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also are shown in Fig. 5. It can be seen that this distri-
bution gives a fair approximation to the experimental
points, but using the y' test we have been unable to
find any binomial distributions that 6t the experimental
results with more than a negligible probability.

The theoretical emission probabilities calculated by
I,eachman" are in good agreement with the results
given in Table II.

It should be pointed out that the discrepancy as
reported earlier'3 between our preliminary value for v of
Cf'52 based on Pu'" and that of Crane, Higgins, and
Thompson has been partially resolved. The Pu source
used in our preliminary work was rather thick, and
about one-quarter of the fissions were lost by foil
absorption. The error in the early value might be
explained by assuming that the lower-energy fissions,
which would be more easily lost by foil absorption,
have a higher internal excitation and give oG more
neutrons than the high-energy 6ssions. Preliminary
work indicates that this is true. We are comparing the
average number of neutrons and neutron multiplicities
with the energy mode of 6ssion using a "back-to-back"
6ssion chamber. The remaining discrepancy may be
due to the diGerent methods of absolute calibration.
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Relativistic Radiative Transitions*
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We have calculated the oscillator strength for electric dipole
transitions with retardation between the is state and higher
discrete states for a single Dirac electron in a Coulomb field.
Numerical values for atomic number 82 show that the retarded
relativistic oscillator strength for each shell is about 0.8 of the
nonrelativistic value. We give numerical values for the relative
intensity of the different E x-ray lines for lead, neglecting screen-

ing: the Zn~/Za~ doublet intensity ratio is 1.93 as compared to
the NR value of 2.0. We introduce an average "oscillator density"
for transitions for discrete states, and extrapolate to the series
limit to find the photoelectric cross section at threshold. Our

numerical value for lead of 740 barns is 23% larger than the
value given by Hulme et a/. We also calculate the summed oscil-
lator strength, using a cutoR at an arbitrary high energy to give
convergence. The numerical results for lead are insensitive to the
numerical value of the cutoff used: using 10 Mev, we find a
summed oscillator strength of 0.85, with an increase of 0,01 for
each factor of two increase in the cutoff energy. Our value of
the summed oscillator strength is less than that calculated
nonrelativistically by Thomas, Reiche, and Kuhn; or relativisti-
cally by Gell-Mann, Goldberger, and Thirring.

I. INTRODUCTION

'HE oscillator strengths for electric dipole (&&)
radiative transitions between discrete nonrela-

tivistic (NR) states in a Coulomb field are given in

closed form and tabulated numerically by Bethe. ' The
* Supported by the National Science Foundation, and by the

Research Corporation, These calculations are presented in greater
detail in W.B.P. s Ph. D. dissertation LLouisiana State University,
1955 (unpublished)g referred to in this paper as WBP. (Copies

may be obtained from the LSU Department of Physics and
Astronomy; or from University Microfilms, 313 North 5th
Street, Ann Arbor, Michigan. )

t Now at Operations Research Office, Johns Hopkins University,
Chevy Chase, Maryland.

'H. A. Bethe, ffaedbach der Physi (Verlag Julius Springer,
Berlin, Germany, 1933), Vol. 24, Part 1.

same approximation gives the Stobbe formula'~ for the
atomic photoe8ect. The much more dif5cult relativistic
calculations of the photoeGect have been performed
numerically by Hulme et al.' and approximate analytic
forms given by Hall, ' and Sauter. '

Jacobsohn's calculations' for discrete-discrete transi-

'H. A. Bethe and J. Ashkin, in ExperimerIta/ Euc/ear I'hysics
(John Wiley and Sons, Inc. , New York, 1953), Vol. 1.

3Hulme, McDougall, Buckingham, and Fowler, Proc. Roy.
Soc. (London) A149, 131 (1935).

4 H. Hall, Revs. Modern Phys. g, 358 (1936).
s F. Sauter, Ann. Phys. 11,454 (1931).
B. Jacobsohn, Ph.D. dissertation )University of Chicago,

1947 (unpublished)g.
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tions extend the nonrelativistic calculations in two
ways: he gives relativistic oscillator strengths for dipole
transitions from the I. shell, and he gives NR calcu-
lations of E2 oscillator strengths. Also, Massey and
Surhop7 have calculated the relativistic nonretarded
transition rate of En x-rays of 79Au.

In the next section we shall present relativistic
calculations of the oscillator strengths for E1 transitions
with retardation from the 1s state in a Coulomb field
to the 2p&/&, 2ps/&, 3p&/&, 3pb/s, 4p&/&, 4pb/s, 7pr/s, and
7ps/s states. Numerical results are given for lead. We
use Dirac wave functions for a Coulomb fieM. This
means that for an actual atom we are neglecting the
screening eGects of the other atomic electrons. Even
for the highly ionized»Pb+, our use of the one-particle
Dirac equation neglects eGects such as vacuum polar-
ization. We shall also discuss possible comparisons with
relative line intensities and absolute line widths that
might be obtained in x-ray measurements of heavy
elements. In Sec. III, we introduce an average "oscil-
lator density" for discrete-discrete transitions. We then
extrapolate this oscillator density to the series limit,
to compare with the oscillator density at the series
limit found for lead by Hulme et a/. We 6nd a value
23'Po larger than theirs. In the last section we calculate
the summed oscillator strength for a single electron
moving in the Coulomb field of a lead nucleus. Since
Hall's asymptotic formula gives an oscillator density
proportional to the reciprocal of the photon energy,
we cut off the integration at a finite upper limit to
obtain a numerical result. This numerical result is then
compared to the dispersion-theoretic result of Gell-
Mann, Goldberger, and Thirring. Our present numer-

TA'BLK I. Oscillator strengths for 82Pb.

1$1/2 'to
Nonrelativistic' Relativisticb

fNR frel
Retardede

fret

For
each
shell
fret/
fNR

2p1/2
2p3/2

L shell

0.138
0.277

0.416

0.112
0.230

0.342

0.112
0.195

0,317 0.76

3p1/2
3ps/2
3d

M shell

0.0263
0.0527

~ ~ ~

0.0790

0.0174
0.0476

0.0650

0.0190
0.0409
0,0031

0.0630 0.80

4P1/2
4P2/2
4d

N shell

0.0097
0.0193

~ ~ ~

0.0290

0.0060
0.0175

0.0064
0.0151
0.0016

0.0235 0,0231 0.80

7p1/2
7p2/2
7d

Q shell

0.00160
0.00321

~ ~ ~

0.00481

0.00093 0.00101
0.00297 0.00258

~ ~ ~ 0.00032
0.00390 0,00391 0.81

' The nonrelativistic dipole oscillator strengths are taken from Bethe,
reference 1, and are independent of atomic number.

b The relativistic oscillator strengths for Pb are taken from WBP.
e The retarded relativistic dipole oscillator strengths for Pb are found by

evaluating the formulas in the Appendix. The oscillator strengths for B2
transitions are taken from Jacobsohn, reference 6.

VH. S. W. Massey and E. H. S. Burhop, Proc. Roy. Soc.
(London) A1SS, 661 (1936); Proc. Camb. Phil. Soc. 32, 461
(1936); W. Laskar, J. Phys. et radium 16, 644 (1955).

Gell-Mann, Goldberger, and Thirring, Phys. Rev. 95, 1612
(1954), referred to GGT.

ical results appear to contradict the GGT assumption
that at very high energies a bound electron has the
same forward scattering amplitude as a free electron.

while for 1s~rbPb/s transitions we have

(fab)rel= (16/9)cab flsgy(3 2 /«lr2

p

(2)

In these equations, e,& is the energy diGerence in units
of mc', while frs and grs are the small and large compo-
nents, respectively, for the Dirac radial wave function
for the 1s state, with analogous notation for fy(r/s),
f (3/y)sgy(r/Q) and gytb/s&. We follow Bethe's notation
for Dirac Coulomb wave functions, with normalizations
J'(~ f&,

~

'+
) g&,

~

'gr'dr= unity. Explicit formulas for the
large and small component radial wave functions are
given by WBP for states from the 1s to the 4f, along
with numerical evaluation of the relevant paramenters
for 6 diferent atoms from 29 to 100.

Equations (1) and (2) can be evaluated in a straight-
forward manner. Formulas and numerical values for
the matrix elements for transitions from the 1s to the
2pr/„2ps/„3p&/„3ps/s 4pr/s and 4p3/Q are given by
WBP. However, since retardation sects are appreci-
able, we shall not give the details of this relativistic
Z1 oscillator strength, neglecting retardation, which
we denoted by f„b

The ducts of retardation are included for E1 transi-
tions by taking the spherically symmetrical part of
exp (—ik r), namely the spherical Bessel function
js(kr) = sinkr//kr. This extra expression is then inserted
inside the integral, giving for the retarded-relativistic
oscillator strength f„, for transitions from the 1s to
npt/s states:

(f.b)-b=(g/9)"b ' )' (sfr gy(t/s)
0

+—', g&.fy&&/s&) sin(kr)rdr//k, (3)

II. CALCULATION' OF OSCILLATOR STRENGTHS

The oscillator strength is proportional to the square
of the matrix element of n eb exp( —ik r), where n is
the set of 3 Dirac matrices, and the photon has polar-
ization direction e&, and wave number

~
k

~
. These

squared matrix elements must be summed over the m
values of the final state, and averaged over the photon
polarization. Neglecting retardation we put exp(ik r)
equal to unity, and for absorption by a single electron
in a 1s state we obtain the expressions given by WBP
LEqs. (44) and (45)] and Jacobsohn' LEqs. (4.3a) and
(4.3b)]. For 1s—+rbPr/s transitions the oscillator strength
(f )»& )s

(fab) eel= (gj9)eab (2 flsgyll/2i
0

+sar fy&t/»)r'«(1)
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and for transitions to NP3/2 states:

X((2yl) () 1/2(1 & )112(/41V (1)V +11)) 1/2c zr/Nl- —

Xr» '(1V)+1)(2Z/1V )'/'+r'((2/2)!) "'

(1+33)1/2(41V3(1V3+2))
—1/2c—zr/x,

Xrr» 1(IV3+2)c'b»"rdr/k3

= (16/9) (e3—el) '(2Z/k3)'64A3'[(pl+f2)!)'

Xf (2~ ) ()—lf (2~2) ()—11V
—(2r»+1)g —2('Yr+'Y»)

X [sin((el+ y2) (o3)/(vl+v2))', (5)
where

I/3' [(1V3+1)/21V3)'——+ (k3/2Z)'

y, = tan-'[1V, k,/Z(1V, +1)),
k3 ——137.0(33—31) in units of (33 ',

(6)
A3' ——(1—31) (1+33)/321V3(1V3+2),

(1 ~2Z2) 1/2 ~ (4 ~2Z2) 1/2

37g= 1, &7,=2.

In these equations, e& and e3 are the energies of the
Is and 2P3/2 states; IV» and IV3 are the apparent principal
quantum numbers of the 1s and 2P3/2 states (in this
case equal to the integral nonrelativistic principal
quantum numbers); yl is used for all j=1/2 states,
and &2 for all j=3/2 states; and Im means take the
imaginary part. The photon wave number k is given
in units of ao ', where uo is the Bohr radius.

We neglect retardation eGects in Eqs. (5) and (6) by
taking (k3/2Z) much less than (/V»+1)/21V3, so that E3
becomes (1V3+1)/21V3, and the angle q 3 becomes
1V»k3/Z(1V3+1). We then obtain the relativistic (non-
retarded) oscillator strength,

(fl, , 2„(3/2)),.1
——(16/9) (»3 el) '2'(»+—&~'—) 16A 3'

x[hi+&2)!)'f (2v )!)-'[(2v)!?'
X1V 2rr+1(1V +1)—2(»+r»+1) (7)

(f.b),.»= (16/9)~.b

J fir/;p( 3/2) sin(kr)rdr/k . (4)
0

We shall present the details of the calculations of

f,.», f„l, and the nonrelativistic fNR for the 1s to 2P3/2

transition. We shall present in the Appendix the
formulas for f„tfor transitions to p states with principal
quantum numbers 2, 3, 4, and 7; and we shall present
in Table I numerical results for lead for these transitions
for f„t, f„l, and also fNR

For the 1s to 2p3/2 calculation, we evaluate Eq. (4) as

(fir, 2y(3/2))ret

= (16/9)(33 61)—1 Im ~ —(2Z/1V1)1/'+'r'

(Our procedure here is to check f„», of. course, f„l can
be obtained more easily by evaluating the integral in
Eq. (2), as was done by WBP.)

We can then check this result by going to the NR
limit, for eZ much less than unity. In this limit p&

becomes I, and y~ becomes 2. We have

(33—31)
—'A 3'= (3u'Z'/8) '(-'n'Z') (2)/321V3(1V3+2), (8)

and
(fir, 2y(3/2))NR 3(2"/3')=-', (04162). (9)

We use the statistical weight factor 2/3 since the 2P3/2
transitions absorb 2/3 of the NR oscillator strength for
transitions to the 2p state. Our result 2"/3'=0.4162 is
in agreement with the Bethe' equation (41.4) and Table
XVI.

In a similar manner, the retarded Ej oscillator
strengths were calculated for transitions to the 2pl/2,

3p„„3p„,, 4p»„4p3/„7pl/2 and 7p3/2 states. The
numerical values of f,.», f„), and fNa are given in
Table I, for 32Pb; while the lengthy formulas for f„»
are given in the Appendix. We also include in Table I
as part of f,.t Jacobsohn's values' of the E2 oscillator
strength, calculated nonrelativistically without retar-
dation. (f„t for each shell should include the retarded
relativistic oscillator strength for each transition to
that shell. Our use of Jacobsohn's E2 values represents
a first step towards that end; but we see that the E2
e6ects are rather small, so it is a reasonable approxi-
mation to use an NR calculation of the E2 oscillator
strength, and to neglect higher multipoles for transitions
to discrete states. )

Table I shows that the relativistic oscillator strengths
f„l are consistently smaller than the nonrelativistic
fNrt for the same transition. Retardation effects give a
signilcant decrease in the Npb/2 oscillator strengths;
but actually increase the rbP)/2 oscillator strengths above
the relativistic values. (This increase occurs because
the retardation factor decreases the cancellation in the
overlap integral. ) After we include the estimated E2
oscillator strength, the retarded relativistic oscillator
strength for each shell is about 80% of the NR value.

We shall not make a quantitative comparison of our
results with those of Massey and Burhop for»Au,
since they use Slater's screening constants as an
approximate correction for the use of electron wave
functions in an atomic rather than a Coulomb field.

In suggesting a comparison of our results with x-ray
measurements, we are trying to learn how significant
relativistic and retardation corrections are, as compared
to the corrections due to screening sects. X-ray
measurements of various lines are usually given in terms
of line intensities I,b in erg/sec.

I.b = (2e'A/2/3C')(deb' feb,

where ~ b is the angular frequency and the f,b is the
oscillator strength. In Table II we give NR intensity
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TABLE II. X-ray intensity ratios for lead. '

From Cdcb/Crab

Nonrelativistic
(fcb/ fab) NR (Icb/Iba) NR occb/ocab (fcb/fab) rel

Relativistic and retarded
(Icb/Iab)rel (fcb/ fab)ret (Icb/Iab) ret

2pit. («~)
2pete(ICE))
3pits %Pa)'
3p3/2 (+Pl)
3d
4PI i2(EP~)
4pele(&Pe')

1.00
1.00
1.185
1.185
1.185
1.25
1.25

1.00
2,00
0.191
0.382
0.022
0.070
0.140

1.00
2.00
0.318
0.636
0.037
0.136
0.273

1.00
1.035
1.196
1.206

~ ~ ~

1.263
1.267

1.00
2.05
0.155
0.425

~ ~ ~

0.054
0.156

1.00
2.27
0.265
0.745

~ ~ ~

0.109
0.317

1.00
1.74
0.170
0.365

~ ~ ~

0.057
0.135

1.00
1.93
0.291
0.640

~ ~ ~

0.115
0.275

a The subscripts ab refer to the Xa2 transition and the subscripts cb to the transitions from other L and M and N states to the K state; oc is the photon's
angular frequency; f the oscillator strength from Table I; and I oc3f the line intensity. Screening is neglected.

ratios; and relativistic and retarded intensity ratios
for ssPb. The intensity ratio I,&/Ie&= (to,b/to, &)'(f,&/f, &)

We see that neglect of retardation can be serious,
especially for comparison between doublets. Thus the
En&,/'Eo, 2 intensity ratio is 2.00, 2.27, and 1.93 for NR,
relativistic, and retarded, respectively. Similarly the
EP&/EPs intensity ratio is 2.00, 2.81, and 2.20 for the
3 cases treated. We also note that the weak 3d to 1s E2
transitions could probably be observed with high-
resolution x-ray spectroscopy. '

The x-ray intensity ratios given in Table II will be
significantly changed by screening; in general the
intensities for the transitions from states of high e and

j will be decreased most.
The oscillator strengths given in Table I can also be

used to calculate the radiative line width of the E-state
(one electron missing from the E shell) which provides
most of the line width of x-ray lines emitted by heavy
atoms.

X-ray measurements of relative line intensities or of
line widths for heavy atoms seem very rare. For
example, Gohkale's recent work" only goes up to atomic
number 50. California Institute of Technology measure-
ments" resolved the Ectt, Ens and EPt, EPs doublets
for &4W, and partially resolved the EPs', EPs doublet;
but they do not report relative intensities, or absolute
line widths.

III. SERIES LIMIT

We can introduce a fictitious "oscillator density" to
smooth out the violent Auctuations of the delta function
oscillator strengths for transitions from the 1s to other
bound states. Since as we approach the series limit from
the discrete side the oscillator density does smooth
itself out naturally due to the increasing energy density
of "discrete states, " we can hope to join the averaged
oscillator density for the various discrete states to the
true oscillator density (which is proportional to the
cross section) for the continuum. For the NR oscillator
strengths we can perform this calculation of the series

e Note added in Proof E Inglestam I Nov.—a Ac. ta keg. Soc. Sci.
Upsaliensis, Ser. IV, 10, No. 5 (1936)]has observed the 3d to 1s
transition."B.G. Gokhale, Ann. phys. 7, 852 (1952);M. Mladjenovic,
J. phys. radium 16, 545 (1955).

"Watson, West, Lind, and DuMond, Phys. Rev. 75, 505
(»49).

limit analytically both from the discrete and the
continuous side; but here we shall merely present the
numerical results. For the relativistic retarded oscillator
strengths, we shall approach the series limit from the
discrete side, and compare with the numerical value
given by Hulme et al.' for an approach from the con-
tinuum side.

For each discrete state we introduce the average
oscillator density as the ratio of the oscillator strength
to the energy difference between adjacent half-integral
quantum number states. For example, for the NR
case for I=2, the energy denominator is Z'RL(3/2) '
—(5/2) '], where R is the Rydberg constant. This
choice of denominator is rather arbitrary, but makes
little difference for the cases of high quantum numbers,
which are most important in determining the series
limit. Since we are interested in Sec. IV in comparing
the integrated values of NR and retarded oscillator
densities, it is convenient to measure the energy
denominator in units of the ionization energy I, which
is Z'E in the NR case, and 1.11 times this for the 1s
electron bound in the Coulomb Geld of a lead nucleus.
The energy denominator, in units of I, will be denoted
by Ap, and the energy of the transition by q.

For the retarded case, we include Jacobsohn's NR
calculation of the E2 oscillator strength. We also take
p and Ap as the average energy or energy difference for
the shell, weighting 2:1 in favor of the Pets state.

Numerical values of f/Art are given in Table III.
In the NR case, Fig. 1 shows that the "oscillator
density" for the I, tM, jV', and Q shells extrapolates
smoothly to the continuum value at the series limit,
given by the Stobbe formula. ' One can show this in
detail from the closed form for the NR oscillator
strength to discrete states, or as follows: Bethe' gives
the asymptotic value of the oscillator strength for high
principal quantum number rt as 1 6/rts The e.nergy.
spread Art for each state is asymptotically —(d/dn) (1/e')
= 2/ns. Hence f/Art is 0.8, in agreement with Stobbe's
formula. (The precise numerical value is actually
2'/3e4= 0.781.)

Our values of f„~/hrt for the relativistic-retarded
case for lead fall on a smooth curve for the L, M, E,
and Q shells, which provides a useful check on our
numerical work. However, the series limit value of 0.69
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TABLE III. "Oscillator densities" for discrete transitions.

Shell

n 2=(L)
I=3 (M)I=4 (Ilr)
e=7 (Q)
Series limit:

extrapolated
from discrete~

From continuum'

fNR'

0.4162
0.0791
0.0290
0.00481

0.750
0.889
0.938
0.980

0.2844
0.0784
0.0322
0.00589

1.0
1.0

Nonrelativistic, any Z
gb b,y fNR/~y

1.463
1.009
0.901
0.817

0.7$
0.781

frate

0,317
0.0631
0.0231
0.00391

Retarded for lead
b.y

0.761 0.267
0.894 0.0755
0.941 0.0309
0.981 0.00554

1.0
1.0

fret/+rf

1.187
0.834
0.748
0.706

0.69
0.56

a fNR iS frOm Bethe, referenCe 1.
b ~ is the energy of the transition from the 1$ state. in units of the1s ionization energy. dn 1S the energy difference between adJacent half-1ntegral "states. "

in these units. The oscillator density is f/b, g.
e f~t is the relativistic retarded oscillator strength from Table I,
d See Fig. 1 for extrapolation.
a NR from Stobbe's formula; retarded from Hulme's numerical value, reference 3.

obtained by extrapolation from the discrete side is in
disagreement with the value 0.56 obtained from
Hulme's numerical value of the atomic cross section.
We do not understand the reason for this discrepancy.

Hulme et al.' give the atomic cross section for the
photoeGect for lead at the series limit as 1510 barns.
To 6nd the cross section for a single E electron, we

multiply by 4/5 to convert from the atomic cross
section to the cross section for the E shell, and we also
multiply by 1/2, giving 604 barns as the cross section
for a single E electron at the series limit. Hulrne's cross
section 0.=604 barns is converted to the oscillator
density df/drj=0 56 by the. equation:

o = (2m'e'0/mc)I '(df/drl) = 1080(df/d i) rbarns. (11)

The numerical value uses the ionization energy I
=101.6 kev for lead.

Our cross section for lead at the series limit is 740
barns, or 23% larger than Hulme's value.

IV. SUMMED OSCILLATOR STRENGTH

Gell-Mann, Goldberger, and Thirring state that the
summed oscillator strength for a bound electron should
be unity. This statement is based on: (1) their proof
of the validity of the dispersion relation between the
forward scattering amplitude at one energy and the
oscillator strength at all energies; (2) their assumption
that at very high energies the forward scattering
amplitude by a bound electron is o'/mc', or identical
with that for a free electron.

The GGT sum-rule is better than previous sum-rules
in that the GGT sum-rule uses the oscillator strength
for all multipoles, including retardation; while the
Thomas-Reiche-Kuhn sum-rule uses only the non-
retarded E1 oscillator strength. However the eGects of
higher multipoles and retardation on the oscillator
strength are the same order of magnitude as relativ-
istic eGects, so we would like to check the GGT sum-rule
for a relativistic system.

As discussed by GGT, it is not clear whether the
summed oscillator strength for a bound Dirac electron
even converges, since according to Sauter's' or Hall' s

equation4 at very high energies the oscillator density is
approximately proportional to 1/rl. In this paper we
shall obtain a numerical value for the summed oscillator
strength for lead by stopping the integral at an arbitrary
upper limit g . We shall find that the summed oscillator
strength is insensitive to the value chosen for the
cutoff p . Our present arbitrary procedure is clearly
less satisfactory than achieving an understanding for
the lack of convergence of the integral of Hall's equa-
tion. (But note that the finite size of the lead nucleus
does provide a cutoff. )

The separation of photoeGect from pair production
integrated cross sections (or Rayleigh from Delbriick
scattering amplitudes) has some arbitrary features.
Brown" has proposed a separation that seems preferable
to that of GGT in a calculation using the one-electron
Dirac equation. (Note that in the many-electron Dirac
equation we should include vacuum polarization eGects
in finding the electronic wave functions in a Coulomb
field. ) Brown argues that we should consider absorption
cross sections for electron plus vacuum minus the
absorption cross section for the vacuum: i.e., we should
replace the GGT photoeGect cross section a-p.z. by
(o p.a.—o'p. p.), where 0'p p is the change in the pair
production cross section due to the presence of the E
electron. (In the one-electron theory, o'p. p. is the cross
section for pair production in which the produced
electron would occupy the same state as the already-
present E electron. ) Brown's procedure would achieve
convergence in the integrated cross section J'(op F.—op.p.) and in the corresponding forward scattering
amplitude. Brown's procedure would also give a smaller
value for the integrated cross section than found in this
paper, where we follow the GGT procedure, introducing
an arbitrary high-energy cutoG to achieve convergence. "

As discussed by GGT, the major weakness in their
sum-rule is the need for an assumption concerning the

rs G. E. Brown (private communication).
'3Eote added its proof.—We, and also M. L. Goldberger, are

now in agreement with Brown's procedure. Following Brown's
procedure, we obtain a summed oscillator strength of 0.87 (J. S.
Levinger and M. L. Rustgi, Houston meeting of the American
Physical Society, February, 1956).
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TABLE IV. Oscillator densities used for the lead photoeGect.

q =hv/
Ionization energy

1.0
2

10
20
40

100
400

Nonrelativistica
df/dye

0.781
0.115
0,0153

921X10 e

102X10 e

10.6X10 '
0.504X10—e

0.0046X10 '

Relativistic-retardedb
4'/de

0.56
0.104
0.0176

2400X10-e
820X10 '
330X10 '
118X10 e

28X10 '

a The oscillator density per ionization energy is obtained from the cross
section using Eq. (11).The NR cross section is Stobbe's equation.

b The relativistic-retarded cross section is based on Hulme's values at
y =1, 3.5, and 11, joined by Miss White to Hall's high-energy cross section.

high-energy scattering amplitude. Thus in checking
their sum-rule we are checking the validity of this
assumption. (We are also checking the validity' of our
cut-oG procedure, and the accuracy of the numerical
values of the oscillator strengths for discrete states
and the oscillator density to the continuum. ) We would
like to remark here that the paper on forward scattering
by one of us" contains dubious mathematical approxi-
mations, as well as the dangerous use of the Born
approximation for the intermediate state in photon
scattering by a bound electron. '~

The summed oscillator strength f„t, for discrete
states is, from Table I, 0.407 for transitions to the 1.,
3II, E, and Q shells. For transitions to all other discrete
states we used Bethe's NR value' of 0.035, multiplied
by the factor 0.80 for f„&/fNa which holds for the M,
E, and Q shells. Thus the summed retarded oscillator
strength for all discrete states for a single electron
bound in the Coulomb field of a lead nucleus is 0.435.
(Compare with the NR value of 0.564.)

For the integrated oscillator density for the con-
tinuum we use an oscillator density df/dr) based on
Hulme's values at the series limit, at 350 kev (r)=3.5),
and at 1.12 Mev (rl= 11.0). For higher energies we used
Miss White's numerical values" for joining Hulme's
values to Hall's high-energy equation. The numerical
values used are given in Table IV. We show for com-
parison the nonrelativistic df/dtl based on Stobbe's
equation. (Note that the NR expression for df/dr) es ri

holds for any value of Z.) We see that for the continuum
the relativistic-retarded oscillator strength falls below
the NR value, up to g=3, or he=300 kev. The rela-
tivistic 1/hv tail has quite a small ordinate, so that the
contribution of the tail to the integrated oscillator
density is rather small —unless it is indnite.

Q,Using the data of Table IV, we find for the relativistic
oscillator density,

100

(df/dr)) dr) =0.41. (12)
i

"J.S. Levinger, Phys. Rev. 87, 656 (1952).
"Brown, Peierls, and Woodward, Proc. Roy. Soc. (London)

A227, 51 (1954); Brenner, Brown, and Woodward, Proc. Roy.
Soc. (London) A227, 59 (1954).

's Gladys White, National Bureau of Standards (private
communication).

0,
~ 8

I

~ 9 io

FIG. 1. Average "oscillator density" for transitions to discrete
states vs the photon energy for a single electron in the Coulomb
fIeld of a lead nucleus. The numerical values are given in Table
III. The solid line shows the nonrelativistic oscillator densities,
while the dotted line shows those calculated relativistically, with
retardation. The points are our calculations for the I., 3f, E, and
Q shells; and at the series limit the NR photoe6ect results of
Stobbe, and the relativistic photoe6ect result of Hulme et ul.

(For comparison, the same integral for the NR oscillator
density gives a slightly larger value of 0.43.) If we cut
oG the integral at g =20, we would reduce this value
by 0.02; if we cut o6 the integral at p =500, we would
increase the integral by 0.02. Thus the integrated
oscillator density increases by about 0.01 for each factor
of two increase in the cutoG used, .

While we found in the previous section that our value
for the oscillator density at the series limit, obtained by
extrapolation from the discrete side, was 23% larger
than Hulme's value, we do not change the integrated
oscillator density greatly by changing to our value,
since we still join on to Hulme's point at p=3.5. If we
used our threshold oscillator density, the integral
would be increased by 0.03.

Combining the integrated oscillator density (to
=100, or hv about 10 Mev) with the sum over

discrete states, we find

P.(fs.),.~——0.85. (13)

Here the summation sign means that we sum over
discrete states and integrate over the continuum,
stopping at 10 Mev.

Our summed oscillator strength appears distinctly
diGerent from the value of unity given by GGT. We
believe that the difference from unity is outside the
numerical errors of the calculation: for instance, the
use of our value instead of Hulme's for the threshoM
oscillator density gives an increase of only 0.03; and
Hulrne's quoted error of 6'%%up for the calculational
accuracy for the points at q=3.5 and 11 gives only
another error of 0.02. Our use of an arbitrary cuto8 p
is suspect, but the final numerical result is insensitive
to the cut-o6 value. We conclude that the forward
scattering amplitude at very high energies by an
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electron bound in the Coulomb 6eld of a lead nucleus We shall give the detailed expression for the retarded
may be somewhat less than that for a free electron. oscillator strength for the transition to the 2p&/2 state.
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APPENDIX

The retarded relativistic oscillator strengths for
various EI transitions from the is~t2 state are given in
the equations below. We generally follow Bethe's
notation' for the relativistic Coulomb wave functions,
with y& and p2 given by our Eq. (6). We use the addi-
tional notation

f» 2), ()/2) = (32/9') («2—«)) '(2Z/k2)'1V2 —('»+')

XR2 '»(2y)+1) {(D2+C2) sin(2y) p2)/2y)

—(C2/1V2Rg) s)nf(2yg+1) q 2)/(2y)+1))', (A5)

where n=2, and 1V~——[4—2(1—y)))'/'. The apparent
principal quantum number E2 is used to determine the
energy e2, and from this the photon wave number k2,
then R2 and q2, and also A2, B2, C2, and D2. [Note
that in Eq. (A3), «& refers to the energy of the is&/2

state, while the parameters without subscripts have
difII'erent values depending on the value of e of the
np)/2 state. )

For the 3p)/2 state, we have
R'= [(1V+1)/21V)'+ (k/2Z)',

&=tan '[1Vk/Z(1V+1)),
(A1) f», 3y((/2) (16/9) («4 «g) '(2Z—/k4)'1V 4 "7'+"R4 '»—

X (2y~+2) (2y)+ 1){(D4+C4) sin (2y) p4)/27)

—(D4+2C4) (E4R4) 'sin[ (2&)+—1)(e4)/(2&1+1)
where R, ()), and the apparent principal quantum
number Ã are diferent for each final state. The energy
«= (1—n'Z'/1V')'/2 (in mc' units); and the photon
wave number k (in ao ' units) is 137.0 times the energy
difference of the quantum states.

For np(/~ states, we use

+C4(1V&4) ' sin[(2y(+2) p4)/(2y)+2) }', (A6)

where n= 3, and 1V4——[9—4(1—y&))'/'.
For the np3/2 state, we use

A = (3/2) [(1+«)) (1—«)/321V(1V —1))'",
P= [1/2 (1.—«g) (I+«)/321V(1V —1))'"
C= (A+8) (1V—1),
D= (A —8) (n —1),
1V= [n' —2(n —1) (1—»))'".

A'= (1—«)) (1+«)/321V(1V+2),

1V=[ '—2( —2)(2—v))'"
(A7')

(A2)
We find

f», ~n(«/» = (64/9) («—«() '(2Z/k)'(2v2+n —2) !

Xf(2»)!)-)f(„2)!)—)A'1V—(2vw)) R—2(»+'Y&)

Xf(v)+&2)!)'[(2v))!)-'[(2&2)!)-'(»+~2)-'

X{Imf—(n 2)e (»+)') ~—2F)(—n+3& y(+Yg',

2q,+1;e'~/R1V)+ (1V+2)e'f(»+»~ ~

The general expression for the oscillator strength is
found by expressing the np&/2 wave function in terms
of confluent hypergeometric functions, ' and expressing
the Laplace transform of a confluent hypergeometric
function as a hypergeometric 2J & function. We have

f»„„()/2)= (, 32/9)(« —«)) '(2Z/k)'f(n —1)!) '

X1V
—(2»+»R—4» (2~,+n —1) ff(2p,) !)—)(2p,)

—2

X{DImfe'~'" 2F&(—n+2, 2y), 2y~+1; e'p/R1V))

+C Im fe»~, ,F(—n+1, 2q„

X /FAN(
—n+2, p(+&2, 2&2+1; e'~/RN)))'. (A7)

Here the hypergeometric functions cannot be written
in terms of binomial coefFicients; but they are poly-
nomials with at most e—1 terms. The case @=2 is
written as Eq. (5) of the text. The case n=3 gives

2y&+1; e'&/ R)1)V)' (A3)

X1V«
—(2VR+»R —2(71+72)[(/~+/2) t)~

Xf(2v))!) '[(2»)!) 'A«'{(1V«+I)

X sin[ (y,+y,) (/, )/(y, +y,)—(1V,+2) (Ag)
D Imfe"»" 2F) (—n+2, 2y(,' 2y)+1 &

e'"/R1V))

X (R«&V«) ' »nf (»+v2+1) (o5)/

(2v2+1))'
1V,= [9—2(2—y2))'/'.Xsin[(2y)+m) (())/(2y)+m). (A4)

Because the second and third terms in the hyper-
», 3y (3/2) (64/9) («5—«)) '(2Z/k« '(2y2+ 1

geometric function differ by unity, we can rewrite this
expression using the binomial coeKcient notation. Thus


