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FIG. 3. The momentum spectrum of the electrons. The points
represent the experimental data with standard deviations, and
the dashed curves are the theoretical spectrum shapes for the
pure interactions normalized by least squares.

relation has been obtained between cross-section ratios
and the imaginary part of the potential. For brevity
we restrict our discussion to S-waves.

If we write the radial wave function as u/r, the
differential equation for I is

d'I 2M
+ k'+ (V+iW) m=0,

df2 A2

with I subject to the boundary and normalization
conditions:

u(0) =0, e(r) .-n(r).

One can show that the wave number times the ratio of
the reaction cross section to the elastic cross section is
given by

ko,/o, g
—Im(k——cotb), (3)

The momentum spectrum of the electrons was ob-
tained by taking a series of such runs. At each spec-
trometer setting runs were taken with diGerent electron
multiplier bias voltages so that an extrapolation to
zero bias gave the number of coincidences per unit
neutron intensity independent of slight variations in
the gain of the electron multiplier. All runs were
normalized by a neutron beam monitor. The result of
all runs taken from September, 1954 to June, 1955 is
shown in Fig. 3. In this figure the dashed curves are
the calculated spectrum shapes for the pure beta-decay
interactions using the Monte Carlo results for the
detection efFiciency of the geometry used in the experi-
ment. They have been normalized by least-squares
fitting to the experimental points. The best least-squares

. 6t is obtained with the electron-neutrino angular corre-
lation coeflicient equal to +0.089 with a standard
deviation of &0.108. This result is consistent with a
beta-decay interaction of the form ST with gn'/gs'
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lating the theoretical spectrum shapes.
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A NUMBER of calculations' have shown the
importance of the edge-diffuseness of a complex

potential in scattering problems. In the' course of
studying the characterization, especially at low energies,
of such a potential in more detail a rather simple

where 8 is the complex phase shift. By exploring the
consequences of Eqs. (1) to (3) it is possible to obtain
the exact result

(ko„y 2M I"
in(0) i'i i

=
I dr u*(r)W(r)~(r).

I o..t) jP ~s
(4)

n(r) = sin(kr+6)/sin5, i n(0) i'= 1. (5)

If n(r) is so chosen that m(r) is the 5-wave solution for
an incident plane wave of unit amplitude, then

(4-):
n(r) = e" sin(kr+5), in(0) i'=o, t. (6)

In the case of low-energy neutron measurements, ~"
the reaction cross section in Eq. (4) should be replaced
by the cross section for compound nucleus formation,
and the elastic cross section should be replaced by the
shape-elastic cross section. " Using the normalization
of Eq. (6), the known connection between the cross
section for compound nucleus formation and the ratio
I'„"&/D of the average reduced neutron width to the
average level spacing, and the usual expression for

A similarly simple result involving the ratio of the total
cross section to the elastic cross section follows from
Eq. (4) if in(0) i'k is added to both sides. It is also
possible to relate the real part of k cotb to the real
part of the potential as is done in formulating vari-
ational principles with real potentials, but the con-
nection with the cross sections is not as direct. Expres-
sions related to Eq. (4) have been given in a paper' on
barrier penetration eGects in light nuclei; however, the
natural appearance of partial cross-section ratios and
the application to low-energy neutron measurements
do not seem to have been emphasized.

The form for n(r) that is commonly used in discussions
of effective range theory' is
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complex scattering length, " one obtains from Eq. (4)
that the strength function" s(E)= (y')/D can be
expressed at zero energy as

8 1 K&o) r„&o)

s(0) = ——Im—=—
2 R D

M
dr

~
up(r) (%'(r),

2m AE&p

(7)

Systematics of Fission Asymmetry

W. J. SwrATEczr

Institute for Mechanics meed 3EIathematical Physics lsd The GNstaf
8'eraser IrIstitlte for Xzscleur Chemistry, Uppsala, Svveden

(Received July 11, 1955)

A CCORDING to the liquid drop model the
threshold energy for 6ssion tends to'

(1)

where E is the nuclear radius, a is the complex scattering
length, X(P) is the wavelength divided by 2x to which
the neutron width is reduced, and up(r) is the gross
neutron wave function at zero energy.

Equations (4) and (7) may be of use in numerical
calculations since, once u(r) is known either by inte-

grating Eq. (1) or by approximating its solution (by a
square well solution, for example, if one is interested
in the eBect of rounding the edge of the well which

leads to complicated exact forms for u(r)), the integral
can be evaluated for a given choice of W(r).
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in the limit P1—(Z'/A)/(Z'/A)pg((1. Here cr is a
constant and (Z'/A)p 50.' It is easily shown' that the
dependence on the cube of L(Z'/A)p —(Z'/A) j is much
more general than the assumption of an incompressible
liquid drop. )The exponent three is associated with the
existence of a point of inQection —a triple zero—in a
plot of potential energy against deformation in the
limit Z'/A —+(Zs/A)p. f Many generalizations of the
model (such as a nonuniform density or even the
inclusion of additional forces assumed to vary smoothly
with Z and A) would affect only the numerical magni-
tudes of (Z'/A)p and cr.

To a similar degree of generality it can be shown'
that if below a certain value of Z'/A (Z'/A & (Z'/A), j
the symmetrical saddle-point shape' becomes unstable
against asymmetric distortions' Lin the liquid drop
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Fro. 1. The square of the relative degree of asymmetry,
(Ms —Nq)/A, as a function of Z'/A.

model (Z'/A), /(Z'/A) p is somewhere around 0.5—0.7 'g,
there appear two asymmetric saddle-point shapes,
whose degree of asymmetry is proportional to L(Z'/A),—(Zs/A)g&, i.e.,

Asymmetry= &csL(Z'/A), —(Z'/A) j*' (2)

and whose threshold energy lies below the threshold of
the symmetric saddle point shape by an amount

DE=c $(Z'/A). —(Z'/A)g'.

Equation (2) suggests that the degree of asymmetry
in nuclear fission should decrease in a characteristic
manner with increasing Z'/A. As a measure of the
degree of asymmetry we have taken the distance
352—Mj between the peaks in the double-humped
fission yield curve, and in Fig. 1 we have plotted
(Ms —Der)'/A' against Z'/A of the target nucleus.
The asymmetry is seen to decrease with Z'/A and the


