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Nuclear Radius and Nuclear Forces*

S. D. DRELL

(Received June 13, 1955)

The difference between the radius of the nuclear matter distribution and the nuclear force radius,
R~~1.4A&X10 " cm, for heavy nuclei (A &100) is interpreted as a consequence of the finite range of
nuclear forces. Assuming that the nuclear matter distribution coincides with the charge distribution as
determined at Stanford (Re=1.12AiX10 is cm is the distance at which the charge density falls to one
half value) we sum up the nuclear interactions of an incident nucleon for various proposed internucleon
potentials, U(r). We also evaluate contributions from the spin, charge, and matter polarizations induced
in the nuclear distributions by the incident nucleon as a test of the convergence of these calculations. The
aim here is to infer some features of nuclear forces which satisfy saturation requirements and at the same
time give rise to an appreciable nuclear attraction for an incident nucleon at R&. Analyses of the scattering
of neutrons and protons by heavy nuclei suggest a nuclear attraction &14 Mev at a distance Rz.

These considerations are primarily sensitive to the long range behavior of the direct, central part of U (r).
The key point which emerges from them is that the nuclear forces must contain long range (~ meson
Compton wavelength) direct, central attractions which will be felt by an incident nucleon at R& before the
shorter range repulsions (hard cores, many-body forces, or exchange interactions), which are responsible
for saturation, become effective. Such interactions can be constructed phenomenologically, but are not
found in recent meson-theoretically deduced potentials.

I. INTRODUCTION

'HE discussion presented in this paper is concerned
with the difference in nuclear radii as observed

and interpreted in various experiments which measure
different properties of the nuclear structure. It is limited
to nuclei of large mass number, A&100. The two
classes of experiments of immediate concern here are
the one group which measures the "nuclear force
radius" (Riv) as opposed to that which determines the
"radius of the charge distribution" (Ro) in nuclei.

By "nuclear force radius" is meant the radius at
which an impinging nuclear particle (neutron, proton,
etc.) first feels the influence of the nuclear forces.
Analyses of neutron cross sections at various energies
indicate a nuclear radius of roughly 1.4A'. (Unless
specifically stated otherwise, all lengths in this paper
are in units of 10 's cm.)' The approximate A i variation
of the radius expresses the well-known phenomenon of
saturation of nuclear densities. More detailed consider-
ations of the total, reaction, and elastic scattering
cross sections of neutrons with kinetic energy in the
range from thermal energies up to the order of 10 Mev
as presented in the cloudy crystal ball analysis of
Feshbach, Porter, and Weisskopf, ' ' give radii which

*This work was supported in part by the Office of Naval
Research and the U. S. Atomic Energy Commission.

' J. M. Blatt and V. F. Weisskopf, Theoretical XNcleor Physics
(John Wiley and Sons, inc. , New York, 1952), see Chap. 1, Sec. 4
for a qualitative discussion of the nuclear size as deduced from
various experiments.' Feshbach, Porter, and Weisskopf, Phys. Rev. 96, 448 (1954).
In this paper, the radius is actually taken to be 1.45A&.

3Later work (personal communication with V. F. Weisskopf)
as discussed in the Brookhaven National Laboratory Report
BNL-331 C-21, on the conference "Statistical aspects of the nu-
cleus" held January 24—26, 1955 (see especially p. 16) reproduces
a better fit with data on neutron scattering angular distributions
and on cross sections for compound nucleus formation as a
function of mass number if the radius is altered to a value in
close agreement with Eq. (1).

are slightly larger for intermediate mass nuclei with
A 50 and smaller for the heavy nuclei with A 200.
The optical analysis of Taylor4 for high-energy total
neutron cross sections in the energy range 50 to 400
Mev agrees with this conclusion. We take as a repre-
sentation of the nuclear force radius

Rs =, (1.26A''+0. 75).

Equation (1) thus predicts radii of 1.45A* for A 60
and of 1.39A' for A 200.

This expression for the nuclear radius is obtained
from a simple model which pictures the nuclear po-
tential well to have sharp edges. For a rounded-off
nuclear well, corresponding to a surface of finite thick-
ness, we must know the depth of the potential well at
the radius, R~, in Eq. (1) before we can interpret this
number. Toward this end, we may appeal to proton
scattering cross sections. The analysis of Woods and
Saxon' has shown that it is possible to fit the observed
di6erential elastic scattering cross sections for 20-Mev
protons on medium and heavy nuclei with a nuclear
potential which decreases smoothly to zero in a distance

2. A square-well model fails here because it predicts
considerably too much large-angle relative to small-
angle elastic scattering.

More important, however, for the discussion here is
the presence of the Coulomb barrier. A proton with
energy less than Z/Al Mev incident on a nucleus of
charge Z and mass number A must tunnel through the
Coulomb barrier. Its probability of reaching the nuclear
surface and of initiating a reaction is a very sensitive
function of the height and width of the barrier. The

T. B. Taylor, Ph.D. thesis, Cornell, 1954 (Phys. Rev. to be
published); also Phys. Rev. 92, 577 (1954).

5R. G. Woods and D. S. Saxon, Phys. Rev. 95, 577 (1954).
Experimental and earlier theoretical analyses are referred to in
this work.
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FIG. 1. The shaded region represents the charge distribution for
Au (Ravenhall and Yennie, reference 13); the dotted line shows
the uniform distribution with the same root mean square radius
(=1.2A'). The dashed lines show the nuclear wells (the depth
gives the magnitude of the real part) which Saxon, Melkanoff,
and Nodvik have used to match proton scattering data. The
analytic form of these wells is Vo/1+e'~""~~ with a=0.49, and
Vo ———38 Mev ra =1.42A i for the shallow curve (reference 5) and
V0= —45 Mev and r0=1.33A& for the deep one (reference 8).
The illustrated potentials and charge distributions are for Au.

' The presence of the Coulomb barrier is thus of value here in
that it permits a "normalization" of the energy scale.

For Z =50 and E„=5 Mev, this reduction factor is of the
order of three.

8Personal communication with Dr. D. S. Saxon and Dr. S.
Moszkowski. More extensive calculations on elastic proton
scattering from various nuclei, including Al, Cu, Ag, and Au,
confirm the initial result of Woods and Saxon in reference 5
that the nuclear potential extends appreciably beyond the radius
Rg. Some of these calculations are reported in the Hrookhaven
report (reference 3) in the session on "Elastic Scattering" by
D. S. Saxon. In all cases, the best fit with experiment is achieved
with a nuclear potential at least 14 Mev deep at R~——1.4A&

9 The analysis of J. S. Blair, Phys. Rev. 95, 1218 (1954) on
elastic n-particle scattering provides further evidence in support
of a large nuclear force radius. He fits the experimental angular

observed cross sections thus give a relatively sensitive
determination of the radius at which the attractive
nuclear forces overcompensate the repulsive Coulomb
barrier. ' If the proton had to tunnel its way through a
Coulomb barrier produced by the nuclear charge
distribution with radius R~, its cross section for forrna-
tion of a compound nucleus would be much smaller
than if the barrier stopped at the larger distance, ' R~.
Saxon, 3&Ielkanoff, and Xodvik' ' have shown that it is
possible to fit the data with a well of sloping sides and
with the Coulomb barrier overcompensated by the
nuclear forces at a distance slightly larger than R~.
The potential which they use is shown in Fig. 1. We
assert then a basic premise for future discussions: an
incident nuclear particle feels a nuclear force attraction
which overcompensates the Coulomb barrier for protons
at a distance from the center of the nucleus given by
R// of Eq. (1). For our purposes, it will sufRce to
approximate Eq. (1) to R/v= 1.4A i, and to require that
the magnitude of the attractive nuclear forces at a
distance R~ be at least 14 Mev."

The above value of the nuclear force radius is to be
contrasted with the radius of the proton, or electric
charge, distribution, as determined by high-energy
electron scattering at Stanford' and Michigan" and
by the energy levels of p-mesic atoms at Columbia. "
The charge profile and size are both known from the
recent work of Hofstadter, McIntyre, and collabora-
tors" as analyzed by Ravenhall and Yennie. " The
charge distribution is calculated to decrease to half-value
at a radius of close to Rg ——1.12A&, with a surface
thickness of 2.38 representing the distance between the
10 percent and 90 percent values of the density, for a
mass number of A=197. [See Fig. 1.$ It is not yet
determined experimentally how the surface thickness
scales with atomic number but this uncertainty will
have no eGect on the discussion here for heavy nuclei
(A )100).

In this work, our aim is to infer some properties of
nuclear forces on the basis of this difference between
the charge and nuclear force radii. Although a complete
nuclear force theory does not exist, it may still prove
fruitful to study this difference in radii as a reflection
of the eGects of separated portions of the nuclear force.

It is generally agreed that the di6erence in radii is in
part a measure of the finite range of nuclear forces.
We observe that for medium-heavy nuclei, R&—Rt.- is
approximately equal to one meson Compton wave-
length, or the characteristic nuclear force length. In
this work, we adopt the interpretation that the diGer-
ence between R~ and Rg is emtirely a consequence of
the finite nuclear force range, and we use the magnitude
of this difference as a lever to learn some properties of
the nuclear forces themselves. "That is, we assume that
distributions of n particles elastically scattered by heavy nuclei
PG. W. Farwell and H. E. Wegner, Phys. Rev. 95, 1212 (1954)j
with a nuclear model which assumes that the nucleus is opaque
out to a radius of 1.5A'. Further work along these lines by Wall,
Rees, and Ford with similar results is reported by D. S. Saxon
in reference 3, pp. 51—52. See also Wall, Rees, and Ford, Phys.
Rev. 97, 726 (1955).

"Hofstadter, Fechter, and McIntyre, Phys. Rev. 92, 978
(1953); Hofstadter, Hahn, Knudsen, and McIntyre, Phys. Rev.
95, 512 (1954); Yennie, Wilson, and Ravenhall, Phys. Rev. 92,
1325 (1953); Yennie, Ravenhall, and Wilson, Phys. Rev. 95,
500 (1954).

"Pidd, Hammer, and Raka, Phys. Rev. 92, 436 (1953).
'2V. L. Fitch and J. Rainwater, Phys. Rev. 92, 789 (1953);

L. N. Cooper and E. M. Henley, Phys. Rev. 92, 801 (1953)."D. G. Ravenhall and D. R. lennie, Phys. Rev. 96, 239 (1954).
~4 To fix this point more clearly we consider a slowly moving

proton which is incident on a heavy nucleus. We ask what factors
help a proton which comes up against the high Coulomb barrier
corresponding to radius Rt. tunnel its way through as if the barrier
were lower and cut off at the larger radius R~. A first suggestion
might be to take into account the polarizability of the proton in
the electric field of the nucleus. This corresponds schematically
to the proton tossing out its charge on a 27-+ meson, coasting
freely as a neutron, while the lighter x+ meson bucks the barrier
with greater ease, and then catching the 71-+ back again. However,
the effect of this induced electric dipole moment was calculated
to be negligible with meson parameters adjusted to give the
correct anomalous magnetic moments. (The entire magnetic
moment contribution is itself negligible. ) Along this line of
thought we may consider that the proton throws out its 71- mesons
to be caught by a nucleon inside the nucleus. This "forward pass"
effect (as contrasted with the above "fumble" ) then contributes
the nuclear force attraction to help balance the Coulomb barrier.



NUCLEAR RADIUS AND NUCLEAR FORCES 99

the charge distribution determined at Stanford coincides
with the entire nuclear matter distribution. We then
determine if various meson-theoretically inspired and
phenomenological nuclear force theories which have
been proposed are suitable to account for the radius
difference, R~—Rg.

The nuclear forces of primary interest in this work
are those which satisfy the saturation requirements in
heavy nuclei. It is a simple matter to write down
attractive two-body forces extending over a range of
the order of 1&10 "cm which will account for R~—R~.
However, we shall see that the dual demands that the
nuclear forces account for saturation and at the same
time give rise to an initial attraction of magnitude
~&14 Mev for an incident nucleon at a distance R~,
provide severe requirements for the forces to satisfy.
The reason for this is that the saturation phenomenon
is an expression of the weakness of the average attrac-
tion experienced by a nucleon in nuclear matter. Only
if the nuclear forces contain long-range direct, central
attractions which will be felt by an incident nucleon at
a distance R~ before the repulsions, which are respon-
sible for saturation, become eGective, can they com-

pletely account for the diGerence, R&—Rz. Thus, the
agents which serve to establish the saturation of nuclear
forces, whether they be hard cores, many-body repul-
sions, and/or exchange potentials, must be character-
ized by a short range relative to the attractive inter-
actions. This is the key point which emerges from our
considerations.

Alternatively, the diGerence between R~ and Rq can
be trivially explained on the basis of an entirely diGerent

approach to this problem which assumes that the
neutron distribution extends beyond the proton one.
Such proposals have been made by Johnson and Teller"
and by Swiatecki" and are based on the excess in
neutron number over proton number, and on Coulomb
eGects. In the absence of definite experimental infor-
mation on the relative sizes of the neutron and proton
distributions'~ in nuclei, these proposals provide equally
valid approaches to an explanation of R~—Rg. Further
experimental as well as theoretical work is required in

order to establish to what extent the radius diGerence
can be explained simply on the basis of a larger matter
than charge radius. As indirect evidence in support of
the assumption of equal neutron and proton radii, we

note the observations on the lighter nuclei"" such as

's M. H. Johnson and E. Teller, Phys. Rev. 93, 357 (1954).
' W. J. Swiatecki, Phys. Rev. 98, 203—204 (1955).' See however W. N. Hess and B. J. Moyer, Phys. Rev. 96,

859(A) (1954). W. N. Hess, University of California Radiation
Laboratory Report UCRL-2670, 1954 (unpublished); L. N.
Cooper and W. Tobocman, Phys. Rev, 97, 243 (1955). The
experiments of Hess and Moyer on the indirect pickup process
provide qualitative indications of a 0.8 neutron surface layer in
Pb which is not present in lighter elements with Ã=Z=A/2.
However, the stripping analysis of Cooper and Tobocman suggests
a neutron surface layer of 0.6 for mirror nuclei Mg" and AP'.

'8 Lyman, Hanson, and Scott, Phys. Rev. 84, 626 (1951); A.
E. Glassgold, Ph. D. thesis, Massachusetts Institute of Technology
Physics Department, 1954 (unpublished).

copper and titanium, which have roughly equal numbers
of neutrons and protons, but for which the radius
difference (E~ Rc)—/Al is essentially the same as for
lead with a neutron to proton ratio of 1.5. We also
note Williams" optical-model analysis of the 1.4-8ev
neutron cross sections which indicates small matter
radii in close agreement with R~.

We assert then as a second basic premise for these
discussions: the nuclear matter distribution coincides
with the charge distribution as determined at Stanford.
The best fit to Au is given in Fig. 1.

On the basis of the two preceding basic premises,
we seek to establish features of the nuclear forces
which are necessary to account for the observed diGer-
ence in radii. At first sight, it may seem that a study
of the diGerence between R~ and Rt.- in heavy nuclei is
a rather indirect approach to the nature of nuclear
forces. A study of the deuteron and of nucleon-nucleon

scattering is surely more direct. However, the two-body
problem in nuclear physics has proved to be very
complicated and is nowhere near solution. It is evident,
especially from the work of Levy, " Brueckner and
Watson, "and Blatt and Kalos, "that a fit to two-body
data at various low and intermediate energies is quite
sensitively affected by the introduction of infinite
repulsive cores with different singlet and triplet ranges
and by the depth and slope of the potential at the edge
of the core. This means that the calculations of the
two-body interactions are sensitive to regions of small
particle separations ( 0.4) where the static potential
picture is certainly deficient. It also means that it is
difficult to make an unambiguous choice of the exchange
properties of the potential as well as of its profile for
larger separations ( A/pc=1. 4). This point is clearly
illustrated by the fact that the Levy potential and the
Brueckner-Watson potential both give a satisfactory
account of themselves on low energy data, but are very
different from one another insofar as concerns their
exchange nature, tensor contributions, and space
variation. "

On the other hand, a study of the nuclear radius
diGerence can be used to cast light on one distinct
feature of the nuclear force. Its main advantage is that,
to lowest order, for two-body interactions it measures
predominantly the effects of the long range behavior
of the direct part of the central potential for heavy

"R. W. Williams, Phys. Rev. 98, 1387, 1393 (1955) and
personal communication, Coor, Hill, Hornyak, Smith, and Snow,
Phys. Rev. 98, 1369 (1955). Similar results are obtained from
the scattering of 860-Mev protons. Chen, Leavitt, and Shapiro,
Phys. Rev. 99, 857 (1955).

"M. M. Levy, Phys. Rev. 88, 725 (1952).
~' K, A. Brueckner and K. M. Watson, Phys. Rev. 92, 1023

(1953).
» J. M. Blatt and M. A. Kalos, Phys. Rev. 92, 1563 (1953).

3 We note, for example, that the Levy potential contains
roughly four times as much direct central attraction as does the
Brueckner-Watson potential and two-thirds as much long range
tensor force. Henceforth, we shall mean by Brueckner-Watson
potential the potential which they derive using only the gradient
coupling version of pseudoscalar meson theory (no pair term).
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nuclei, A) 100; i.e., of Vq(r) in an expression for the
potential of the form

V(r) = V~(r)+V, (r)~, ~+V, (r)v& a+ V., (r)a& s~& ~

+V, (r)S,s+V~, (r)&, ~S,s, (2)

where 5~2 is the tensor force operator.
It measures only the effects of Vd(r) because, to

leading order in A))1, there are equal numbers of spin-

up and spin-down particles in the nucleus, so that the
last four terms of Eq. (2) average approximately to
zero. They vanish identically in the sum over nuclear
particles for spin zero nuclei. In general, their contri-
butions are reduced by a factor of A'. This is because
there are ~A: particles near the facing surface of the
nucleus which interact strongly with the incident
nucleon, in virtue of the short range of the nuclear
forces, and all but one of a few of these A: particles
will be paired in spin-up and spin-down states. Also,
the second term of Eq. (2) is proportional to the
neutron excess and is responsible for only a small
contribution to the calculations following in comparison
with the Vq(r) term. This approach thus has the
advantage of being primarily sensitive to one portion
of the nuclear potential: the long-range behavior of

Vq(r), which determines at what distance from the
nucleus an impinging nucleon first experiences an
appreciable nuclear interaction. Sy the same token it
cannot tell whether V(r) falls precipitously up to the

edge of a repulsive core or simply increases gradually
as r—+0.

II. OUTLINE AND SUMMARY

In this section, we present a brief outline of the
calculations performed and results obtained in the
succeeding paragraphs.

Firstly, in Sec. III, we sum up the nuclear inter-
actions of a nucleon outside the nucleus with the
nucleons comprising the nucleus. In this calculation
we neglect the influence of the external nucleon on the
nuclear matter density, which we assume to correspond
to the charge distribution measured at Stanford. "We
also neglect the requirement of antisymmetrizing the
wave function of the incident nucleon with those in the
nucleus. To first order, it is only the direct (0- and
~-independent) parts of the nuclear potential which are
of importance. We consider in this work several different
models of nuclear forces, all of which have in common
the property of satisfying the saturation requirements
in nuclei. Two of these models are rooted in meson

field theory; one is the Levy" potential of pseudoscalar
meson theory, supplemented by sufficient three-body
repulsions to meet the saturation requirements; the
second is the Brueckner-Watson" potential, deduced

on the basis of the gradient-coupling version of pseudo-

scalar meson theory, which is also consistent with the
saturation requirements. Two more phenomenological

models are also discussed. The Levy and Brueckner-

Watson models have in common the feature that the
main contributions to the central forces result from
two-meson exchanges so that the interaction is of
characteristic range of the order of one-half of the
meson Compton wavelength. We 6nd that the direct
part of the Brueckner-Watson potential is too small
to account for the difference between E~ and E~. The
Levy potential, on the other hand, has a very strong
Wigner attraction; however, when enough three-body
repulsion of the form predicted by the same meson
theory as used in deducing the two-body attraction is
introduced to be consistent with nuclear stability, '4 we
find again that the difference between E~. and Eq
cannot be accounted for. In contrast, a simple phe-
nomenological Yukawa or Hulthen potential with a
range of one meson Compton wavelength and a depth
appropriate to the binding energy of the deuteron has
the desired property. Calculations are presented for
two different potentials of this type. In the course of
these calculations we verify that our conclusions are
insensitive to details of the assumed shape of the tail
of the nuclear charge distribution.

In Sec. IV, we calculate the induced spin, charge,
and matter polarization of the nuclear density due to
the interactions with the approaching nucleon. These
effects are found to be small for the incident nucleon
at a distance &1.35A: from the center of the nucleus
and indicate the convergence of our calculations.

Section V is devoted to a consideration of the effect
of taking into account the Pauli principle by anti-
symmetrizing the wave function of the incident nucleon
with the nucleons in the nucleus. This effect serves to
weaken the nuclear attraction due to direct terms,
since the Pauli principle inhibits the close approach of
two fermions, and to introduce exchange energies. Its
contributions are shown to be small. These exchange
contributions do not influence our conclusions which
are presented in Sec. VI and may be summarized
briefly as follows.

The observed difference between the nuclear force
radius, E~, and the charge radius, E~, may be explained
in either of two ways. On the one hand we may assume
that the nuclear charge and matter distributions
coincide, in which case the potential between nucleons
must contain an appreciable amount of long range,
direct, central attractive interaction. If we require that
this same internucleon potential account for nuclear
saturation, the repulsive cores, many-body repulsions,
and/or exchange interactions which stabilize the
nucleus against collapse must be of shorter range than
the attractive interactions. Recent meson-theoretically
deduced nuclear potentials are not consistent with these
requirements. On the other hand, we may assume that
the radius of the neutron distribution extends beyond
the radius, Eq, of the proton distribution. Our calcu-
lations show that the matter distribution must extend

s4 S. D. Drell and K. Huang, Phys. Rev. 91, 1527 (1953).
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at least 10% beyond the charge radius if we accept the
indications of meson field theory as manifest in the
potentials of Levy" or of Brueckner and Watson. "

We emphasize at this point that the nuclear radius,
R~, as used in this discussion, represents the distance
at which an incident nucleon feels an appreciable
nuclear attraction, 14 Mev. Our calculations are valid
only for the incident nucleon "outside" of the nucleus,
and tell nothing about the strength or shape of the
nuclear interaction for a particle "inside" of the nucleus.

III. FIRST-ORDER INTERACTION ENERGY

Xn this section, we compute directly the interaction
energy between a nucleon outside of the nucleus and
the nucleons in the nucleus as a function of distance,
making the following simplifying approximations:

(1) We neglect the influence of the external nucleon
on those in the nucleus, which we take to be distributed
according to the Stanford charge distribution.

(2) We treat the external nucleon as distinguishable;
i.e., we ignore the requirement of the Pauli principle
that its wave function be antisymmetrized with those
in the nucleus.

(3) We assume that the interaction between a
nucleon outside with one or a pair of nucleons inside
nuclear matter is unchanged from what it would be if
these (two or three) interacting nucleons were isolated
from the rest of the nuclear matter.

Approximations (1) and (2) are analyzed and discussed
in the following sections. Their eGects are calculated
in order to determine the regions of validity which
they limit for our discussions here. Approximation (3)
is an assumption as to the linearity of the nuclear force
theory. We remark that, because of the short range
character of nuclear forces, the important contributions
to the interaction energy which we calculate below
come from nucleons near the surface of the nucleus
facing the incident particle. It is the nucleons in the
region between 1.3A' and 1.0A: of the density distri-
bution shown in Fig. 1, where the nuclear density is
gradually increasing, which contribute most of the
energy. Nonlinearities of the type discussed by Schi8,"
which operate in regions of high density, may thus be
relatively unimportant in these calculations. However,
if present, such nonlinearities would have an important
influence on the saturation conditions. Our point of
view is to assume the linearity of the theory in calcu-
lating the interaction energy and in considering the
saturation requirements on the two- and three-body
potentials studied in this work.

We consider in this calculation only heavy nuclei

(A 176) so that we can replace the sum over nuclear
particles by an integration over the nuclear density.
As discussed in the last paragraph of Sec. I, it is

'~ Such nonlinearities are contained in theories such as those
given by Schiff LL. I. Schiff, Phys. Rev. 83, 1 (1951)j.

consistent with our approximations to neglect the last
four terms of Eq. (2). They average approximately to
zero in the sum over nuclear coordinates. Upon sum-
ming over the charges of the nuclear particles, we
obtain for Eq. (2)

V(r) = Uq(r)+[(2Z —A)/A7(r, r) V, (r), (3)

with (r, r) =&1 for incident proton or neutron, respec-
tively. "The second term is seen to be proportional to
the neutron excess. Since (1—2Z/A)&1/5 for most
nuclei, its eQ'ect is reduced relative to the first term. A
big contribution from the V, (r) term would reflect itself
in a difference between neutron and proton radii of
heavy nuclei. This difference suggests itself as a possible
means of investigating the importance of Heisenberg
(or charge exchange) forces in nuclei. For our purposes
here we shall confine our attentions primarily to the
first term, U&(r). We shall, however, briefly consider
the second term in a discussion of the potential model
of Brueckner and Watson which has a fair amount of
Heisenberg force.

If we consider first just two-body interactions, the
basic integral to be calculated is

A

U~(l Ro—r;~) =— p(r)drVq(~ Ro rl) (4)
i=1

where p(r) is the nuclear matter density, v= Jp(r)dr is
the nuclear volume, and R0 is the coordinate of the
external nucleon.

The integral in Eq. (4) can be reduced to a canonical
form for these calculations on the basis of the assumed
spherical symmetry of the nuclear distribution. A
simple change in variable in the polar angle integration
gives directly

(RP+f )P

dfIU. (l Ro—r I) = (2~/«of ') i" dyXUdb), (5)

where 1/p=1.4 is the meson Compton wavelength in
units A=c=1. Introducing Eq. (5) into (4) we have
the interaction energy as a function of R0 for a given
potential, nuclear density, and A. We introduce the
following notation to put the expression in dimensionless
fol m:

g=f Eo/Al; x= r/pAl

and use the experimental result for the charge density
that it occupies a volume equivalent to a uniform
distribution of radius 1.16A1=0.83A&/p cm. This gives
finally

E =2.6(Af/rf) p(x)xdx yVd(y)dy, (6)
0

where we have replaced to a very good approximation

"In Eq. (3), the charge dependent term is altered if we give
up the basic premise No. II (coincidence of neutron and proton
distributions). This situation is discussed later.
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the upper limit of the integral in Eq. (5) by m, as
permitted by the short range of the forces.

The evaluation of Eq. (6) is effected by a straight-
forward procedure of elementary and/or graphical
integrations.

We consider as a first model of the potential, a
saturating combination of short range direct and ex-
change forces with no repulsive cores. A simple proto-
type of this class of interactions replaces V;(r) in Eq.
(2) (for all subscripts i) by a step function

r(p;
V;(r) =X;e;(r); e;(r) =

0 r&p;

The saturation conditions for such a potential include
the requirement that Xz&~0. This is because it is only
the Vd term of Eq. (2) that operates for a nucleus in
the collapsed state, and its coe%cient must be positive
to prevent the nuclear collapse that would accompany
a negative A' contribution to the energy. '" However,
for X~&0, the energy of interaction calculated in Eq.
(6) is positive, which means a net repulsion of the
external nucleon by the nuclear force e8ects when jt
first gets within the force range. If we assume, for
example, a range pd~1, a nucleon incident on a heavy
nucleus would first feel the nuclear force eGects when
it approached within (1.2A'*+1) Rs, and at this
distance the nuclear interaction would be repulsive
rather than attractive. We learn from this example
that if we have simple potentials wells and achieve
saturation by means of suitable exchange mixtures, we
cannot explain the difference between E~ and E~,
once we have assumed that the charge and matter
radii coincide.

It is apparent, however, that if saturation is achieved
through repulsive cores in addition to exchange mix-
tures, a net attraction can be obtained in Eq. (6). As
an example of this, we consider the Brueckner-Watson2i
potential which is deduced from gradient-coupling
pseudoscalar meson theory carried through fourth order
in the coupling parameter and thereby allowing for one
and two meson exchanges. In the deduction of this
force the theory is supplemented in two ways: repulsive
cores are introduced at short distances and multiple
scattering arguments are appealed to in order to allow
a selection of a particular set of the fourth order
interactions. The fourth order interactions which are
retained in the analysis of Brueckner and Watson are
those for which two virtual mesons are simultaneously
present in the intermediate states in a perturbation
expansion. All fourth order contributions which arise
as nonadiabatic, velocity-dependent corrections to the
second order, one-meson exchange interaction are
dropped.

We accept this potential as indicative in general
features of what results from the gradient-coupling

'~For a discussion of the various saturation conditions see
reference 1, Chapter III.
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FIG. 2. Logarithmic plot of the magnitudes of the various
contributions to the Levy and Brueckner-Watson potentials as
labeled vs distance. —Vz' (Levy) represents Eq. (9) for the Levy
potential and —Vq4 (Brueckner-Watson) represents Eq. (8) for
the 3rueckner-Watson potential. The two-meson exchange
contributions to the Brueckner-Watson potential which are
proportional to eq tr, sq s and o'~ o'c& s Lsee Eq. (2)j are repre-
sented by +U (4) (Brueckner-Watson), —U, (4) (Brueckner-
Watson), and U, (') (Brueckner-Watson). The one-meson ex-
change terms, Eq. (27), and the additional two-meson exchange
contributions to the tensor force are not indicated. The dashed
line represents a Yukawa potential of sufficient depth to bind
the deuteron.

28Brueckner, Levinson, and Mahmoud, Phys. Rev. 95, 21/
(1954); K. A. Brueckner, Phys. Rev. 96, 908 (1954) and 97,
135i (1955).

"A repulsive core radius of 0.32 (1/p) cm represents the appro-
priately weighted average of the singlet and triplet core radii in
reference 21 (units corrected from reference 21 as indicated in
reference 28).

meson theory; i.e., from the pseudoscalar theory when
the pair term is completely suppressed. It has the
virtues of giving a reasonably satisfactory fit to low
and intermediate energy two-body data and of pre-
dicting reasonable saturation behavior for heavy
nuclei. "The main feature of concern to us here is the
short range and moderate strength of the direct term,
Vd, as illustrated in Fig. 2. In units s=pr it reads"

Vs —— ys 4L(4+4s+s'—)e '—E (s)—
+s(2+2s+s')e 'E's(s) 1, for s)0.32;

=+ oo, for s &~0.32; (8)

with

y =6(p/s. ) (g'/4n)'(p/2M) 4= 1.73 Mev.

The short range of the direct part is due to the fact
that it arises from two-meson exchange and is thereby
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approximately characterized by the range 1/2p, . The
longer range contribution resulting from one meson
exchange in the gradient coupling gives rise only to
the long-studied tensor and V, terms and does not
contribute in this 6rst-order analysis.

Introducing Eq. (8) into Eq. (6), we have calculated
the interaction energy as a function of the particle
distance q. We have carried through these calculations
both for the Stanford charge distribution and for the
uniform distribution with the same root mean square
radius (=—1.2A&) as drawn in Fig. 1 in order to test
the sensitivity of our results to the tail of the charge
distribution. The results are presented graphically in
Fig. 3 and tabulated in Table I for an arbitrary nucleus
of mass number A =176. The important point here is
that, at a distance of 1.35A', the nuclear attraction is
4.3 Mev, or less than one third of what is required to
make the nuclear force radius appear to be this big.
We conclude that the nuclear forces have contributed
insufficiently in this case to make the nuclear force
radius appear to be R~ ——1.4A&. It is seen that this
conclusion applies to both calculations, with the Stan-
ford and with the uniform charge distributions.

We observe that the energies obtained with the
Stanford and with the uniform distributions correspond
to each other much more closely for Rp=1.35A' than
for Rp ——1.45A:. This may be understood in terms of
the repulsive core and short range singular character of
the internucleon potential. For large separations, the
short range nature of the interactions weights heavily
the energy contribution due to the portion of the matter
distribution which extends beyond 1.2A:. However,
for smaller separations the repulsive core is effective in
preventing the matter distributions and incident
nucleon from approaching to within 0.32/p, cm of each
other. The repulsive core in Eq. (8) has no influence in
calculation for Rp ——1.45A', since there is less than one
percent of the matter distribution (Fig. 1) within a
distance 0.32/p, cm of an incident nucleon. It does,
however, enter into the evaluation of the interaction
energy for the incident nucleon at 1.40A: and at
1.35A:, since the tail of the Stanford charge distribution
extends out to these distances. For these cases, we
have performed the calculations so as to obtain the
maximum possible attraction by sharply cutting off
the matter distribution at a separation of 0.32/p cm
between the incident nucleon and the nucleus, and
increasing its value uniformly in the region within 0.5

|.35
0

( R,/g'&q) x l 0 cm

I
up|for rr

go)so~
,uec~r1er

Sto~fo«
gotsoQruec~n«-

i.45

!0

C
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of the cutoff to preserve its normalization to A particles.
By this procedure we avoid all repulsive contributions
to the interaction arising due to the hard cores and at
the same time take full advantage of the deepest portion
of the internucleon attraction at the edge of the hard
core. Various modifications of this procedure altered the
calculated energies only by several percent. Also a
decrease in the core radius to its minimum value
(which applies for triplet states) of 0.30/p cm increased
the attraction by less than 5%. On the basis of this
discussion we feel that our conclusion above is safely
insensitive to the shape of the tail of the charge distri-
bution. We do not carry this analysis to smaller dis-
tances than Rp = 1.35A: since the approximations
represented in Eq. (6) do not warrant it. (This point
is discussed more fully in the following sections. ) In
the final section, we discuss the A dependence of this
result.

From Fig. 2, it is clear that the V, interaction term
in the Brueckner-Watson potential contributes in Eq.
(3) an energy which is less than S percent of that due

25

F&G. 3. Graph of results listed in Table I. The energies calculated
with the Yukawa potential are reduced by a factor two in this
graph.

TABLE I. First-order interaction energies, Eq. (6), computed for the Brueckner-Watson potential, Eq. (8), the Levy potential, Eq.
(9), and the Yukawa potential, Eq. (16). The calculations were carried out for atomic number A =176 and for both the Stanford and
equivalent uniform charge distributions shown in Fig. 1. The results of this table are graphed in Fig. 3.

Ro
Brueckner-Watson potential [Eq. (8)j

Stanford Uniform
Levy pot. $Eq. (9)j

Stanford Uniform
Yukavra pot. $Eq. (16)j

Stanford Uniform

1.35A~
1.40A &

1.45A &

—4.3 Mev—2.9 Mev—1.8 Mev

—3.5 Mev—1 4 Mev—0.64 Mev

—15.6 Mev—10.0 Mev—6.9 Mev

—15.2 Mev—7.2 Mev—3.9 Mev

—45 Mev—35 Mev—28 Mev

—46 Mev—36 Mev—29 Mev
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studied"

+1(jr12+r22+r21}P)

p, f]2f'231'3y
r,,=—~

r, —r, ~; (10)

FIG. 4. Coordinates for carrying ont the integrations, Eq. (12)
for the three-body interaction energy.

to the direct term, U~. We can thus neglect it insofar as
concerns the first-order energies.

Another more dated version of the nuclear forces as
deduced from pseudoscalar meson theory is that due
to Levy." In this version, the "pair term" of the
pseudoscalar meson theory, which is omitted in the
gradient coupling version used by Brueckner and
Watson, is responsible for a very strong Wigner attrac-
tion which reads to leading order

with

Vg= —ys 2E1(2s), s)0.38;

+ QO s ~&0.38;

y = 6(tM/2r) (g'/42r)'(p/2M)'= 151 MeV.

(9)

As in the gradient coupling version, the main central
force contribution results from two-meson exchanges
and therefore is of range ~1/2ttt. In both versions of
the pseudoscalar theory, i.e., with or without the pair
term, the longer-ranged single meson exchange terms
give rise only to a tensor and V„part in Eq. (2).

In contrast with the Brueckner-Watson interaction,
this nuclear force is sufficiently strong to give rise to
an appreciable nuclear attraction at distances E~.

1.4A'. This is seen in Fig. 3 and Table I. The Levy
central potential is seen to be 4 times stronger than
the Brueckner-Watson at a distance 1 and to give
rise to 4 times as strong a nuclear attraction. How-
ever, the Levy potential is not a saturating interaction.
One way of constructing a saturating nuclear force
theory and still keeping Eq. (9) is to add three-body
repulsive forces to provide the nuclear stability. The
effect of such three-body repulsions will also be felt by
the nucleon approaching the nuclear surface.

We will now outline the calculation of such three-
body contributions to the nuclear force experienced by
the incident nucleon. In this calculation, we will take
the form of the three-body repulsion from the pseudo-
scalar meson theory with pair term, as previously

~A. Klein, Phys. Rev. 94, 1061 (1954). He has presented a
strong argument for the suppression of the pair term on the
basis of the absence of strong S-wave pion nucleon scattering
and the relation between this and the nuclear force problem.
See also Phys. Rev. 89, 1158 (1953) and reference 24.

i.e., we take the three-body force from the same theory
that gives the two-body attraction, Eq. (9). We shall
find that the minimum amount of three-body repulsion
consistent with saturation essentially cancels the above
calculated attraction due to the two-body forces.

Because of the complexity of this calculation we
only outline the procedure here in the approximation
of a uniform nuclear matter density. The essential
difficulty here which is not present in the nuclear
saturation problem is the following: in the saturation
problem the usual procedure is to calculate the inter-
action energies between particles in an infinite nuclear
medium of fixed density, whereas we must now take
careful account of the nuclear surface since it is the
distance from the surface that is the critical parameter.

We write first Eq. (10) in dimensionless form, de-
noting as in Fig. 4 by xp ——prp the coordinate of the
incident nucleon relative to the center of the nucleus:"

It 1(S10+S20+S12)
Vs= p

+lp~2p~12

tin tId) e—&10 t e—$2 te—p&12 t

—
p

(P 1)- Sip S—20 S12

The interaction energy is then given by

Ep2 ——[-',A2/(ttpp)2]) dxidxsp

d~ ~
—»o~g 20& g 12&

x " . (»)
(P—1) Sip Ssp S12

The procedure we found most direct for the evaluation
of Eq. (12) develops as follows:

(1) Transform the volume integrals to integrals over
the inter-particle separations and use the xp axis as the
polar axis for the angular integrations; ~is. ,

dxylxg

S10 dS10 S20 tfS20 df110 df120t (13)2 2

xp —xg

with the limits on the polar angle integral expressed in
terms of the nuclear radius Rz by

(sp sip) ~+ sip +sp 2sipsp cos010 ~+(pRg)
(14)

(S0 S20) ~~ S20 +S0 2S20S0 cos020~ (p+C)
"W. Magnus and F. Obberhettinger, Specie/ J"Nectioes of

3/Iathematica/ Physics (Chelsea Publishing Company, New York,
1949).
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(2) Expand the exponential factor involving the
separation x» in a series of spherical harmonics with xo
as the polar axis; vis. ,

"

=4' P (xipxsp)
—~Ki+;(x)t)Ii+;(x&1)

x]2 Z)7$

X Vi" (&io) Vi™*(&so), (15)

with x& and x& the larger and smaller, respectively, of
xylo and x~o

(3) Observe that by cylindrical symmetry only the
m =0 terms contribute, and for these

drip Vis = [(23+1)s]l dlsP( (p);
~J ~ COSO1O

here cosOip is the solution of Eq. (14) with the equality
on the right.

(4) Evaluate directly the first few /-terms.
The series in / converges rapidly in practice for the

parameters of interest to us. For our hypothetical
nucleus with A ' =5.6, the equivalent uniform nuclear
radius is @Re——(6/7)A'=4. 8. For the incident nucleon
at a distance of 1.45A '=Ro, xo ——5.8 and the important
values of x&o and x2o will be of the order of unity. As
the integral representation Eq. (11) is peaked at 3 1,
the important arguments of the Bessel functions in Eq.
(15) are also of the order of unity. The other two
exponential factors in Eq. (12) weigh heavily against
contributions from larger arguments. However, the
Bessel function of imaginary argument in Eq. (15),
Ii+, (x&/), is peaked at x&3 /. This means that for
large /, the peak in /~, is beat down by the exponentials
in the integrand in Eq. (12), and so the contribution of
large l values to the energy in Eq. (12) is considerably
reduced. It is this rapid convergence in / that supports
the change in variable indicated in step 1 ~

Carrying out these calculations with the above
indicated approximations and procedures we obtain for
A = 176 and Ro ——1.45A ' contributions of 1.9 Mev, 3.6
Mev, 1.2 Mev, and &0.5 Mev from the first /= 0, 1, 2,
and 3 values, so that the three-body energy contri-
butions adds to 7 Mev, for P= 450 Mev, as given by
the full pair term of the pseudoscalar meson theory. '4

The corresponding two-body attraction for a uniform
nucleus is seen in Table I to be only —3.9 Mev. It is
possible to reduce the constant, P, of the three-body
repulsion by no more than a factor of two consistent
with the saturation requirement. "

The conclusion drawn from this calculation is that
the Levy potential supplemented by the minimal
amount of three-body repulsion, of the form Eq. (10)
as suggested by pseudoscalar meson theory, demanded

'~ This result is established on the basis of the variation calcu-
lation discussed in reference 24. Brueckner, Levinson, and
Mahmoud (reference 28) suggest a much smaller value of the
constant, P, for saturation. However, their statement was based
on the step functioned not on the trial function calculations of
rqfergnce $4.

for saturation also fails to account for the radius
difference R~—R~. The reason for this is that the two-
body attraction and the three-body repulsion have
closely the same range as felt by an incident nucleon
outside of the nucleus, and consequently balance each
other to a large extent. This conclusion is unchanged
by refining the above calculation with the actual charge
density in Fig. 2 and is verified for smaller Ro and A
values.

As another example we calculate the interaction
energy, Eq. (6), assuming a simple phenornenological
Yukawa potential

V(r) = —50 Mev e &"/pr. (16)

We consider this case in order to show specifically the
importance of a long-range tail in the nuclear force as a
possible source of explanation of the difference between
Riv and Ec. The potential in Eq. (16) gives reasonable
deuteron binding and together with various combina-
tions of short-range many-body forces or of repulsive
cores and exchange mixtures can be adjusted to meet
saturation requirements. In fact, a qualitatively reason-
able saturation results from the combination of Eq.
(16) with the three-body repulsion of Eq. (10), with

P =450 Mev. The calculations on the nuclear interaction
energy, Eq. (6), using Eq. (16) are presented in Fig. 3
and Table I along with the preceding results. It is
evident that with the longer range potential of Eq.
(16) it is possible to account for the radius difference
Rpf Rg

Finally we consider briefly two phenomenological
nuclear force models with long range potentials of the
Vukawa type which have achieved some success in-

fitting data on low energy interactions of several
nucleons. The potential used by Pease and Feshbach, "
Vr —40 Mev e "&"/pr —28.6 Mev Sise ' "&"/Ijr, (17)

fits the observed properties of two-nucleon systems for
energies up to 15 Mev, as well as the binding energy
of Hs. The first, or direct, term in Eq. (17) contributes
an attractive interaction energy of —28 Mev for a
nucleon at Ro ——1.35A &, with A ' = 5.6. It is evident from
this that an interaction of the type in Eq. (17) can
account for the radius difference R~—R~. However,
this is not a saturating force since the strong Wigner
attraction would operate in heavy nuclei to collapse
all of the A nucleons to within one meson Compton
wavelength of one another. It is possible to counter
this tendency with very short-range three-body repul-
sions which would not appreciably diminish the above
calculated 28-Mev attraction and which at the same
time would not affect the success of Eq. (17) in matching
properties of the two nucleon system at low energy.
However, the effect of such a modification of Eq. (17)
on the calculated binding energy of H' remains to be
studied.

» R. L. Pease and H. Feshbach, Phys. Rev. 88, 945 (1952).
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Another two-body interaction which has met with
noteworthy success in fitting data on two-body systems
at low energies is the Rosenfeld mixture'4

Up=+40 Mev~t ~2f 0.10+0.23et e2]e ""/pr. (18)

This is a saturating interaction. With this interaction,
Inglis" and others have had considerable success in
fitting observed level structures, moments, and transi-
tion matrix elements in their intermediate coupling
studies in the p-shells of light nuclei. However, we see
that there is no direct interaction in Eq. (18), so that
the first-order contribution of the Rosenfeld mixture to
the interaction energy vanishes. To this order Eq.
(18) thus fails to account for the observed difFerence,
R~—R~. This result is extended through second order
interactions in the next section.

In summing up the calculations in this section we
conclude that the inter-nucleon potential must contain
a sizeable amount of long-range direct interaction,
Vd(r), if nuclear forces alone are to be held to account
for R~—Rq. The saturating character of the forces
would then be a consequence of short range repulsions,
due either to hard-core or many-body eRects. Neither
of the two meson-theoretically inspired potentials of
Brueckner-Watson and of Levy (with three-body
repulsions for saturation) can explain the observed
difference in radii unless it is assumed that the neutron
distribution extends beyond the proton one. It must
be added that the presently studied and applied versions
of the pseudoscalar meson theory give no hint as to a
possible source of any simple, central, Yukawa type
potential with a range of roughly one meson Compton
wavelength, corresponding to single meson interchange.
The above analysis on the Levy potential showed that
a strong direct attraction of half that range, arising
from two-meson exchange, can yield a sufficient energy
contribution if saturation is achieved by shorter-range
many-body repulsions than considered there. In this
connection we note that Bonnevay" has shown that
the meson-meson interaction, which the renormalization
procedures introduce into meson theory, can serve as a
source of central direct interactions of range 1/2p.
It is not established at present to what extent such a
term is actually present, or whether a sufficient amount
of this interaction to account for R~—R~ can be made
consistent with nuclear saturation and with the infor-
mation on two-body systems at low energy.

IV. INDUCED POLARIZATIONS

In this section, we calculate the second-order cor-
rections to the interaction energy between the nucleus
and the incident nucleon. These corrections result from
the spin, charge, and matter polarizations which are

3 L. Rosenfeld, nuclear Ii orces (North Holland Publishing
Company, Amsterdam, 1948), p, 234.

35 D. R. Inglis, Revs. Modern Phys. 25, 390 (1953);J.P. Elliott
and B.H. Flowers, Proc. Roy. Soc. (London) (to be published}."G. Bonnevay, Compt. rend. 16, 1641 (1954).

induced in the nuclear distribution due to its interaction
with the incident nucleon. Besides the second order
eRects due to the direct interaction term, V~, which in
general serve as small corrections to the first-order
calculations of the previous paragraph, there are the
more important contributions from the various ex-
change and tensor force terms of Eq. (2). These latter,
as we have seen, contribute no first-order eRects.

First we develop the techniques to calculate these
eRects. We wish to evaluate the change in the nuclear
distribution resulting from interactions with the inci-
dent nucleon and then to determine the contribution
of this change to the interaction energy. This is the
same as evaluating the second order energy contribution

f(xfvfg) f2

Ee(g) =
E,—Ex

(19)

Vg'(k(, k„)+3V„'(kt,k„)
+3V.'(kt, k„)+9V.,'(kt, k„)

(k„'—kP)
(20)

For the equivalent uniform nucleus of radius 1.2A',
the Fermi energy corresponds to'~

k p = 1.77@.

In Eq. (20), we have omitted the tensor force terms,
which we shall discuss separately below, and have
introduced the notation

V(kt, k„)—= v ' p(r) expf i(kt —k„) r]U(r —Re)dr

= V*(kt,k„).

The numerical factors are computed for a "standard
heavy nucleus" with equal numbers of up and down e
and ~ states.

Before carrying out the coordinate integrations in
Eq. (20), we efFect the momentum sums by going over
to the continuous limit of a momentum integral and

"See„ for example, reference 1, p. 143,

where fg) and E, are the ground-state eigenfunction
and eigenvalue of the unperturbed nucleus and the
sum extends over the excited states (X). Here again
we treat the external nucleon as a distinguishable
particle. The nucleus is idealized as a degenerate Fermi-
Dirac gas. The excited states which contribute to the
sum in Eq. (19) all correspond to a nucleon jumping
out of a state, below the Fermi energy E&——kz'/2M,
which has momentum and energy kt and E~=kj/2M,
and up into a state above the Fermi level with k„and
E„=k /2M, with appropriate spins and isotopic spins,
o and ~ Thus, .introducing Eq. (2) into (19) and
carrying out the elementary spin sums we obtain:

Re&2)= —2M 4
hi&kg k~)ky
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by replacing the integral over the unfilled states by
the difFerence

P —m(2pr)
—' dk

km)ky' ~ k)kp

f f
=p(2') ' P dk P — dk, (22)

"&ii k

where E' denotes the principal value of the integral to
the right. We note next that the second term in the
right member of Eq. (22) contributes nothing to the
energy, Eq. (20), due to the oddness of the integrand,
i.e.,

exp[i(k —k') 4]
dk'P dk =0.

k'&kP ~ k &kP e—u'2

The momentum integrals then yield directly

exp[i(k( —k„) a]
k~&kJ kryo)k~

( i )' t. p expi(k —k'). 4
dkP I dk-

E87r') "y'&aF 0 ~ii t, p ' p—
("l't

dk' cosh'5 expik' lL
E8prP) & a'&ar

Since the calculations are efFected with standard
techniques we present only results here. The two meson
exchange part of the Brueckner-Watson potential is

largely a direct interaction; the relative amounts of
exchange terms are seen in Fig. 2. They contribute to
Eq. (23) all told an energy of attraction which is about
0.1 Mev, or 3 percent of the first order contribution for
the nucleon at Rp ——1.35A', (A l=5.6). Roughly half of
this contribution comes from the direct term and half
from the exchange terms, the contributions from which
are enhanced by the spin factors. The two-meson part
of the Levy potential (the pair term) has no exchange
terms and gives a second order correction of about 0.7
Mev or less then 5 percent of the first order contribution
for the nucleon at Rp ——1.35A&, (A'=5.6). For larger
distances their energy contributions are, of course,
relatively smaller and indeed entirely negligible. The
smallness of these second-order contributions is a direct
consequence of the extreme short range of these forces.
We can qualitatively understand their magnitude by
the following rough approximations in Eq. (23):

Because of the short range character of the potentials
most of the energy contribution results when the
coordinates, r and r' in Eq. (23), lie near the surface of
the nucleus facing Ro. The factor depending on the
particle separation within the nucleus, is replaced by
its value at an average distance

~

r—r'
~

1/p, since
this is the range of important coordinate values in the
integral. Equation (23) then approximates to

= —(v'l'pr'/16m-'6') ji(2k pA),

where j& is the regular spherical Bessel function of
order unity. Collecting these results into Eq. (20),
we have

It requires a "moderate" amount of work to carry
through these integrals. The angular integrals can be
achieved with the aid of the Poisson integral represen-
tation"

ji(s) cosQs
(1—N')du

S' ~0 8
(24)

and of the usual addition theorems. Equation (23) is
then reduced to a manageable form for elementary
and graphical integrations.

We discuss first, the application of Eqs. (23) and
(24) to the Brueckner-Watson and Levy potentials.

2Mkr'
I p ji(2k+

~

r —r'~)
Ee&p&= —

I dr dr p(r)p(r )
(2&r

~

r—r'~)'

y [Vg(r —Rp) Vd(r' —Rp)

+3V (i' Rp) V (i' —Rp)

+3V (r—Rp) V, (r' —Rp)

+9V„(r—Rp) V„(r'—Rp)]. {23)

2Mb p' j i(2k+/p) ( p q
'

&$(g) ~
(2k'/p)' &A)

X [U~'+3UP+3U '+9U, '], (25)

where U, =(A/v) J'p(r)V;(r —Rp)dr is the first-order
interaction energy for a potential with coordinate
dependence specified by V;(r—Rp), as in Eq. (4).
Using the relation for the nuclear volume above Eq. (6)
and Eq. (21), we simplify Eq. (25) to

28 ji(2k'/p)
Ee(2)=—— [Udp+3 U p+3 U p+9U ] (26)

u (2&r/~)'

Equation (26) serves only to show the rough form and
variation of the interaction energy. It is indeed untrust-
worthy for actual numerical comparison because the
Bessel function is a sensitive function for arguments in
the region of four as occur here.

Of greater significance in the discussion of the second
order eRects is the role of the tensor force terms. This
is because pseudoscalar meson theory yields a long
range (p ') tensor force interaction as a consequence of
single meson exchange. There are additional tensor
contributions resulting from two-meson exchange in
the Brueckner-Watson version, but these are of lesser
importance due to their shorter range. "We note that
there is very little by way of spin-dependent central
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forces in both the Brueckner-Watson and Levy po-
tentials, and it is the large tensor force term of long
range, p ', that is responsible for the difference in
behavior in the singlet and triplet states of the two-body
system. This is of significance because it indicates that
both of these potential models are making full use of
the long-range tensor term (which appears from
pseudoscalar meson theory in the characteristic combi-
nation with a spin-spin term)"

1 (g'~ t' 1' l' t' 3+3m+x') e-*
U=-I —

I I I 1 ~t'sl ~t ~s+s»
3 E4s.j &2M) x' )x'

x—=pr (27)

for their spin dependence.
This term" contributes in second order an attractive

interaction energy of 0.016(g'/4ir)' Mev for Rs 1.35Al;——
A'*= 5.6. This amounts to 3.6 Mev for g'/4ir = 15 as in
the Brueckner-Watson potential, and 1.6 Mev for
g'/47r = 10 as in the Levy model. When the two-meson
exchange parts of the tensor forces in the Brueckner-
Watson model are included, the attraction decreases
to 2.6 Mev for the same choice of Ro and A. At a
distance of Ro ——1.4A', these interaction energies de-
crease by 40'Po to values of 1.5 Mev and 0.9 Mev,
respectively, for the Brueckner-Watson and Levy
potentials. Henley and Ruderrnan" have shown that
higher-order contributions due to multiple meson scat-
tering at a source serve only to increase the tensor force
by 7 percent, so there is at present no known way of
appreciably increasing the effect of this term on a field
theoretic basis.

In the cases of both of the nuclear potentials which
are rooted in the pseudoscalar meson theory, it thus
seems clear that one cannot attribute the difference
(Rs Rc) to the finite —range of nuclear forces, alone.
In the Brueckner-Watson model, the sum of the effects
of the short range direct forces of attraction and of the
longer range tensor forces add up to 7 Mev at a distance
of 1.35A', with A=5.6, and thus serve merely to cut
down the Coulomb barrier for protons from a height of
14 Mev to +7 Mev at this distance. For the Levy
potential the total nuclear attraction is only 2 Mev.

"See, for example, G. Wentzel, Quantum Theory of S'ave
Fields (Interscience Press, New York, 1950).

3 The calculational problems encountered in evaluating the
second order energy, Eq. (19), with a potential of the form in
Eq. (27) are most readily surmounted by expressing the bracket
in Eq. (27) in terms of diRerentials

( )~o, ptr. p
and by carrying out the indicated differentiations only at the
very end. In place of Eq. (23), one has an expression of the form

I,im (~B'~Ra)sfdrj dr p(r)p(r )
,j&(2kp~r r'~)—

B'~R p

g V(r —R0) V(r' —R').
' E. M. Henley and M. A. Ruderman, Phys. Rev. 92, 1036

(1953).

Finally, we note brieRy the results of calculations on
the second-order interaction energies using the various
phenomenological potentials discussed in the preceding
section. The results are presented as before for Ro
= 1.35A ' and A '= 5.6. For the Yukawa potential,
Eq. (16), the second-order energy gives an 8 percent
correction to the first-order result, serving to increase
the attraction by 3.5 Mev. The second order contri-
butions for the Pease-Feshbach potential, [Eq. (17)7,
come to —2.5 Mev, or a 10 percent increase in the
first-order result. The total second-order contributions
in the case of the Rosenfeld force amount to an attrac-
tion of —1.4 Mev only.

These results give an idea of the role of the second-
order contributions in this work. 4' Of special importance
here are their general orders of magnitude, which are
small, and the feature that they do not provide the
necessary attractions in the field theory cases to account
for R~—Rg.

(1/4) exp[ (Ro Rc)/~7 (28)

where the factor (1/4) represents the fraction of possible
exchanges, since states with different spin and/or
isotopic spin are mutually orthogonal. The exponential
factor serves as a rough estimate of the overlap in the
exchange of a nuclear particle at the nuclear surface,
Rc, with the external nucleon at Rs, the length X 1/ii

4'These second-order calculations indicate the nature of the
limitations on the conclusions drawn below Eq. (7). Thus a
potential of the form (a+bcr1 acI.c) exp( —Ijr)/pr is a saturating
interaction provided a&~0 and a+b&~0, and can account for
R~—Rc if k~50 Mev and o&b/10 However such a pa.thological
potential would predict among other things much too large a
deuteron binding energy.

V. ANTISYMMETRIZATION

We analyze here the effects which are introduced
when we modify our work to obey the requirement of
the Pauli principle that the wave function of the
system, incident nucleon plus nucleus, be antisymmetric
in all coordinates.

These effects do not manifest themselves directly as
simple potential terms but as exchange modifications
of the scattering amplitudes and cross sections. We
shall show, however, that these modifications are of
quite minor importance for our work, and that their
effects can be simulated by slight alterations of the
energies calculated in the preceding sections.

Before displaying the relevant formalism for effecting
the antisymmetrization, we note the following general
features:

1. The first-order interaction energy calculated in
Sec. III for the direct term, U&(r), of Eq. (2), is de-
creased in magnitude in general. This is because the
Pauli principle inhibits the close approach to two
fermions. The magnitude of the reduction factor is
roughly given by



NUCLEAR RADIUS AND NUCLEAR FORCES 109

corresponds to the barrier penetration distance of a
particle bound by ~10 Mev in a square well. In that,
we assign the maximum penetration length, X, to all
nuclear particles including those bound deeply in the
well, we overestimate the exchange correction in Kq.
(28). For I4 1.35A——&, with A&=5.6, the factor ex-
pressed by Eq. (28) equals 0.9 and serves to decrease
the energies in Sec. III by roughly 10%%uz. It is thus a
small effect and contributes only in the direction of
strengthening our conclusions.

2. The second-order interaction energies due to
polarization as calculated in Sec. IV are all quite small.
The exchange corrections to these are negligible since,
aside from other factors, they are reduced by the same
exponential as in Eq. (28).

3. The one important eGect of the antisymmetriza-
tion procedure is to give rise to jirst-order contributions
to the interaction energy from the exchange potentials
in Eq. (2). In particular, for the Brueckner-Watson
and Levy potentials, we need consider only the long-
range U„ term of Eq. (2) as contained in Eq. (27)
since this is the only term of any significance. However,
we find that this term contributes an attraction of less
than one Mev for E.0= 1.35A:; A:=5.6.

In order to outline a development of this result, we
formulate the problem of the scattering of a nucleon by
a nucleus of A particles. If we take as the nuclear
Hamiltonian

hA ——Pt;+ P V;;,

In particular, for elastic scattering we have

A

+ &'
I g, Z v'.g- I

n, n'

with the sum on e and e' extending over all nuclear
states except the ground state. The 6rst term in the
brackets in the right member of Eq. (31) corresponds
to the first order interaction energy calculations of
Sec. III. It contributes the potential scattering"
amplitude

(32)

A

I
a+f,+P v, ,—E Iv=0.

E
'

;=4
" j (29)

Let us assume 6rst of all that the incident nucleon is
distinguishable so that we can write the formal scat-
tering solution of Eq. (29) as4'

@=g(1. A) io(s)+ P V;,4,
E—hg —t, i=&

(30)

for the nucleus initially in the ground state, g, and the
incident nucleon initially in the plane wave state, g (s).
The outgoing wave contour is understood in the propa-
gator in Eq. (30). By projecting Eq. (30) onto appro-
priate nuclear eigenstates we obtain the scattering
amplitudes for different processes.

42 This is similar to the development in N. Francis and K. M.
Watson, Phys. Rev. 92, 291 (1953).

with eigenvalues e, and eigenfunctions g, (1 A)
which are antisymmetric under particle interchanges,
the Schrodinger equation for the nucleus plus an
incident nucleon reads

We investigate this term further in order to calculate
the Pauli exchange corrections to it. Due to the equiva-

8 The second term gives all of the compound elastic effects in
the terminology of reference 2. The induced polarization contri-
butions which we calculated in Sec. IV correspond to a second
order approximation to the second term which neglects the
potential term in the intermediate energy denominator and
replaces the kinetic energy operator, t0, by its value for the
incident particle before (or after) scattering in state p(s). The first
of these two approximations is judged to be good in consequence of
the smallness of the second order relative to the first order inter-
action energies for the direct terms, Us(r). The second approxi-
mation corresponds to making the optical approximation that a
given potential can represent the scattering. It is rigorous in the
adiabatic limit of slow incident particles ((50 kev). It also
applies to calculations for the incident nucleon "outside" of the
nucleus so that the nucleon can be considered to be moving
freely with its initial kinetic energy. Incident nucleons of kinetic
energy &20 Mev can be localized to within 10 " cm so that
this approximation should be valid in the energy range above
20 Mev for calculations of interaction energies at distances up to
within 10 "cm of the surface; i.e., to within 1.4A& for A&=5.6.
As the initial nuclear effect will be one of attraction, the incident
nucleon will be speeded up, thereby increasing the magnitude of
the energy denominator and decreasing the contribution of this
term. We have no quantitative criterion for the validity of this
second approximation at lower energies. Here we must rely on
the smallness of the calculated second order corrections and on
the results of the cloudy crystal ball analysis whichindicate
that the potential scattering predominates for elastic processes
(except in the immediate vicinity of a resonance). The average
elastic cross section is primarily due to potential scattering from
an impenetrable sphere whose radius coincides quite closely to
the radius of the potential well. (See Fig. 1 of reference 2.)
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lence of the nuclear particles we can replace the sum,

Q V,„by one term, A V;,. Representing the nuclear

ground-state function by a Slater determinant of
independent particle orbitals and spin functions in
Eq. (32), we have

fii=P pr*(s) pt,*(1)Vi, pq(1) (g+)dSdl, (33)

where the sum on b extends over the A filled single
particle states of the nucleus. Now we can simply
include the exchange scattering by replacing the
product y~*(s) pi,*(1)by the antisymmetrized product44

[pr"(s)gt,*(1)7—[pr*(1)pi,*(s)7 so that the scattering
amplitude, including exchange, becomes

f=2 L v r*(s) ~~*(1)

—
v r*(1)v»*(s)7Vi. ~~(1)(gP)dSdl.

In terms of an effective potential for the scattering of
the incident nucleon, we have then

U ( ) QJ [q *(1)V,p (1)

—(pr*(s)) 'pr*(1) yt,*(s)Vi, yt, (1)7dl. (34)

We calculate 'U, «(s) now for the term of interest

Vi.= 3 (g'/4~) (~/2')'~~i ~.~i ~.
X(expf» —«, f)/f», —x,

f
(35)

in Eq. (27). The tensor term averages to zero and, as
we have seen, the first, or non-exchange, term in Eq.
(34) gives no first-order energy contribution for ex-
change potentials. For elastic exchange scattering, the
spin factors in Eq. (35) give 4 and the effective po-
tential is from Eq. (34)

r up*(s) )
V. (s)= —0.95Mevg I e'" &"-

&f

&up*(1))
~
—pJ rs—rl f

X
f

ub*(1) ug(1) fd1, (36)
E

where ub is the spatial part of the wave function of a
particle bound in the nucleus. The numerical constant
is calculated for a coupling constant of g'/47r=15 in
Eq. (35) as in the Brueckner-Watson potential; it is
replaced by 0.64 Mev for the parameters in the Levy
potential. The following series of approximations over-
estimate the magnitude of 'U, «(s) and thereby provide
an upper bound for the effective exchange potential of
Eq. (36):

~ S. Altshuler, Phys. Rev. 91, 5 (1953).

1. replace e'" &" r» by unity;
2. replace the ratio of bound state space functions,

u~(s)/ut, (1) by its maximum value, corresponding to
the particle in the highest filled nuclear level, bound by
an energy Elis. The function ut, (s) in this state has the
largest penetration distance outside of the nucleus. In
the denominator, we insert for the wave function inside
the nucleus, uq(1), its value near the nuclear surface
where the density is low.

Introducing these approximations into Eq. (36) and
summing over the bound states, we obtain then for the
effective interaction energy

+
—pfr —r)

'U, «(s) = —0.95 Mev(A/v) p(r)
@fr,—rf

xexp[ —(2MEii~/I4') 'p
f
r, r

f
7dr.—

Integrating over the nuclear distribution we obtain an
exchange attraction of 0.3 Mev for the incident nucleon
at r, =RO ——1.352:, with 3:=5.6 and for a binding
energy E&z——10 Mev. This result corresponds closely
to that obtained below Eq. (28). If we include inelastic
spin-Qip scatterings as well as elastic processes, the
spin factor in Eq. (35) gives 4 and the effective exchange
attraction increases to 0.9 Mev. These numbers are
given for the coupling constant g'/4~=15 used in the
Brueckner-Watson potential and are reduced by one
third for the Levy potential.

This rough approximation to the exchange energy is
an overestimate of its effect. It is clear, however, that
it is of little qualitative importance in our development.

VI. CONCLUSION

To summarize, we have studied the difference be-
tween the nuclear force radius, R~, and the radius of
the charge distribution, Rz, for heavy nuclei, A) 100.
From the analyses of neutron' ' and proton' ' cross
sections we take R~ 1.4A' as the distance at which
an incident nuclear particle feels an appreciable nuclear
attraction, )14 Mev. From the electron scattering
work at Stanford" "we take the charge distribution for
gold as drawn in Fig. 1, which decreases to half-value
at Rg ——1.122'. The surfaces of the nuclear potential
and charge distributions are seen to be similar in Fig. 1
but with the nuclear potential extending roughly 25
percent beyond the charge distribution.

The aim of this work has been to infer some properties
of nuclear forces from the difference, R~—R~, if it is
assumed that the nuclear charge and matter distri-
butions coincide. We have considered various nuclear
force models which are motivated by meson theory or
by phenomenological analyses to see if they can simul-
taneously satisfy the saturation requirements in heavy
nuclei and can account for the radius difference,
R~—R~. This radius difference is to a large extent a
measure of the long range behavior of the direct (4r-

and ~-independent) part of the central interaction
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potential between nucleons. Our calculations show that
the nuclear forces must contain long range direct
central attractions with short range repulsive inter-
actions if they are to account for both R~—Rg and
saturation.

Such forces can be constructed phenomenologically.
However, the two nuclear force models based on
pseudoscalar meson theory, which have met with
success in fitting low energy data on two-body systems,
fail to meet these requirements. The Brueckner-
Watson" potential (gradient coupling theory; no pair
term) has too little direct central attraction to account
for R~—Rg. Using this potential and calculating the
effects of induced polarizations and of antisymmetriza-
tion as well as the direct interaction LEq. (6)7 we have
obtained a total nucleon-nucleus energy of attraction
of less than 8 Mev, or roughly half of what we require
to make the nuclear radius appear to be only as large
as 1.35A&, for A =176. The difhculties in handling the
repulsive core behavior of the potential for small
distances and the calculations in Sec. IV of the second
order energies arising from the induced polarizations
caution us not to extend these calculations to smaller
separations between the nucleon and nucleus. It is
thus not possible for us to give a quantitative answer
to the question: how far beyond the charge distribution
does the neutron distribution have to extend if we use
the Brueckner-Watson potential and require 14 Mev
of attraction at R~——1.4A& in order to explain the
difference in radii, R~—R~? However, if we disregard
the above warnings to caution, we can carry out the
calculations and estimate that the neutron distribution
must extend at least 10% beyond the charge dis-
tribution, 4' corresponding to a neutron surface layer
0.7—1.0 thick for A&=5.6.

These calculations with the Brueckner-Watson po-
tential were also applied to lighter nuclei in order to
test the dependence of our results on atomic number.
For a mass number A=120, we took the matter
distribution to be the same as the Stanford charge
distribution shown in Fig. 1; i.e., we assumed that the
matter and charge distributions scaled together be-
tween A =176 and A =120. The nuclear attraction in
this case was evaluated to be 9 Mev at Ra=1.35A&
in comparison with the less than 8 Mev for A=176.
The reason for this increase of roughly 1 Mev in the
attraction is simply this: the separation between the
nuclear matter and an incident nucleon at Ro=1.35A&

decreases with A'. For a singular inter-nucleon po-
tential the accompanying increase in interaction energy

4' The charge dependent contribution from the second term in
Eq. (2) is relatively unimportant in this consideration since V,
is reduced in magnitude relative to V& by a factor of ~4, as seen
in Fig. 2. As mentioned in footnote 26, Eq. (3) is not valid for
neutrons which form a surface layer since it is derived on the
basis of a uniform proton-neutron mixture. For the surface
neutrons Eq. (2) is replaced by V&+V, with the + (—) sign
obtaining for incident neutrons (protons), However, because of
the small ratio of V, to Vq in the Brueckner-Watson potential,
the charge dependent contribution is unimportant here.

more than compensates for the decrease due to the
fact that there are fewer particles in the nucleus which
interact with an incident nucleon. The above figure of
9 Mev is qualitatively but not quantitatively (+15'/go)
reliable because one begins to encounter the same
difficulties as mentioned in the preceding paragraph
with decreasing A values. It is still significantly less
than the 14 Mev of attraction required at R~ ——1.4A'*

to account for the observed radius and indicates the
validity of our conclusions for A &100.

Further extrapolating the Stanford charge distri-
bution (Fig. 1 for A=197) down to A 60 and calcu-
lating at Ra=1.4A~ because of the aforementioned
difhculties in handling the repulsive cores for smaller
distances, we obtain with the Brueckner-Watson po-
tential less than half of the 14 Mev required to account
for the observed difference, R~—Rg.

The Levy" potential has a strong, direct attraction
due to the "pair" term which is sufficient in strength
and range to explain the radius difference. However,
when the three-body repulsions resulting from the
"pair" term, and required for nuclear stability" are
included, the attraction is balanced at large distances
and it is no longer possible to account for R~—R~. In
addition there is strong evidence especially from the
work of Klein" for the damping of the pair term which
is the source of the strong direct interaction in the
Levy potential. Without the pair term, there is only a
weak direct central attraction of range 1/2p corre-
sponding to double meson exchange in the gradient
coupling version of pseudoscalar meson theory. ""We
note that the only clue at present as to a possible source
of additional central attractions (also of range ~1/2p)
in presently studied and applied versions of pseudo-
scalar meson theory comes from the meson-meson
interaction introduced into meson theory by the
renormalization program. "However, the role of this
term has yet to be fully explored.

An alternative explanation of the radius difference
assumes that the nuclear charge and matter distri-
butions do not coincide, but that the radius of the
neutron distribution extends beyond the radius, R&, of
the proton distribution. ""The difhculties which face
this explanation were pointed out in Sec. I. In partic-
ular, the optical analysis by Williams" of the reaction
cross sections (total minus coherent elastic) for 1.4-Bev
neutrons and 860-Mev protons incident on various
medium and heavy nuclei indicates nuclear matter
distributions in close agreement with the Stanford
charge distribution. His results cannot be understood
if the neutron radius is appreciably larger than the
radius, Rg, of the charge distribution. They can,
however, be explained, as Williams points out, in
terms of a decrease in the eGective range of the nucleon-
nucleon interaction at high energies. "

46This point will be discussed more fully in a note now in
preparation. For large impact-parameter collisions in which the
incident nucleons &p &ply slightly deflected, one can show that
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We wish to emphasize, however, that the aim of this
work is not to argue the equality or inequality of the
size of the neutron and proton distributions in nuclei
but to show that, if one assumes their identity, then a
special class of nuclear forces with long range attractions

the effective interaction potential decreases at high energy in
proportion to (1 ss/cs)—&=jd/F if the interaction results from a
(pseudo) scalar field. This is in contrast with the electromagnetic
interaction in which the so-called "scalar potential" is the time
component of a Lorentz four-vector and in which the above
factor does not appear. This effect seems capable of qualitatively
accounting for Williams' results if the large nuclear radius at low
energies is interpreted as a consequence of the nuclear force
attractions.

and short range repulsions is required to account for
both the radius difference, R~—Rg, and nuclear sta-
bility. Nuclear forces deduced from current meson
theory and in accord with saturation requirements are
not of this type.
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The decay of strontium-89 has been found to proceed through Y" to the extent of 0.02/o.

S TRONTIUM —89 (53 day) has been reported as a
pure beta emitter in the tabulated nuclear data. '

Various investigators have attempted to find gamma
radiation accompanying Sr" with no success. With the
advent of NaI gamma-ray spectrometers, however, the
limits of detection for gamma rays have been decreased
sufticiently to enable many previously undetected small

gamma-ray branchings to be observed. Since a 14-sec
V" isomeric state is known, it was of interest to see
what fraction, if any, of the Sr" decay proceeds through
this level.

Approximately 1 Mc of strontium-89 was obtained
from the Operations Division, Oak Ridge National
Laboratory and put through chemical purification. '
Strontium and barium carriers were added and the
mixed barium-strontium nitrates precipitated with
fuming nitric acid. The nitrates were dissolved in a
few ml of H20 and reprecipitated by the addition of
fuming nitric acid. Upon dissolution of the precipitate,
Fe+' carrier was added and Fe(OH)s was precipitated
by the addition of NH4OH. The supernate from this
scavenging was neutralized with HNO3, acidified with
acetic acid, buGered with ammonium acetate, and

'Hollander, Perlman, and Seaborg, Revs. Modern Phys. 25,
469 (1953).

2 C. D. Coryell and N. Sugarman, Radiochemical Studies: The
Fsssioa Prodncts (McGraw-Hill Book Company, New York, 1951),
National Nuclear Energy Series, Plutonium Project Record,
Vol. III, p. 1460.

BaCr04 precipitated by addition of Na~Cr04. The
BaCr04 was filtered oG, the supernate was made basic
with NH4OH and the strontium was precipitated as
the oxalate by addition of ammonium oxalate. The
precipitate was filtered, washed, and mounted on a
card for counting.

The Sr" source was examined on a 3 in. )&3 in.
NaI(Tl) gamma-ray spectrometer, and a photopeak
corresponding to a gamma ray of energy 0.91 Mev was
observed. The total number of gamma-ray processes in
the source was obtained-by integration of the gamma
peak and dividing by an appropriate efficiency factor in
the usual manner. '

The total number of Sr" disintegrations in the source
was obtained by dissolving the strontium oxalate and
absolute beta counting an aliquot of this solution. The
ratio y/total P was found to be 2X10 '. Using this
fractional branching, the log ft value for the 0.55-Mev
beta group which must precede the gamma ray was
calculated' to be 12.7. This corresponds to a At=2, no,
transition and is in agreement with spin and parity
changes deduced from tabulated nuclear data, ' i.e., a
5/2+ level in Sr" and a 9/2+ level in the Y s isomer.

Acknowledgment is made to S. A. Reynolds who
suggested the problem, and to G. N. Case who

performed much of the chemistry.
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