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The direct correlation functions, of generally short-range charac-
ter over most of the liquid temperature interval, have been ob-
tained with the liquid He4 x-ray scattering data of Reekie, using
the 701 IBM Electronic Calculator. The geometrical simplicity of
these functions when compared with the indirect correlation func-
tions, of more intuitive physical significance, is automatically
demonstrated. They closely satisfy two types of integral test
relations, and this fact proves their over-all correct character and
the internal consistency of the numerical analysis.

The previously obtained indirect correlation functions will be
used here in studying the interference properties of the liquid in
slow-neutron scattering processes, in the limiting static approxi-
mation. At temperatures not too close to the critical region, the
static interference integrals are always negative as a result of the
preponderant destructive interference eGects arising from the local
density defects from the mean density, outweighing the local
density excesses. At short and moderate neutron wavelengths,

where the use of the static interference integrals is better justi6ed,
the total slow-neutron scattering cross sections in liquid He4, and
in liquids in general, always increase with increasing temperature.
The static interference integrals will be shown to provide an
additional integral test on the indirect correlation functions. The
latter were found to satisfy this test relation with good accuracy.

Part of this paper is devoted to a numerical evaluation of mean
kinetic energies per liquid He4 atom as a function of the tempera-
ture. The existence of a large zero-point kinetic energy of the liquid
as compared with the kinetic energy of thermal origin is demon-
strated. Furthermore, the previously given qualitative proof of the
kinetic energy origin of the lambda transition could be made semi-
quantitative. Finally, root-mean-square forces acting on a liquid
atom are evaluated, this physical quantity of elementary character
having become, in principle at least, accessible through the experi-
mental investigation of slow-neutron scattering properties of
liquids.

l. INTRODUCTION

' 'N a recent work, Reekie and the writer' have given an
~ ~ extensive analysis of the liquid helium indirect
correlations described by the space- and temperature-
dependent functions g(r, T). The latter define the local
positive or negative deviations of the atomic concen-
tration from its mean value rt(T) in a liquid in thermo-

dynamic equilibrium. The indirect correlations result
from the ever present concentration fluctuations of the
liquid under isothermal conditions. For physical proc-
esses of short duration in comparison with the 6nite
time needed by the liquid to establish the local concen-
tration deviations from the mean, the functions g(r, T)
may be considered to express a permanent or static
feature of the atomic distribution in a liquid viewed
from an origin atom, all surface eRects being neglected.
The functions g(r, T) enter into the static two-atom or
pair distribution functions rt(r, T), which define the
probability per unit volume of 6nding an atom at some

specified distance r from the origin atom. These func-
tions are isotropic.

'In addition to the indirect correlation functions

g(r, T), one also defines a direct correlation function

f(r, T) which is indicative, so to speak, of the first-
neighbor correlations. The functions f and g are con-
nected by an unique relation given by Ornstein and
Zernike, ' who were also the 6rst to introduce the con-
cepts of these two types of spatial correlation functions
in statistical systems. We shall henceforth refer to f and

g as interaction and correlation functions, and shall,
occasionally, abbreviate them as i.f. and c.f., respec-
tively. While the c.f. s have a more intuitive physical
interpretation, the i.f.'s are generally of shorter range,
above all in the region of the critical temperature. The
i.f.'s are expected to be analytically more regular than
the c.f.'s at all temperatures. This property may thus
make them preferable to handle in the critical region
where the c.f.'s become of very long-range character.

Using the liquid helium x-ray scattering structure

' L. Goldstein and J. Reekie, Phys. Rev. 98, 857 (1955). This
paper will be referred to in the text by S.D.

~ L. S. Ornstein and F. Zernike, Proc. Acad. Sci. Amsterdam 11,
793 (1914).
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Fro. 1. Partial, fq(r, 2.06'K), f2(r,2.06'K), and total interaction
functions f(r,2.06'K), (atoms/cc), vs the interatomic separation
r, (A).

' C. F. A. Beaumont and J. Reekie, Proc. Roy. Soc. (London)
A228, 363 (1955); J. Reekie and T. S. Hutchison, Phys. Rev. 92,
827 (1953).

factors of Reekie, ' we have here obtained, over a wide
temperature interval and distance range, the functions
f(r, T) The ex.pected moderate-ranged character of
these functions, over most of the temperature interval,
is hereby fully confirmed. Their geometrical simplicity,
when compared with the g (r, T) functions, is also
demonstrated. To our knowledge, these f(r, T) functions
have not been derived for other liquids, in spite of the
extensive x-ray scattering data available for some of
them.

As in our work on the c.f.'s, the i.f.'s here obtained
have been submitted to two types of integral checks. In
one of these, their space integrals have been calculated.
The latter are completely determined by some of the
macroscopic properties of the liquid, and the calcula-
tions verify with good accuracy the predicted values. In
the second type of integral check, they reproduced
closely their generating functions, i.e., the x-ray scat-
tering structure factors. These studies prove the over-all
correctness of the numerical analysis. They also tend to
support the likely possibility that the f(r, T) functions
here derived are fair approximations, over most of their
range, to their presently unknown rigorous form.

A major part of the present work is devoted to the
investigation of the static indirect interference integrals
appearing in the total slow-neutron scattering cross
sections in liquids. While these involve the c.f. s or
g(r, T) functions of liquid helium, the results derived
should have general significance and be valid, quali-
tatively, in all monatomic liquids. In these numerical
calculations, only the so-called generalized indirect

interference integrals can be obtained. These integrals
depend not only on the liquid temperature and the de
Broglie wavelength of the neutrons, but also on the
upper limit of the radial integration through which they
are defined. These limits determine the radii of spheres
centered at the origin atom, the atoms of which con-
tributed to the static interference term of the scattered
intensity of the waves. The temperature effect on the
interference integral will be shown to correspond to the
competition of the constructive interference e8ects of
the local positive density deviations from the mean, and
the destructive interference effects arising from the local
negative deviations from the mean density. The charac-
teristic temperature T; or To defined previously" will be
shown to divide approximately the liquid temperature
interval, for not too short wavelengths, in such a way
that for T &TO the interference term is completely de-
structive, while for To~& T ~& T„T, being the critical
temperature, it becomes positive. This forecasts, in the
static approximation, the large increase in the total
slow-neutron scattering cross section at medium or
longer wavelengths, at the approach of the critical tem-
perature, i.e., the occurrence of the slow-neutron critical
opalescence e8ect. '

The static interference integral tends to lose its
validity with increasing neutron wavelength, because of
the increasingly important liquid relaxation type of
time eGects. ' Stated in other terms, the static interfer-
ence integral, which depends only on the momentum
change on scattering by the assumed rigid atomic
distribution, becomes, for slower neutrons, an in-
creasingly worse approximation to the actual interfer-
ence term which is associated with a nonrigid distribu-
tion and which depends also on the relatively large
energy change of the slower neutrons on scattering.
Should one consider the long-wavelength static interfer-
ence integrals as only crude approximations, even of
quite limited physical significance, their study and corn-
parison with the direct interference integrals, dehned by
the x-ray scattering structure factors, may be looked
upon as providing a new integral test for the g(r, T)
functions. In view of the latter fact that they are
involved in the evaluation of various elementary physical
properties of liquids, such an additional test of these
functions is of evident importance.

As a further application of the mean potential energies
per liquid He' atom obtained in S.D., we have evaluated,
using the empirically determined latent heat values, the
mean kinetic energies at various liquid temperatures.
The results of these calculations may be said to be of
twofold interest. On the one hand, they provide a proof
for the large zero-point kinetic energy of the liquid He4

atoms over the whole temperature range investigated.
On the other hand, a semiquantitative sharpening of the

4 L. Goldstein, Phys. Rev. 84, 466 (2952).' L. Goldstein, Bull. Am. Phys. Soc. 25, 38 (1950);Phys. Rev.
SB, 289 (2952}.' L. Van Hove, Phys. Rev. 95, 249 (1954).



INTERATOMIC CORRELATIONS IN LIQUID He4

proof given in S.D. of the kinetic energy origin of the
lambda transition has been achieved.

The paper ends with an evaluation of the root mean
square forces per liquid He4 atom, using the pair distri-
bution functions derived in S.D. This elementary
physical quantity is, in principle at least, experimentally
accessible in liquids through their slow-neutron scat-
tering properties, as shown recently by Placzek. ~

2. THE DIRECT CORRELATION OR INTERACTION
FUNCTION IN LIQUID He4

The interaction function f(r, T) may be defined either
in terms of the indirect correlation function g(r, T), or
with the help of the scattering intensity structure factor
for radiation. With the latter, one finds4
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f(r, T) = (1/2e'r), [1—FI,
—'(Ak, T)]

00
&& (sinrhk) (Dk)d(Ak). (2.1)

-l00
4
rA

Here, hk or 2~ %
~
sine, or (47r sin8/X), is the momentum

change on scattering into the direction forming the
angle 20 with the direction of incidence of the radiation,
and Fr,'(Ak, T) is the scattering intensity structure
factor, per atom, of the monatomic system. It is seen
that

limf(r, T) = (1/2z')

&& I Li —Fr,—'(d, k T)](lM)'d(Ak), (2.2)

showing that the finite limit f(O, T) at the origin is fully
determined by structure factor. In contrast, however,
with the c.f. s, there is no elementary physical signifi-
cance attached to f(O, T). The behavior of f(r,T) at
small separations results at once from (2.1).Expanding
there (sinrAk)/(rhk), and keeping the first two terms,
one finds

lim f(r, T) = f(O, T)—(r'/12e-')
r small

&&
~ L1—Fr,-'(Ak, T)](hk)'d(Ak), (2.3)

showing the parabolic character of f(r, T) at small r
The structure factors are available in such a form' as

to suggest the decomposition of the Fourier integral
(2.1) into two integrals, namely,

f(r, T) = fi(r, T)+fs(r, T)

= (I/2sr'r) ) $1 Fr, '(hk, T)]——

0
~6K

&&(sinrAk)(Ak)d(Ak)+ . , (2.4)

' G. Placzek, Phys. Rev. 86, 377 (1952); see also G. C. Wick,
Phys. Rev. 94, 1228 (1954).

FIG. 2. Partial, f~(r,4.20'K), f2(r,4.20'K) and total interaction
functions f(r,4 20'K), (.atoms/cc), ss the interatomic separation
r, (A).

where the integrand of the second integral is identical
with the integrand of the first, and where AK is the
limiting value of hk beyond which the experimental
structure factor reduces approximately to unity, i.e., the
integrand vanishes. As in the analysis of the c.f. s given
in S.D., the functions fi and fs have been obtained by
numerical integration in intervals of 0.025 A ' in Ak.
These functions have been obtained at every 0.05 A in r,
from vanishing r out to 20 A. The numerical integra-
tions have been performed on the "701"IBM Electronic
Calculator.

We give in Figs. 1 and 2, the functions fi(r, T),
fs(r, T), and their resultant, the actual interaction func-
tion f(r, T), at 2.06'K and 4.20'K liquid temperatures,
respectively. The graphs extend only to 8 A separation.
At larger separations, these functions are only very
small fractions of their values at closer separations, at
2 A, for instance. These functions, as representative of
the low- and high-temperature functions, exhibit both
qualitative and quantitative differences. At low tem-
peratures, the f(r, T)'s have a deep and sharp minimum.
At the higher temperatures, the principal minimum is
less deep and less sharp. At larger separations, the low
temperature i.f. s remain negative, becoming quite small
though; at the higher temperatures, they become posi-
tive at medium separations. It will be observed that the
component functions fi and f, remain, numerically,
relatively close at most distances r. This result is similar
to the one obtained with the g(r, T) functions' and
underlines the importance of the small hk-value struc-
ture factors in the determination of the f(r, T) functions.
The relatively short-range character of the f(r, T) func-
tions is apparent on the graphs.

It should be remembered here that, in contrast with
the c.f. s, which have to satisfy a physical condition at
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vanishing r, the i.f. s do not have as precise a physical
meaning at r—+0. Since the experimental structure
factors are necessarily only approximate, above all at
large hk-values, they were found to lead' to g(r, T)
functions which did not satisfy the physical condition
imposed on them at the origin. They thus had to be
modified at close separations. On the basis of this result,
it is also expected that the f(r, T) functions here ob-
tained be cruder approximations to their actual unknown
values at the origin and at small distances than they are
at medium and large distances. There are, in principle,
two methods for improving the functions f(r, T) some-
what. One of these consists in using in (2.1) the structure
factors computed with the physically correct form of the
g(r, T) functions. In the other method, one might use the
fundamental relation' ' with its integral extended over
the whole space, essentially,

f(r, T)=g(r, T) —
~

g(~r r'~, T—)f(r', T)de(r'), (2.5)

Here,

f(r, T)47rr'dr =F (T)

=1—L(AN')A, /N] '.

(ANs)A„/N = rl, (T)k Tx r

(2 6)

(2.7)

is the isothermal mean square fluctuation of the number
of atoms, N, per atom, m(T) stands for the mean atomic
concentration and XT is the isothermal compressibility
of the liquid at the temperature T. The generating func-
tion of the interaction functions is essentially, by
Eq. (2.1),

As in the investigation of the c.f. s in S.D., it was im-
portant to submit the i.f.'s obtained here to the impor-
tant integral checks available for these functions. In
spite of their probable crude character at small separa-
tions, it will be seen that they satisfy with good accuracy
these integral tests. One of these concerns their space
integral which is de6ned by a general statistical
thermodynamic relation'4:

C(sk, T) =1—F;&(ak,T). (2.8)

TABLE I. The space integrals t(20 A, T) of the interaction
functions at various temperatures.

T
oK

1.25
1.50
1.75
2.06
2.25
2.50
2.75
3.01
3.25
3.50
3.75
3.97
4.20

—F(20 A, T)
calc.

19.6
15.8
13.1
11.1
9.03
7.55
6.08
4.99
4.15
3.09
2.33
1.68
1.17

—Ii (T)
exp.

20.3
15.7
13.3
112
9.20
7.62
6.14
5.02
4.02
3.12
2.30
1.69
1.18

and obtain with it the first iterated ft'& (r,T) by replacing
in the folding integral f(r, T) by its zero-order approxi-
mation, and so on. Neither of these methods of im-

proving the interaction functions has been made use of
here, and, hence, only their zero-order approximation
has been derived here.

At large separations the functions f(r, T), while be-
coming very small, are oscillatory. At 2.06'K, and
8 A ~& r &&20 A, one finds the following zeros: 9.60, 14.70,
15.05, 15.65, and 17.70 A. The zeros in the range 8—20 A,
at 4.2'K, are 11.05, 14.50, 14.95, 15.55, and 18.50 A.
The absence of oscillations at medium separations
assures the analytical simplicity of these functions when
compared to the c.f.'s. At larger separations also, the
number of zeros of the i.f.'s is less than that of the c.f.'s.
Their analytical simplicity notwithstanding, the i.f. s
cannot be used alone in the all-important pair distribu-
tion functions, as the fundamental relation (2.5) ex-
cludes the simple substitution of g(r, T) in the pair
distribution functions by f(r, T).

With the rigorous formula4

limFL-'(nk T) =
t e(T)kTXr]-'

d k—+0

(2.9)

one obtains
F(T)= limC (Ak, T), (2.10)

F(T ) & F(T) & F(Ts) =0. (2 11)

In liquid He4 a unique situation is realized, because
when it is in equilibrium with its vapor, this liquid phase
seems to extend, according to all evidence available at
the present time, down to absolute zero. As a result,
F(T) tends to larger and larger negative values as the
temperature tends toward very small values. Both
F(T) and G(T) are monotonically increasing functions
of the temperature. In liquid He4, their complementary
aspect is clearly expressed by the relations

limF(T) —&—~; lim F(T)=1, (2.12)

limG(T)~ —1; lim G(T)~~.
T~Tn

(2.13)

in some analogy with the corresponding relation valid
for the space integral G(T) of the c.f.'s discussed in
S.D.'4 The functions F(T) and G(T) of liquid He4 have
both been graphed previously. 4 These functions are
complementary to each other, to some extent, as far as
their qualitative behavior is concerned. They are both
negative at low temperatures, dered by the charac-
teristic temperature'' To or T;, or at T(TO. They
vanish at To and become positive at the high tempera-
tures Ts&~T~&T,. In normal liquids, F(T) decreases
with decreasing temperature down to the normal melt-
ing point T, or
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Their common zero is at To. The preceding relations
indicate that the functions f(r, T) may be expected to be
more regular then the g(r, T)'s in the interval Tp&~ T
~&T,. In certain applications of these functions, the use
of the f(r, T)'s, when alone, might become necessary in
preference to the g(r, T) functions.

Since the f(r, T) functions are only available in tabu-
lar form over a necessarily 6nite separation range r, the
complete space integrals F(T) cannot be obtained with
them. One has to calculate the generalized integrals

(2.14)

These have been computed at the various liquid
temperatures over most of the r range over which the
f(r, T)'s are available, We give in Table I, the values
of F(20 A, T) together with their experimental values or
(1—[e(T)kTxrj '}.A glance at the table shows that
the f(r, T) functions satisfy rather well their space
integral test. Clearly, since this is an integral test, it is
not justified to infer from it the locally correct character
of the functional behavior of the f(r, T)'s. On the other
hand, these results lend some support to the likelihood
that the f(r, T) functions represent, at the present time,
the best approximations to the unknown rigorous inter-
action functions. Clearly, if the space integral checks do
not allow for any rigorous justification of the locally
correct character of the derived i.f.'s, neither do they
allow the drawing of the opposite conclusion. It seems to
us that the results of Table I justify at least the not
unreasonable conjecture on the fair degree of approxi-
mation to the unknown rigorous interaction functions
achieved locally, by the results of the present analysis.
As mentioned above, the functions derived here are
probably worse at close separations.

A second type of integral test applied to the f(r, T)
functions consisted in the inversion of the Fourier
integrals (2.1), or the calculation of [1—C (d,k, T)j or
Fz '(Ak, T), Eq. (2.8). Here, again, the generalized
integrals

TABLE II. Experimental Fr„, p '(Ak, T) and calculated
Fz '(Ak, T,20 A) reciprocal structure factors at 2.06 and
4.20'K.

Ak,
A-I

0.25
0.50
0.75
1.00
1.25
1.50
1.75
2,00
2.25
2.50
2.75
3.00
3.25
3.50
3.75
4.00
4.25
4,50
4.75
5.00
5.25
5.50
5.75
6.00

Fexp
(d,k,2.06oK)

11.4
8.62
5.81
3.92
2.61
1.74
1.10
0.758
0.787
0.885
0.962
1.00
1.02
1.02
1.00
0.962
0.917
0.901
0.909
0.926
0.943
0.962
0.980
1.000

F1,-2
(Bk,2.06,20 A)

11.4
8.59
5.81
3.94
2.62
1.75
1.06
0.770
0.785
0.879
0.962
1.00
1.02
1.02
0.998
0.957
0.920
0.901
0.907
0.922
0.943
0.966
0.984
0.995

F xp
—2

(hk, 4.20 K)

2.62
3.33
3.77
3.19
2.23
1.50
0.980
0.781
0.813
0,917
0.990
1.03
1.04
1.03
1.01
0.990
0.952
0.935
0.926
0.926
0.935
0.943
0.980
1.01

FI -2

(LN, 4.20,20 A)

2.62
3.32
3.78
3.18
2.24
1.50
0.975
0.780
0.813
0.924
0.993
1.03
1.04
1.03
1.01
0.999
0.957
0.934
0.926
0.927
0.930
0.946
0.980
1.01

Some additional properties of the interaction func-
tions will be given in the next section.

[Fz, '(Ak T) 1$2rr sin(29) d (2—0)

3. INTERFERENCE PROPERTIES OF STATIC
ATOMIC DISTRIBUTIONS IN LIQUID He4

Neglecting all effects arising from the relative motion
of the atoms of the scattering medium and the incident
neutrons, as well as all specific atomic binding eRects,
the total slow-neutron scattering cross section per liquid
atom, in units of the isolated stationary free-atom total
scattering cross section o-f, may be written as

4 (r, Ak, T) =4m f(r, T)[sfnrAk/rAk]r'dr, (2.15)
(3.1)

had to be computed. These were obtained at intervals of
0.25 A ' in d,k, from 0.25 to 6.0 A ', at the two liquid
temperatures of 2.06 and 4.20'K. The calculated recip-
rocal structure factors are given by [1—C (20 A,Ak, T)j,
they are denoted by Fz '(Ak, T,20 A), 20 A being the
upper limit of the integrals (2.1S). Table II gives the
experimental and calculated reciprocal structure factors.
The former result from those used in S.D. It will be
observed that the interaction functions f(r, T) reproduce
fairly well the experimental structure factors, demon-
strating the internal consistency and good accuracy of
the numerical calculations.

I~, the static direct interference integral written in
terms of the correlation function g (r, T), becomes the
indirect static interference integral, or

I(k, T) = I (sinkr/kr) 'g (r, T)47rr'dr

= j(X,T). (3.2)

Here p is the mass of the spinless scattering atom in
units of the neutron mass. For not too light atoms, p)&1,
the bound-atom total scattering cross section o-„or
or(1+@, ')' or, and (3.1) reduces to the form con-
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00 its mean value of st, one obtains with (3.2),

lim I()i T) =) 'r gt
—'& (T)/8~'

X small

where

(3 3)

{nk TXr l) rgf "(T)= r 'g(r T)47rr'dr (3.4)

.20 K)

-0,5

(nkTgr —I)

FIG. 3. The direct and indirect interference integrals, Id(X, T)
and I(X,T) as a function of the wavelength X(A), at 2.06 and
4.20'K.

sidered by us previously. 4 The transformation leading
from Id(k, T), defined in terms of the structure factor
Fz,', to I(k, T) is elementary, requiring simply the ex-
pression of the static structure factor' Fl.'(Ak, T) in
terms of the static correlation function g(r, T).

With the exception of neutrons of relatively short
wavelength, to be defined more closely below, the
interference term in (3.1) is an important element of the
total scattering cross section. With the analysis of the
liquid He4 x-ray scattering data of Reekie' performed in
S.D., we are now in a position to study the interference
term in detail. The results which will thus be obtained
are, however, of interest not only for liquid He4 but for
any monatomic liquid, as well as for polyatomic liquids,
insofar as their intermolecular interference properties
are concerned.

The physical assumptions underlying the interference
term in (3.1) correspond to neglecting the energy change
of the neutron in the scattering as well as to the frozen
or static character of the local concentration deviations
from the mean concentration. These assumptions are
evidently the better justified, the faster are the incident
neutrons. With decreasing neutron velocities, the static
interference term becomes an increasingly cruder ap-
proximation to the actual interference term. Neverthe-
less, an investigation of the interference integrals is still
of great interest for several reasons. One of these stems
from the fact that the very long wavelength asymptotic
limit of the static interference integral is given by the
space integral G(T). If the correct asymptotic behavior
is obtained, then an additional integral check has also
been achieved on the correlation functions g(r, T). The
physical justification of the evaluation of the integrals
I()i,T) at medium wavelengths )i will be considered
below.

Since terms arising from the neutron-atom relative
motion eGect cannot but increase the total scattering
cross section, (3.1) represents its lower limit, as long as
small specific binding effects are neglected.

At sufriciently short wavelengths, replacing sin'kr by

is the second negative moment of the correlation func-
tion. The interference integral vanishes parabolically
with neutron wavelength.

We have discussed on various occasions' ' the positive
even momernts of the correlation function. With the
known details of g (r,T), it may be expected that rgt s& (T)
be negative over most of the temperature range, both in

liquid He4 and in normal liquids. However, the possi-
bility that rgb '&(T) vanishes at some temperature T s

such that To(T 2(T„and becomes positive in the
range (T, Ts), ca—nnot be ruled out. There might thus
be a small though finite and accessible temperature
interval (T. Ts), wh—ere I(),T) would be positive at
short wavelengths, leading thus to a total scattering
cross section per liquid atom larger than the isolated
free-atom cross section. Such an effect, if observed,
would be a manifestation of the longer-wavelength
critical neutron opalescence phenomenon discussed by
us some time ago. ' Using the previously obtained' g (r, T)
functions, we have calculated the second negative mo-

ments rgt '& (T) at a series of liquid temperatures. These
are given in Table III. They all correspond to the
integrals (3.4) extended to the upper limit of 20 A.
These integrals converge rapidly so that their limiting
values are already achieved at about 10 A. The slight

jump in the values of these moments between 2.75 and
3.01'K is associated with the approximate character of
the correlation functions in passing from the low-temper-
ature region, T & 2.75'K, to the high-temperature
region, T~&3.01'K, as discussed in S.D., where the
preceding division of the explored temperature interval
is fully defined.

Replacing (3.3) in (3.1), one obtains

limo. i, ()i T)/op
——1+[(1+p

—') '/8&r']) 'r g'—"(T) (3.5)

the asymptotic short-wavelength total scattering cross
section. It is, of course, of evident interest to compare
the asymptotic cross-section formula with the rigorous
one, Eq. (3.1), where the interference term is computed
exactly. This comparison, whose details need not be
given here, shows that the asymptotic formula is quite
acceptable out to X equal to about 4 A at all the liquid
temperatures here investigated, or at 1.25 ~& T ~& 4.20'K.
It should be noted that for heavier liquids, where p '
becomes small, the asymptotic formula may become
valid out to somewhat longer wavelengths.

We give in Fig. 3 two indirect interference integrals as
a function of the wavelength at the two representative
temperatures of 2,06 y,nd 4.20'K. The j.nterference
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integral vanishes, of course, in the limit of vanishing
wavelength. It decreases from this limit slowly at 6rst,
in the range of about A. &~ 2 A, and at an increasing rate
for somewhat larger A. The slight wiggles at short
wavelengths can be traced essentially to the approxi-
mate angular shape of the g(r, T) functions, at small
separations, which was discussed in detail in S.D. It will
be seen that in the range 5~&X~&9 A there is a rather
rapid drop in the value of the integral, reminiscent of the
Bragg edge anomaly. It is connected, of course, to the
main peak of the structure factor curves, which were
given in. S.D. The characteristic rapid drop of I(X,T)
will be seen to be sharper at the low rather than at the
higher temperature as might have been expected.
Beyond the sharp drop, the interference integrals fiatten
out and reach their asymptotic long wavelength range.
We will return below to the discussion of this range of
large X.

We give in the same Fig. 3, the direct interference
integrals I~, beyond about 4A. These two integrals
coincide to about 8—9 A, and deviate slightly from each
other at longer wavelengths.

From Eq. (3.1), the direct interference integral is,
changing the integration variable,

Identifying this with I(k,T), Eq. (3.2), and going over
to the limit A—+0 or k—+~, one obtains the theorem

2 fg—+oo

l—s& (T)= LFz, '(Ak T) 1j(Ak)d(Ak—) (3 7)

which is an expression of the second negative moment of
the correlation function g (r,T) in terms of its generating
function which is Fr,'(Ak, T). A more direct proof of
(3.7) can be obtained at once by replacing in the defini-
tion (3.4) the c.f., or g (r, T) by its expression in terms of
the dk Fourier integral of the structure factor, 4' and
integrating over r. Also, the definition of the second
negative moment of the interaction function

r& I '&(T)= r 'f(r, T)47rr'dr, (3.8)

with Eq. (2.1), yields in this way the rigorous relation

LI Fr, (sd k, T)$(d k)
—

d( Ak). (3.9)

The knowledge of the second negative moment
ro'—"(T), Eq. (3.7), directly through the structure
factor is, in principle, a great advantage for the use of
the asymptotic short wavelength limit (3.5) of the
interference integral. Actually, the problem is more
complicated. The complication arises from the empirical

~2k

I„(k,T) = (1/2k') [Fr, '(Ak) T) 1$(dk) d(A—k). (3.6)
dp

TABLE III. Second negative moments re&~& (20 A, T) of the
correlation functions g(r)T) at various temperatures.

1.25
1.50
1.75
2.06
2.25
2.50
2.75
3.01
3.25
3.50
3.75
3.97
4.20

—y&&-»Po A, 7.)A~

0.633
0.633
0.633
0.634
0.634
0.629
0.620
0.625
0.613
0.597
0.577
0.559
0.539

character of the structure factor, the precision of which
decreases with increasing Ak values. With the physical
condition' ' imposed upon the g(r, T) functions at small
separations r, and above all at r~0, one, indirectly,
modifies the empirical structure factors at large Ak
values. Hence, the second negative moments obtained
with carefully derived correlation functions should be,
under these conditions, more satisfactory than those
calculated directly with the uncorrected structure fac-
tors using (3.7). If the experimental structure factors
had been obtained with precision over a large Ak

interval, one might have expected to verify with them
the correct limit of g(r, T) as r~0, and also to derive
with them the fairly well approximated second negative
moments rg& "(T)or rrl '&(T). At the present time, the
indirectly obtained moments given in Table III are
more accurate than those which result from the theorems
expressed by (3.7) or (3.9).

In comparing now the direct interference integral
Id(k, T), Eq. (3.6) and the indirect interference integral
I(k,T), Eq. (3.2), the former is, evidently, to be pre-
ferred to the latter, with the exception of the region of
the short wavelengths or large k values, as we have just
shown. Since Id(k, T) is preferable, with the above ex-
ception, to I(k,T), the question arises as to the usefulness
of the latter. It is, however, easy to see that the studies
of I(k, T) lead to two different types of results concern-
ing the correlation function. One of these concerns an
additional integral check on g (r, T) as expressed by (3.2).
In Fig. 3 we have a graphical illustration, at two liquid
temperatures, of the over-all correct character of the
c.f.'s. It will be seen that at the longer wavelengths, the
largest deviations between I~ and I amount to at most
five percent. Below 4 A, Id becomes unreliable as dis-
cussed above. In view of the multiple uses' of the
g(r, T)'s in the evaluation of various properties of the
liquid, such an additional check on the correlation func-
tion is of evident interest. It will be noted. that the
indirect interference integrals tend to approximate (but
to be somewhat greater than) the more correct direct
interference integrals at the longer wavelengths.

Another type of result included in the indirect inter-
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ference integrals consists in their yielding the extension
of the spatial regions, around the origin atom, which
contribute electively to the scattering process through
their concentration deviations from the mean. In the
numerical calculations here performed, one indeed ob-
tains the generalized interference integrals

sin 2xr
4mr'g(r, .T)dr, (3.10)

as a function of the variable upper limit r. The very
form of the indirect interference integrals proves that
their destructive character, over the whole temperature
range here investigated, results predominantly from the
existence of the hole in the atomic distribution around
any atom within the liquid, which atom was chosen
arbitrarily to be at the origin of the coordinate system.
Of course, the positive concentration deviations from
the mean, or the hills in the atomic distribution, tend at
larger separations to minimize, through their con-
structive interference eBects, the large destructive eGects
arising from the density defects at close separations. At
a given temperature, the shorter the wavelength the
smaller is the spatial region, around the origin atom, the
atoms of which take an active part in the scattering
process. This region is seen to increase in size with
increasing wavelengths. In the limit of X very large, or k

very small, one has from (3.10),

(3.11)
X large

which was shown to oscillate' out to quite large separa-
tions r. Clearly, the preceding spatial properties of the
indirect interference integral do not appear in their
direct evaluation through Iq(k, T).

We should like to discuss brieQy the behavior of the
interference integrals in the asymptotic long-wavelength
or small wave-vector region. Remembering the parabolic
approach' ' of Fr,'(Ak, T) in LB toward its limit FI,'(O, T)
or e (T)k Txr, (3.6) leads to

terms. This yields

lim I (kg T) =G(T) —-'k'rg~'& (T)
k small

4m'
=e(T)k Txr —1— (rg&'& (T)/X'), (3.14)

3

where the erst equation, expressing the parabolic ap-
proach of I(k, T) in k toward its limit I(O, T), is quite
similar to the parabolic approach of the difference
Fi,'(Ak, T)—1 in Dk toward its limit LFI.'(O, T)—1j or
Le(T)kTgr —1j, according to

LFIP(gk T)—1]=G(T)—~(gk)2rg&2&(T) (3.15)
hk small

Since, as shown in S.D., at T~&T2, rg&'&(T) (0, and at
T&~ Tp, rg&'&(T)) 0, it will be seen that as a function of
X, for instance, IP„T)approaches its limit from above at
T&~T2, while the approach is from below at T &~ T2. But
since I(X,T) vanishes parabolically from below at X~O,
and since it approaches its very long wavelength limit
X—&~ from below also, it must have at least one mini-
Inum in the wavelength interval, at T~&T2. This is
exhibited clearly in Fig. 3. The characteristic tempera-
ture T2 was shown' to be in the range 2.25—2.50'K.

A special discussion of the interference integral is now
needed in the vicinity of the critical temperature. Be-
cause of the anomalous behavior of the correlation
function, it is indicated here to use the expression of the
structure factor in terms of the interaction function
whose behavior is normal at the approach of the critical
temperature. One has here4

lim Fz,'(Ak, T) 1 limF r, '(A—k, T)
T-+Te, hk small

=e(T)kTxrL1+pe(T)kTxr(hk)'rr~'&(T)$ ' (3.16)

Replacing (3.16) in (3.1) or (3.6) and integrating, one
finds

limIg(k, T)—LF1.'(0,T)—1$(1/2k') (Ak) d (Ak)
lt,~ kp

=e(T)kTxr 1, — (3.12)
lim Ig(k, T)

T~Te, k small

showing that Iq(k, T) has the same limit at vanishing k

as LFr,'(hk —+0, T) 1J. The same r—esult obtains, of
course, with (3.2), since

limI(k, T) = ~ 4m.r'g(r, T)

(3.13)

In order to obtain now the more detailed behavior of the
interference integrals at small k, one has but to expand
(sine/x)' in I(k,T), Eq. (3.2), and keep the first two

= ( 'k'rr&'&(T)) '1ng1+-,'e(T)-kTxrk'rr"&(T)j (3 17)

However, the full use of the preceding result' to obtain
the k or X behavior of Iq(k, T) could be misleading. This
is so because (3.16) is valid only under the assumption
that the (Dk)' term in its denominator is large in com-

parison with the next term, which is proportional to
(hk)', in'an alternating infinite series. ' The (Ak)' term is

assumed to be large compared to the sum of the terms of
order higher or equal to the fourth in (Ak). Hence, (3.17)
is actually valid only up to terms in k', or one has to

This was also obtained in reference 6 in an entirely dif'ferent
way.
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expand. (3.1'7) and write

lim Ig(k, T)

=e(T)kTxr[1 —rse(T)kTxrk'r&;is& (T)]

=N(T)kTgr ——sk'rg&'& (T) (3.18)

which is identical to what one obtains directly with
(3.15), provided one uses the rigorous relation,

r &"(T)= r&;&'& (T)N (T)kTxr, (3.19)

between the second positive moments" of the cor-
relation and interaction functions. In the limit,
k—+[1/rg&'& (T)]'~0, (3.18) reduces to e(T)kTxr, which
may be called. the optical or radiation limit. Hence, as
far as the static interference integral is concerned, its
approach toward the limit k—+0 is strictly parabolic at
all temperatures. At the approach of the critical temper-
ature the slope dI/dk at k~0 becomes very large be-
cause rg&s&(T)+~ at T +T,. To —the approximation of
the static interference integral, the critical opalescence
of very slow neutrons' is expressed essentially by the
first term on the righthand side of Eq. (3.18) or the
isothermal mean square Quctuation per atom of the
total number of atoms of the system, that is, (d 1V')A„/X.

We have to discuss 6nally the limitations on the
validity of the static interference integral at decreasing
wave numbers k or increasing wavelengths X of the slow
neutrons. As far as the collective portion of the slow-
neutron scattering process is concerned, the assumption
of the frozen or static atomic concentration deviations
from the mean e(T), defined by g(r, T), is equivalent to
neglecting completely the energy exchange between the
neutron and the collection of the scattering atoms
forming the scattering system. For short collective
interaction times of the neutron and the liquid 7, which
might be estimated to be of the order of I/r&, I being some
length over which g(r, T) is appreciable, the use of a
frozen or static correlation function is equivalent to
assuming the existence of a group of rigidly connected
atoms. Hence, in the collective part of the scattering
process, the energy transferred to this massive system is
indeed negligible. With decreasing neutron velocities, w

increases and when it becomes of the same order of
magnitude or larger than some characteristic time of the
liquid which is a measure for the time needed for the
concentration deviations to be built up or to disappear,
the apparent "rigidity" of the interatomic correlations
loses its signi6cance. As a result, the energy change of
the neutrons in the collision becomes more and more
signi6cant and affects now the collective or interference
part of the scattering cross section. The eGect of the
energy change of the neutrons on the interference
integral may be expected to decrease the numerical

' L. S. Ornstein and F. Zerniim, Physik. Z. 19, 134 (1918).The
relation between the even positive moments rg&'"& and r~&'") is
given in reference 4.

value of the static interference integral. At liquid tem-
peratures such that T& To, the static interference inte-
gral is likely to be negative, at not too short neutron
wavelengths, and will tend to underestimate the col-
lective part Gf the total scattering cross section. At
T& To, at the same neutron wavelengths, the opposite
situation might be expected to prevail. At any rate,
slower and slower neutron scattering processes, in liquid. s
for instance, involve relaxation type of time eBects in
their formal description, as 6rst pointed out by Van
Hove. ' A method of evaluating the generalized dynamic
or time dependent correlation function g(r, T,t) has also
been given. However, a correct evaluation of the charac-
teristic liquid times, which are expected to be tempera-
ture dependent, presents a problem as yet unsolved.
Hence to find, for a given liquid at a given temperature,
that critical neutron velocity below which the static
approximation to the interference integral starts to lose
its validity, is itself a problem whose correct solution is
closely tied to the liquid characteristic relaxation time
problem. The length 1 mentioned above may be taken
approximately to be the square root of the second posi-
tive moment [rg&s&(T))I of the static correlation func-
tion, at least at those liquid temperatures where this
quantity is reasonably well defined. We have seen that
this is not the case in the vicinity of the characteristic
temperature T2. In a temperature interval containing
T2, the approximate de6nition of the length / is to be
completed possibly with the help of some other moments
of g(r, T), such as re& "(T)or rg&4&(T), for instance.

A particularly interesting situation arises at the ap-
proach of the critical temperature. Here, the order of
magnitude of the momentum change of the neutron on
scattering arising from the collective effect of the liquid
atoms is defined essentially by the characteristic struc-
tural length [re&"(T)jl, through A[re&" (T)j '* or, in
virtue of (3.19),byh[rs&s&(T)n(T)kerf I, which quan-
tity is small and tends to vanish as T~T,. As a result
the neutron energy change on scattering is considerably
reduced, which circumstance reestablishes the validity of
the static approximation to the interference integrals at
all wavelengths. However, this situation is claimed to
be valid only in an extremely small temperature interval
near the critical temperature. Hence the static interfer-
ence integral coincides with the dynamic one at short
and. medium wavelengths, it deviates from the latter at
longer wavelengths, at all temperatures, with the ex-
ception of the point-like interval near T„where the two
expressions are always identical. This result suggests
that the static interference integral might be at least a
crude approximation to the dynamic one at those
wavelengths and temperatures where the latter is the
only one which is physically justified.

4. AVERAGE KINETIC ENERGIES AND ROOT MEAN
SQUARE FORCES PER ATOM IN LIQUID He4

We should. like now to further exploit the results ob-
tained in S.D. on the approximate evaluations of the
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Fzo. 4. Mean kinetic energies Es, z(T)/R and Ez, zz(T)/R,
('K/atom), as a function of the liquid temperature ('K).

average potential energies per atom at the various liquid
temperatures. With the rather well founded expression
of the total energy per atom,

E(T)=Es(T)+C.(T), (4.1)

where C(T) is the ensemble average of the potential
energy per atom, exchange energy included, based on
the pair approximation, it becomes possible to compute
the mean kinetic energies Ez(T). Here, the liquid
energies E(T), or the binding energies taken with the
negative sign, are available experimentally, omitting the
small pressure-liquid volume product, through

E(T)= —L(T)+e(T), (4.2)

where L(T) is the latent heat per atom and e(T) the
total enthalpy, per atom, of the saturated. vapor in
equilibrium with the liquid at the temperature T.
Keeping only the second virial coefficient in the thermal
equation of state of the He4 vapor, a procedure largely
justified by Keller" at least below about O'K, one ob-
tains therefrom the vapor volume U(T), with

pU=RT(1+ (B(T)/U)$, (4.3)

which volume is then introduced into the enthalpy
equation

e(T) = JzTL5/2 —(T/U) (dB/dT)+ (B/U)]. (4.4)

In (4.3) and (4.4) the second. virial coeffzcients measured
recently by Keller' in this Laboratory, as well as the
empirical function B(T) and its extrapolation" below
2'K have been used. In contrast with the vapor energies
per atom e(T), the latent heats at T&~2.50'I are of
questionable accuracy, above all around the lambda
point. In this low-temperature range the calculated.
latent heats' have been made use of. These calculated
latent heats seem to reproduce well the experimental
ones."Above 2.75'K, more accurate latent heats be-

zo W. E. Keller, Phys. Rev. 90, 1 (1955).
u Kilpatrick, Keller, and Hammel, Phys. Rev. 97, 9 (1955)."J.Kistemaker, Physica 12, 281 (1946).
'3 W. H. Keesom, Helium (EIsevier Publishing Company,

Amsterdam, 1942), pp. 229—232.

came available recently. '4 The energies C (T) depend on
the analytical approximation of the mutual potential
energy of a pair of isolated stationary He4 atoms as well
as on the pair distribution functions n(r, T) derived in
S.D. In the vicinity of the lambda point, both the latent
heats and the energies C (T) correspond to interpolated
values. The kinetic energies thus calculated are quite
approximate and carry automatically the uncertainties
in the energies C (T) and L(T). We give in Fig. 4 these
average kinetic energies in the interval 1.50—2.75 K.
The energies Es z(T) and Es, zz(T) are associated with
the two approximations to the mean potential energies
Cz (T) and Czz (T) which were discussed in detail in S.D.

It will be observed that these approximate kinetic
energies per atom of the saturated liquid exhibit the
expected angular point at the normal lambda tempera-
ture. This provides a quantitative sharpening of the
qualitative proof given previously, ' for the kinetic
energy origin of the lambda transition in liquid He4. The
crude lambda discontinuities of both kinetic heat ca-
pacities (dE~, z/dT) and (dE~, zz/dT) amount to about
5.5—6.0E. It seems reasonable to expect that while the
kinetic energies themselves, for a given potential energy
set C (T), are quite approximate, their temperature
derivatives be cruder approximations to the correct
kinetic heat capacities. It turns out that tge two types
(I) and (II), of kinetic heat capacities are quite close to
each other below the lambda point; their differences
above T~ are larger, as was to be expected from the
previously' calculated potential heat capacities at these
temperatures.

The very large values of both approximate kinetic
energies (Es,z(T)/E j and LEz zz(T)/R) in comparison
with the liquid temperatures T prove that they are
essentially zero-point kinetic energies. Only a relatively
small fraction of these kinetic energies appears to be of
thermal excitation origin, in agreement with the values
of the small empirical thermal energies J'~ c(T)dT,
evaluated with the total heat capacity c(T). Although
only semiquantitative and indirect, the kinetic energies
here obtained provide an interesting demonstration of
the existence of a large zero-point kinetic energy at all
the liquid temperatures investigated 1.25 ~& 7&&4.20'K.
Improved values of pair distribution functions, a deci-
sion on the best pair potential energy approximation as
well as better latent heat values should lead, of course,
to a unique and closer approximation of liquid He
kinetic energies.

The estimated zero-point kinetic energies per atom,
resulting from extrapolating the kinetic energy curves
toward low temperatures, are about 13 and 18'K, as-
sociated, respectively, with the potential energies Cz(T)
and C'zz (T)

In analogy with the calculation of the Incan potential
energies per atom in terms of the pair distribution
functions rz(r, T), it appears interesting to evaluate the

"R.Herman and J.Poulter, Phil. Mag. L7), 45, ifl47 (1952).
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mean forces per atom. This will be done here through
the calculation of the mean square force, yielding the
root mean square force." Beside being of intrinsic
interest, this quantity is of some importance in a direct
analysis of slow-neutron scattering processes in liquids
in general, and in liquid He in particular.

Let f(r) be the force acting on an atom of a pair of
isolated stationary atoms separated by the distance r.
Assuming that this force originates in the pair potential
energy q(r), of purely central character, we have, by
definition,

f(r) = —grady (r)
dy/dr. — (4.5)

and the total mean square force, in the pair representa-
tion approximation, is

(4-.7)

the integral being extended over the whole volume of the
system. Since the pair distribution functions tz(r, T) in-
clude exchange effects, the mean square forces F'(T)
also include these effects. With the n(r, T) functio. ns
available in tabular form, out to the extreme separation
of r=20 A, only the generalized square force integrals
F'(r, T) can be obtained. These are functions of the
upper limit r in the integrals (4.7). Vsing the two
analytical approximations to the pair potential energies

qz(r) and. q zz(r), defined previously, ' we have obtained
the mean square forces F'(20 A, T) at a series of liquid
temperatures. The effective ranges of the square forces
fz2(r) and fzz'(r) being moderate, the integrals (4.7)
converge very rapidly, indicating that these mean
square forces are determined, for all practical purposes,
by the details of their fields extending over separations
of the first neighbor atoms, at most. We give in
Table IV, the root mean square forces [Fz'(20 A, T)fl
and LFzz'(20 A, T)]'. These two series of root mean
square forces differ from each other as expected from the
shapes of the potential energy functions yz(r) and

qzz(r). The former, being higher than the latter, gives
rise to steeper gradients than the latter. The origin of
the slight jumps in the values of these forces in passing
from the low, T&~2.75'K, to the high temperature
"These calculations originated in the discussions with Dr. H. S.

Sommers, Jr., of the Los Alamos slow-neutron scattering data in
liquid He4. See Sommers, Dash, and Goldstein, Phys. Rev. 97, 855
(1955).

The differential mean square force in the liquid due to
the distribution existing at a distance r from the origin
atom is, omitting the cross term depending on the
unknown three-atom distribution function n(r, r', T),

(4.6)

Tsar.z IV. Root mean square forces in liquid He' at
various temperatures. '

T'K

1.25
1.50
1.75
2.06
2.25
2.50
2.75
3.01
3.25
3.50
3.75
3.97
4.20

(F12(20 A, T))&
cal/mole )&A

115.0
115.2
115.2
117.3
117.3
115.5
113.4
125.4
122.2
118.8
115.0
111.0
105.3

(F112(20 A, T))&
cal/mole &(A

83.3
83.6
83.6
85.1
85.1
83.8
82.3
89.8
87.6
85.2
82.5
79.5
75.6

group, T»&3.01 K, has been discussed in S.D., and was
already referred to above. Over the temperature range
1.25—4.20'K, the forces (Fz2)'* and (Fzz')'* first increase
up to the lambda point, and then decrease beyond it
with increasing temperatures, if the jump at 2.75—3.01 K
is disregarded as it should be. The forces (Fz2) & are close
to about 110 cal/moleXA, and the (Fzz')'* forces are
grouped around 80 cal/moleXA.

The problem of the closeness of either series of forces
to the actual root mean square forces is of course similar
to the corresponding problem of the potential energies
Cz(T) and Czz(T). At the present time, no well-justified
decision is available on the degree of fitness of the
original analytical approximations to the pair potential
energies of two isolated He' atoms, yz(r) and yzz(r).
There appear to be indications, " as far as the helium
vapor second virial coefTicient is concerned, that qzz(r)
tends to overestimate, in absolute value, the pair
potential energy. The problem of the degree of ap-
proximation achieved on the pair forces, L

—grader(r) j
and (—gradyzz(r) j, was not raised so far, because the
intervention of the forces, in the rather fragmentary
status of the theory of liquids, seemed to be remote.
However, as first shown by Placzek, ' the investigation
of slow neutron scattering phenomena in liquids may
put the force problem to the fore, adding thus a new
elementary physical quantity to be probed in liquids.

In concluding, I should like to thank Mr. Max
Goldstein for his kind cooperation in coordinating the
various numerical calculations. Thanks are due to Mr.
P. E.Harper for his work on the "701"IBM Electronic
Calculator, to Miss M. L. Johnson and Mrs. J. E.
Powers for the many hand calculations, to Mrs. A. M.
Snowden and Mrs. I .E.Moss for the preparation of the
graphs.

a These are evidently approximate because of the omission of the cross
term ff(r) f(r')rl(r, r', T)dv(r)dv(r') in Eq. (4.7). Lack of information on
n, (r,r', T) prevents one from estimating the value of the cross term, at the
present time.


