution. This value is seen to be in considerable disagreement with the value of 40^{+40}_{+20} barns reported by Elson and co-workers.¹⁰ No explanation for this large discrepancy is immediately apparent. However, the 760-barn value is consistent with that expected

¹⁰ Elson, Sellers, and John, Phys. Rev. 90, 102 (1953).

from cross-section systematics in this mass region.¹¹ Since Pa²³² consists of an odd number of protons and an odd number of neutrons, the binding energy for an additional neutron is high; hence, an absorption cross section considerably higher than those of Pa²³¹ and Pa²³³ is to be expected.

¹¹ J. E. Evans, Phys. Rev. 96, 845 (1954).

PHYSICAL REVIEW

VOLUME 101, NUMBER 3

FEBRUARY 1, 1956

$N^{14}(\alpha,n)F^{17}$ and $Na^{23}(\alpha,n)Al^{26}$ Reactions*†

W. T. DOYLE[‡] AND A. B. ROBBINS§ Sloane Physics Laboratory, Yale University, New Haven, Connecticut (Received October 17, 1955)

The $N^{14}(\alpha,n)F^{17}$ and $Na^{23}(\alpha,n)Al^{26}$ reactions have been studied by two methods, a proton recoil telescope and a slow neutron threshold detector. An energy level in F^{17} at 0.54 ± 0.04 Mev has been observed and a ground state Q value of -4.76 ± 0.07 Mev was determined. Energy levels in Al²⁶ were found at 0.3, 1.0, 1.4, 1.8, 2.5, and 2.9 ± 0.2 MeV and a ground-state Q value of -2.9 ± 0.2 MeV was determined. In the latter reaction an excitation curve of the seven-second beta activity in Al^{26} has been observed with a threshold Qof -3.2 ± 0.2 Mev, indicating the presence of an isomeric state in Al²⁶ at about 300 kev.

I. INTRODUCTION

 $R_{\rm independence}^{\rm ECENT}$ interest in the hypothesis of charge independence of nuclear forces and conservation of isotopic spin has made desirable the studying of nuclear level structure by several reaction routes. As mentioned in a previous paper,¹ (α, n) reactions have

^{*} Supported in part by the Office of Naval Research. † Parts of dissertations presented by the authors to the Faculty of the Graduate School of Yale University, in partial fulfullment of the requirements for the degree of Doctor of Philosophy.

been neglected in the past. In the present work the reactions $N^{14}(\alpha, n) F^{17}$ and $Na^{23}(\alpha, n) Al^{26}$ are investigated.

II. METHODS

The energies of the neutron groups were determined using a proton recoil telescope. The recoil protons from a hydrogenous radiator were absorbed in aluminum giving integral range curves, the geometry being determined by coincidences from two unpeaked proportional counters.

Threshold reaction energies for different levels were determined using an enriched BF₃ counter as a slowneutron detector and varying the energy of the alphaparticle beam from the cyclotron in a helium range cell. A detailed description of these methods has been given in an earlier paper.¹

[‡] National Science Foundation Predoctoral Fellow. Now at Dartmouth College, Hanover, New Hampshire.

[§] General Electric Predoctoral Fellow.

ⁱ A. R. Quinton and W. T. Doyle, Phys. Rev. 101, 669 (1956). FIG. 2. Slow-neutron threshold curve for N¹⁴(α, n)F¹⁷ reaction.