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Elementary particle models with internal degrees of freedom have been investigated within the framework
of special relativity and orthodox quantum mechanics. Classical arguments indicate that systems whose
extensions are & their Compton wavelength have spin excitation energies & their rest mass. The principal
aim of this paper is enumeration and classification of particles with rigid internal structure and a useful classi-
fication of particle models is by their symmetry groups. In nonrelativistic mechanics this classification shows
that there are only the three well-known types of rigid systems that might be labeled by number of degrees
of freedom as [0), [2], and [3) and are exemplified by an ideal point, diatomic molecule and rotator, re-
spectively; while of the three types, but one, [3j, possesses a spin--,' state of the Pauli-election type. The
corresponding analysis for relativistic mechanics shows there are nine types labeled here [0], [2], [3j, [3 7,
[4g, [4'j, [4"g, [5), and [6j, and in addition two one-parameter infinities of types [3sj and [5sj (0&f&n).
An algorithm exists for obtaining the spin-spectra of rigid structures from their symmetry groups. Of the
9+2 ~ types, just three ([4j, [5j, and [6j) possess spin--,' states of the Dirac-electron type. The apparent
rest mass depends upon the internal rotational state of the particle, as is shown by an unrealistic example
of a Lagrangian which is an extension of that of the Klein-Gordon particle.

I. INTRODUCTION

BERK have been many attempts to bring order
to the array of observed particles by calling

some of them excited states of others. To do this is to
attribute. to the basic particles certain internal degrees
of freedom' which, being capable of excitation, can
account for the existence of various states with diferent
properties. In many cases, this additional degree of
freedom has described a motion outside of customary
space-time —a rotation in isotopic spin-space, or a
motion in six-dimensional relativity, etc. If only for the
sake of completeness, we shall investigate here the
possibilities within the present frameworks of quantum
theory and special relativity.

Particles with spin present an interesting problem
in this respect. First, of course, they cannot be com-
pletely structureless point masses whose states are
represented in the original Schroedinger way by scalar
wave functions f=P(x,y, s, t) of position in space-time
alone. Second, it is well known that even a composite
system of such ideal point masses possesses no half-odd-
integer spin states, so that an electron or a p, meson or
any other particle of spin —', cannot be a tightly bound
rotating aggregate of point masses with

by a wave function depending on the spatial coordinates
oc,y, s and three Euler angles e,&,x:s

4=4(&,y&; t)A, x) (2)

The existence of such a mechanical model is not a con-
tradiction: in quantum mechanics a system of ideal
point masses, no matter how strongly bound, diGers
essentially from an ideal rigid rotator by the greater
stringency of the regularity requirements on its wave
functions. ' It is easy to see that the simpler system of
an ideal diatomic molecule or ideal dipole, as it will be
called —whose states have the form

does not possess states of half-integer angular momen-
tum; and thus the natural conclusion is that if a non-
relativistic mechanical model of a half-spin particle is
to be sought, the simplest possible is the ideal rigid
rotator. '

This conclusion is not at odds with the Pauli repre-
sentation of half-spin particles; just as any atom in a
p-state is necessarily represented by a vector wave
function

lb=lb (x,y, ), sm=O, a1, or 1,2,3 (4)

P=f(ocr, ,oc„).

Thus, it might appear that no mechanical model can
possess spin —,'. Yet, ignoring for the moment the re-
quirements that relativity places upon such theories,
it is well known that a simple mechanical system is at
hand which will exhibit spin —, as a result of ordinary
rotation: the ideal rigid rotator, whose state is given

' F. Bopp, Z. Naturforsch. Ba, 568 (1948); H. Honl, Z. Natur-
forsch. Ba, 573 (1948); F. Bopp and R. Haag, Z. Naturforsch. 52,
644 (1950); H. Yukawa, Phys. Rev. 77, 219 (1950);R. L. Ingra-
ham, Nuovo cimento 12, 825 (1954); Hara, Marumori, Ohnuki,
and Shimodaira, Progr. Theoret. Phys. (Japan) 12, 177 (1954)
and others.

any structure whatever in a state of spin —,'must be
represented by a Pauli spinor f=P (o:,y, s) (n=&s,
or 1,2). However, it will be extremely artificial to
introduce, say, Euler angles into the wave function of
a spinning particle to "explain" its spin, if its spin
actually has but the single value —',. In such a procedure
the angles could have little physical significance,
and it would be impossible to define any one of them.
with a precision better than

68)A/24 Jh 1 radian.
' F. Bopp and R. Haag, Z. Naturforsch. Sa, 644 (1950) discuss

nonrelativistic spin models of this type.
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The question raised here is whether, therefore, these
particles truly exhibit but one spin, or whether it is
possible for them to change their spin under the in-
Quence of external torques.

It is not permissible to answer this question within
the theoretical framework of the Pauli spin formalism,
which is constructed to permit the formulation only
of interactions that commute with the magnitude of
the spin; and it is not possible to answer it experi-
mentally from the behavior of the particles at low
energy. Such a hypothetical change in spin would not
appear as a mere fine structure in spectral lines; it
would be a catastrophic change in the nature of the
particle. The magnitudes of the energies involved may
be judged from relations familiar in the theory of
rotational spectra of molecules. If E is the energy of
rotation of a system and the "spin" J is on the order of
unity,

E A'/2I, (6)

where I is a moment of inertia. To compare this energy
with the rest mass M, we observe that I MR' where
R is a measure of the extension of the system, and that
A/Mc=P, is the Compton wavelength. Then

E (X/R)'Me'. (6')

Thus if X((R, E((Sf''. For molecular systems, of course.
R may be taken as an atomic size, say the Bohr radius,
and X as a proton Compton wavelength, so that
'A/R~(m/M) (1/137)&&1 and E&&Mc' ordinarily. How-
ever, for the "radius of gyration" R of an elementary
particle it would be implausible to use a length much
greater than its Compton wavelength ) or much less
than its classical Coulomb radius rs ——e' /Mc'=X /137

and in these opposite extremes the energy absorbed in
a spin transition is, by (6'),

E Mc', if R
(137)'Mc' lf R re.

(7)

Thus in any case the process is relativistic, and it is
conceivable for large mass ratios to result in this
manner.

Since the above estimates of E are large, it becomes
necessary to put these considerations upon a relativis-
tically invariant footing. This is the purpose of the
present paper: to parallel the above heuristic discussion
in a consistent relativistic theory, and to lay the ground-
work for more detailed calculations.

It should be observed that to do this there are three
points to be treated in order:

First, we shall enumerate all possible rigid structures
(Parts II, III, IV). The only possibilities in non-
relativistic mechanics were the ideal point, the ideal
dipole, and the ideal rotator; the enumeration in the
covariant theory is not self-evident, and algebraic
methods must be used. It turns out that there are not '

three but eleven possibilities, not all of which have been
exploited in the literature.

Second, we shaB investigate the spin spectrum of each
model, to Gnd whether it possesses states of spin —',
(Part V). In nonrelativistic mechanics the answer
was yes for but one of the three models, the rotator.
In relativistic mechanics the answer is yes for three of
the eleven models.

Third, we shall investigate the energy spectrum as-
sociated with the spin spectrum (Part VI). While the
previous two points were questions of kinematics,
requiring no knowledge of the Lagrangian, this is a
question of dynamics, requiring a choice of Lagrangian,
and the results must be strongly affected by inter-
actions. Only a preliminary treatment of this question
is presented in this paper, and the problem of inter-
actions is not treated. Clearly a closer study of this
question is necessary before a comparison of the theory
with reality is permissible. The present paper is devoted
rather to the determination of the systems under con-
sideration and of their most permanent properties.

We shall, therefore, discuss covariant theories of
localized systems with internal degrees of freedom,
first from the point of view of classical mechanics and
then from the point of view of quantum theory. To
specify a point in the classical con6guration space of
such a system there must be given a point x= (x') in
space-time, and in addition, some kind of additional
coordinates,

specifying the internal configuration. We introduce a
simple classification of all possible kinds of internal
degrees of freedom q based on the symmetry properties
of the quantity q. Unfortunately, the procedure may be
summarized most concisely in the terminology of con-
tinuous groups of transformations, of which no knowl-
edge will be assumed after the following summary. The
central idea is mathematically elementary'. if a group
(the Lorentz group now) acts transitively on a set, the
set is in a j.—i correspondence with a quotient space of
the group. Now, if Q is the manifold over which g
varies, it may be assumed —perhaps after sufhcient
subdivision of Q

—that the Lorentz group G acts
transitively upon Q. It follows that Q may be realized
as a coset space G/Gs of G modulo some subgroup Ge.
Gp determines the kinematics of the system. Indeed,
if Ap is the Lie algebra of Gp and A of 6, then any
velocity j (thought of as determining an infinitesimal
motion q +q+jdse)—may be represented by an element
of the quotient space A/Ao, so classically the phase
space is the direct sum

(G/Go) (A/Ao); (9)

while quantum mechanically, if 4'(Q) is the space of
wave functions of the system (internal coordinates
only), then %(Q) may be identified with the subspace
of 4'(G) (complex functions on the Lorentz group)

' C. Chevslley, The Theory of Lee Groups (Princeton University
Press, Princeton, 1946),p. 30.
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(bb') oq= bo(b'oq) (13)

must be required of the operation bog, where b and b'

are arbitrary Lorentz transformations.
For any q, consider the collection G(q) of all Lorentz

rotations leaving q fixed: G(q)oq=q. From (13) it is

consisting of those functions f(g) invariant under Gp.
Thus the first of the three points above, the enumeration
of all kinematics, amounts to the enumeration-up-to-
equivalence of all subgroups Go of the Lorentz group.
The second point, the determination of the spin spectra,
requires the decomposition of the subspace +(Q) into
subspaces invariant under G. +(Q) is an invariant
subspace of 4 (G) and its decomposition is accomplished,
therefore, by the decomposition of 4(G), i.e., by the
well-known reduction of the regular representation,
and can readily be computed. The particle can possess
no states which are absent in this decomposition, and
the dynamics may also exclude some of the terms
actually present in this decomposition. The third point,
the energy determination, requires at very least the
choice of a Lagrangian for the free field. This can be
done as follows. There is a unique (up to a constant
factor) left-invariant quadratic form on G regarded as
a differentiable manifold. Hence there is also one on
Q=G/Gp, to be written ~)q~~'. Thus, there is only one
invariant quadratic Lagrangian function of (q,q), again
except for an arbitrary factor,

L=-', i~'t/q f/'

Thus if the classical equations of motion are required
to be completely invariant and linear in the second
derivatives, their solutions are completely determined
as geodesics on G/Gp. Similar requirements imposed
upon the wave equation serve to determine the quantum
field equations, for the metric on G/Gp fixes a Laplacian
operator 6„the "Casimir operator" on Q.

We now carry out the procedure outlined above.

II. CLASSIFICATION OF INTERNAL STRUCTURES

Consider the eGect of Lorentz transformations upon
the internal coordinates q. (Terminology: the Lorerztz

trarzsformatzols L are those x +bx+ h preserv—ing interval
~4x~. These include the homogerzeozzs Lorerztz trazzs-

formations, where k=0, which in turn include the
(space-time) rotations G where also detb) 0 and
bp')0. ) The intent of the epithet "internal" is that a
space-time translation is to leave the numbers q un-
altered:

x~x+ tz, q~q. (11)

On the other hand, a space-time rotation x—4x may
(or may not) have some effect on q; and in general q
undergoes an arbitrary point transformation

S~bS~ /~bog

where bog will be written for the eGect of b operating on
q. The property of a group of transformations

evident that G(q) is a subgroup of the Lorentz rotations
G; it will be called the symmetry group (in G) of the
point q. Re."erring again to the examples of a point
particle and a dipole particle in Part I, G(q) should
be thought of as the group of space-time rotations
"about" q. We observe that if q and q' are connected
by a Lorentz transformation then their symmetry
groups are equivalent: if

g
=bog)

G(q') =bG(q)b '.

The infinitesimal elements of G for of G(q)] correspond
to skew tensors a;;= —a;; and form a collection which
will be designated by A )or A (q) respectively]. We will

always assume that G(q) is connected, so that it is
generated by A (q). A (q) is closed under the operations
of addition, multiplication by a real number, and com-
mutation: the quantities

a+a', ea, La,a']

belong to A (q) whenever a,a' do; and similarly for A.
The classification of internal structures which we shall

employ amounts to specifying A(q) up to equivalence
for each point q.

Special interest attaches to those cases where A(q)
is the same (up to equivalence) for all q, because of their
simplicity and because all other possibilities can be
built up out of such simple cases. In the following Part
III, it will be shown that this type of structure may be
regarded as rigid.

III. COVARIANT CONCEPT OF RIGIDITY

It is customary to call a body rigid in classical me-
chanics if it is made of particles whose mutual separa-
tions are fixed. This is not a satisfactory starting point
for us, since such a system has only integer spins. It
is especially unsatisfactory as a description of a sup-
posedly primitive particle. However, such a system of
points has several properties which can be expressed
without reference to internal structure and which will

not be incongruous in an elementary particle. We shall
exhibit two such properties here:

First, such a system has only translational and rota-
tional degrees of freedom. From any one configuration
of the system it is possible to obtain any other by apply-
ing the purely geometric operations of translation and
rotation to the system as a whole (or to the reference
frame). This is usually expressed by saying that the
Euclidean group acts transitively on the configuration
space or that the configuration space is homogeneous
(with respect to the Euclidean group).

Alternatively, for such a system there is no scalar
invariant function of the coordinates except the trivial
f= const. This e'xpresses the fact that the interparticle
separations and angles are constants, and it is not
dificult to see that it is equivalent to transitivity.
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Second, such a system possesses a weak sort of
localizability in that its coordinates can be split into
one part, "center-of-mass, "which transforms as a posi-
tion vector under the Euclidean group and another part,
orientation, which is invariant under translation. This
too can be expressed purely as a relation between the
Euclidean group and the configuration space; it is
equivalent to the assertion that no translation leaves
any configuration Gxed.

Thus there is a natural way to generalize the essential
properties of the rotators of classical mechanics to a
relativistic mechanics: (a) the configuration space in
which the particle wanders in the course of proper time
is homogeneous with respect to the group of space-time
translations and rotations, and (b) no point of it is
fixed under any space-time translation. It follows that
a point of this configuration space has the form (x,q),
where x= (x') is a point in space-time we shall call the
position of the particle and q= (qi, ,q„) is a collection
of additional coordinates we shall call the orientation
of the particle. It is clear that 0&m&6 and that q,
which is invariant under translation, is transformed
transitively by the space-time rotations alone. Ke
shall call a system possessing these two properties (a)
and (b) rigid for want of a better term.

Any two points of the configuration space of a rigid
system have equivalent symmetry groups, by (14).

It is highly doubtful that forces exist capable of
binding several particles into a system which will
remain rigid under processes as energetic as the spin
transitions considered here, so that it is of interest to
investigate nonrigid systems. However, an elementary
particle can be rigid in the above sense, and it is there-
fore fitting to survey all possibilities of this type.

q+-&G (q, qo) (16)

is an isomorphism. Thus we can identify the points q
with the cosets of G(qa), Q G/G(q0), and the law of
transformation of Q is

goq~gG(q q0) (17)

where gG(q, qa) represents the result of multiplying each
element of G(q, qa) in turn by g. This provides the entire
kinematics.

IV. EHUMERATION OF RIGID STRUCTURES

By the kinematics of a particle we will understand
the speciGcation not only of its configuration space as
a manifold but also of the manner goq in which a space-
time rotation g transforms a point q of this space. It will
now be shown that the kinematics of a rigid structure
is completely defined by the symmetry algebra A(qa)
for one point q0. First, we have assumed that G(q0) is
generated by its infinitesimals so G(q0) is determined.
Now designate by G(q, qa) the set of space-time rotations
transforming q0 into q; G(q, qa) is a left coset of G(qa, qa)

=G(qa), and it may be taken that the one-to-one
correspondence

a=4%V"a';;=ZW e) (19)

where o;;=o&, o;0 io (ij,k=1——,2,3'cyclically) and the
complex 3-vector

W 2 (W23+ZW10) W31+ZW20q W12+ZW30) (20)

is constructed from the tensor z;; in much the same way
that the Hertzian vector 8+iX is constructed from the
electromagnetic Geld tensor F;;. The correspondence
(19) will be written

co=I(w, ,) =Z(w). (21)

Any skew tensor a deGnes a one-dimensional algebra
consisting of its real multiples, the closure requirements
(15) being trivially satisfied. If ot is the 3-vector as-
sociated with tz by (20) then the only independent
scalars which can be constructed from u;; are Rea a
and

~
Ima a ~, and so the algebras can be separated into

equivalence classes according to the values of the
invariant ratio

Rea a: (Ima a~.

Either this ratio is 0:0,or it can be put in the form

cosf: sinf, 0&f(2r
4F. Klein, The Mathematical Theory of the Top (Princeton

University Press, Princeton, 1896); H. Goldstein, Clussi cal
3fechunics (Addison-Wes1ey Press, Cambridge, 1951),p. 180.

To enumerate all possible rigid covariant kinematics
it remains only to enumerate all the possibilities for
A (qa) up to equivalence, since equivalent groups deter-
mine isomorphic configuration spaces by the above
procedure. 7Ve shall separately consider the possible
dimensions 0,1, ,6 for A (qa). The algebra of dimen-
sion 6—m leads to a particle of m internal degrees of
freedom which will be designated by [ztz] with further
symbols where necessary.

[6$. The zero-dimensional algebra is the trivial one
containing only 0, the group it generates is the identity
1 and the configuration space is G/1 or G itself. The
particle may be thought of as a small eierbeie or as four
points not all in the same two-space. The nonquantum
theory of this four-dimensional rotator was put forward
by Klein4 in a remarkable anticipation of the formalism
of special relativity; his parametrization of this con-
figuration space by Cayley-Klein parameters is the most
convenient for may purposes, essentially associating
with each point of the conGguration space a Dirac
spinor P subject to the conditions

P$= 1, Pyeg= 0.

(4 complex numbers=g real numbers, less 2 con-
strainst, leaving 6 degrees of freedom. )

[5j. The infinitesimal Lorentz transformations
(units: A=c=1; metric: +———),

x'~x'+w' x'dr, (ij=0,1,2,3)

correspond to skew-tensors m;, = —m, ;, or equivalently
to the spin operators
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In the former case, the algebra can be transformed into

[5)=(o+)

where the spin operator associated with a generator of
[5) by (19) is used to define [5],and

instead of (26). A particle of this structure was intro-
duced by Frenkel' as a classical model for the electron.
However, it will be shown that its canonically quantized
theory cannot describe a spin--,' particle.

[3). The rigid systems of three degrees of freedom
are associated with the symmetry algebras

or+.icrs (0 1q

Eooi

In the latter case, the algebra is equivalent to

(23) [3]={o„o„o,),
[3')= (o~,o,io s),

[3I)= (o~,io+,e'f tsrrs)

(2g)

[4)=fo.s, ios),

[4)=(o+ io.s)

[4 )=fo'+ io+).
(25)

None of these possess point models, it can be shown.
[4) will be of further interest due to its spin spectrum,
and a parametrization is helpful: the points of the con-
figuration space of [4) may be put in correspondence
with skew tensors w,; (or with 3-vectors w according
to (20)) which obey the condition

[5,]=te'»'o, ), 0(f&~. (24)

There are no others. There are thus "1+~" distinct
kinematics of five degrees of freedom. This in sharp
distinction to the situation in classical mechanics,
where there are only three distinct rigid kinematics in
all. Of all the structures exhibited in (22) and (24) it
can be shown that only [5], [5p], and [5 ]are exempli-
fied by rigid sets of distinct points, as in Fig. 1.
(This is shown by a study of the fixed points of the
inlnitesimal Lorentz transformations belonging to the
associated algebra. )

[4). Beyond this point the case analysis becomes
quite tedious and only the results will be listed. The
only rigid systems of four degrees of freedom are

r'= 1 for [3),
0 for [3p),

= —1 for [3'].
(29)

A model for an elementary particle of this kinematic
structure was proposed by Yukawa in his nonlocal
meson theory, where the cases [3) and [3') appear as
particles of space-like and time-like extension respec-
tively. ' The remaining systems of three internal rigid
degrees of freedom, namely the [3I) with 0&f&s.,
cannot be realized by models consisting of points in
real space-time.

[2).There is one structure of two degrees of freedom:

[2]= (o+,io+,o s,io s)

[1).There is none of one degree of freedom. This is
also the case in nonrelativistic mechanics.

[0). The structure [0] is, of course, the ideal point
and its symmetry algebra is the entire algebra A.

Having enumerated all rigid structures, our next
goal is the examination of their spin spectra.

There are no others. A convenient parametrization for
the configuration spaces of some of these particles is
by a four-vector r'. (See Fig. 1.) This four-vector is
subject to the constraints:

w m=o. (26)
V. SPIN SPECTRA

A skew tensor and its associated three-vector obeying
(26) will be called null; both its invariants vanish. The
best known example of a null tensor, of course, is the
field of a plane light wave w= H+iE; E 8=0=E'—EP.
A suggestive description of the particle [4) other than
a null six-vector is the associated two-spinor or Pauli
spinor P: just as the particle [6) can be regarded as
a point to which is attached a Dirac spinor, the particle
[4) can be regarded as a point to which is attached a
Pauli spinor. This Pauli spinor, advantageously, is
subject to no constraints.

A realization of the particle [4"]is a point to which
is attached a skew tensor m, ; subject to the constraints

(27)

5 The correspondence between null tensors and Pauli spinors is
discussed by H. A. Kramers, Quuntentheorie des E/ektroes und
der Struhlleg (Akademische Verlagsgesellschaft, Leipzig, 1938),
p. 260; E. T. Whittaker, Proc. Roy. Soc. (London) A158, 38
(1937); and E. M. Corson, Irttroduott'oN to Telsors, Spertors, aid
Retattvt'stt'e 5'ave Eqttattorts (Hafner, New Y-ork, 1953), p. 31.

Ke shall obtain only partial information about the
particle spectra without specifying a Lagrangian.
Under the infinitesimal transformation,

s =e+e's t

the wave function f(oe, q) transforms according to

Sip= —z(e pt+s e Js't) ~

Here
p;= ict/c)x'—

(3o)

(31)

Jtk Lk+Sek&

I.'k = a'pk —&kp',

where S;~ is a differential operator with respect to the
q alone and represents the contribution of the internal
rotation to the angular momentum J,I, of the particle.

e J.Frenkel, Z. Physik 37, 243 (1926);H. A. Kramers, reference
5, p, 229,' H. Ynkawa, '.Phys. Rev. 77, 219 (1950).
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Lo3

[s„j

~
I

~
i'/ that the eigenvalues of the set (33) have the form

s (s+ 1),tis; s*(s~+1),m*
where

s 0 $ o ~ ~
72) 7 )

Bl= sl s+1, ' '') s—1~$;
s*=0,-'„1,

m*= —s* —s*+1 s*—1 s*
7 ) 7 7

(34)

gEY.' SPAC'C-Lace m Aureate =

iWL L SCPAAPATIOh/ ~ e ~ ~ ~ ~

77M'- LJKE ST~7IQh/ ~-——~

FIG. 1. Realizable rigid structures. These figures posses the
same symmetry group as the indicated rigid structure. They
may be regarded only as particular group-theoretic realizations
of the corresponding internal structure. (In the diagram for $5j,
the dashed line should be solid. )

Let S be the 3-vector associated with S,q, in the manner
of (20), and let S* be the similar quantity obtained by
replacing the explicit i by i in (20). —Then it is well

known that the commutation rules for the infinitesimal
Lorentz transformation may be written simply

SXS=sS,
S*&&S*=sS*, (32)

LS,S*7=0.
Thus, the vector S has the same commutation rule as a
three-dimensional angular momentum vector, although
it is not formally Hermitian. S* commutes with S and
possesses the same commutation rules and so a maximal
commuting set of operators formed from the S;.I, is

S' Sg, S*',S3*. (33)

Any function of q can be expanded in terms of simul-

taneous eigenfunctions of the set (33). We shall now

discuss these eigenfunctions.
The lt (q) are subject to a regularity condition em-

ployed by Bopp and Haag'. GP shall be finite-dimen-
sional. Here GP represents the collection of all functions
of q obtained by applying all the members of G to f,
and taking linear combinations. As has been pointed
out, ' this condition contains the customary continuity
requirements and implies for the systems of nonrela-
tivistic mechanics the statements of Part I concerning
spin-spectra from which the present discussion stems.
This condition excludes two-valued functions of q in
many cases but not all. In the relativistic case this
condition has the additional consequence that the func-
tions of q associated with the infinite-dimensional
irreducible representations of G, unitary or otherwise,
are excluded. Given that GP contains only a finite
number of linearly independent functions, the com-
mutation rules (32) imply by well-known methods'

V. Bargmann, Ann. Math. 48, 568 (1947); P. A. M. Dirac,
Proc. Roy. Soc. (London) AI83, 284 (1945); I. M. Gelfand and
M. Neumark, J. Phys. (U.S.S.R.) 10, 93 (1946) and Uniturnie
Predstuvlemia E/ussiceskih GrupP, Acad. Sci. U.S.S.R. (1950);
Harish Chandra, Proc. Roy. Soc. (London) A189, 372 (1947).

9P. A. M. Dirac, PrinciP/es of Quantum 3IIechunics (Oxford
University Press, Oxford, 1947),p. 140.

4'(s, s*)=V„*0+0,*. if s&s*

(direct sum), and

4'(s, s) =e„,

(36)

where +„*represents an irreducible invariant subspace
under G associated with the specified values of S' and
S*'.The intrinsic three-dimensional angular momentum
is S+S*and its magnitude has the quantum numbers

Is—s*f, fs—s"I+1, , s+s*

in the space +(s,s*), by the usual rules for composition
of two commuting angular momentum vectors. The
wave function of a Dirac particle has the same trans-
formation properties as a vector in the four-dimensional
subspaces %(0,—',). We must inquire whether such a sub-
space appears in the decomposition of the function
space 4'(Q) associated with each of the 9+2~ possi-
bilities enumerated in Part IV; and if so, how often.
This can be answered by the most cursory inspection
of the associated symmetry algebras A (qe):

[6). The decomposition of 4'(Q)=+(G) into ir-
reducible invariant subspaces is well known" to contain
(2s+1) (2s*+1) isomorphs of 4„, so that the Dirac
spinor subspace 4'(O, s) appears twice. For the further
work a review of this decomposition is necessary.

With each Lorentz rotation b=b'; is associated a
2&&2 spin matrix p=Z(b) =p & such that

detp=1, p~o;p=aib";(os—=1). (37)

(The sign of P is not determined. ) For Q=G, each wave-
function f(q) is thus a function /[pal of a 2)&2 spin
matrix P (and its complex conjugate P*). We put

so that
a gay
2=

"H. Weyl, Theory of Groups und Quantum Mechanics (Dover
Publications, New York, 1931),p. 316.

respectively. A corresponding eigenfunction will be
written

f(q) = lt, . (q), (35)

with additional labels in cases of degeneracy. S' and
S*' are scalars under G but are interchanged by time-
reQection. Thus the invariant subspaces of the space
P(Q) of internal states under the (extended) Lorentz
group are of the form
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for it is more convenient to regard it as a function of the
two spinors P and rt. Because f(q) is a scalar, for any
Lorentz rotation g

gy(fi) =P(g 'b) =4[7 'P]=4(v '6,7 'n, (v '5)*,(7 'n)*)

[y= P(g)], so $ and rt transform separately. The func-
tions f which are homogeneous of fixed degrees in

g,rt, P, and rt* clearly form an invariant subspace of
4'(G) and this subspace is irreducible. Designating this
subspace by +, ,* *, the relation between the spin
eigenvalues s, s* and the degrees is indicated by

s,~(s+m' s m(p)
ss+—ms'( e)ss+ms'

where m' and m~' are auxiliary invariant quantum
numbers. In the nonrelativistic rotator the quantum
number corresponding to m' is the component of angular
momentum along the body s-axis. ' The range of the
quantum number m' is from —s to +s in steps of unity,
2s+1 values in all, and there are 2s*+1 values for
m*'. Therefore, there are in all (2s+1) (2s*+1) distinct
subspaces belonging to the same values of s and s*.

Thus the particle [6] is highly composite from the
point of view of group representations.

[5]—[0].The wave functions of [5]—or any of the
other particles to be discussed —can be regarded in two
distinct ways in their dependence on q. Up to now they
have been regarded as assigning a complex value P(q)
to each coset g of a fixed subgroup of G, namely the
symmetry group of the particle. Such a function P(q)
naturally deFines a function on G itself, to be designated

P(g), where

4(g)=4(q) if goqp=q. (40)

Thus, the value of f(g) is simply that associated with
the coset to which g belongs. The resulting set of func-
tions will be identified with 0 (Q) henceforth. Its
characteristic property, of being constant on cosets of

G(qp), is equivalent to invariance under right multi-

plication by G(qp):

P(g) =P(ggp) for P in +(Q), gp in G(qp). (41)

It is enough to assert (41) for the infinitesimal gp,

which form the symmetry algebra A (qp):

g (g) =0 for 8g=iga, f in 4(Q), a in A (qp). (42)

Now the criterion (42) can be used to see whether a
given %„s is represented in 0'(Q) by ascertaining
whether any N. , * is included in 4'(Q). From the
invariance of the subspace N, ,* * under Lorentz
transformation it is sufficient to verify (42) for g=1.
Thus, 4', , s " is in%'(Q), if, and only if

f(1+ia)=it(1) for all f in 4', , ", a in A(Q). (43)

Together with (39) and the list of all A (Q) in Table I,
(43) provides an algorithm for getting the spin spectrum
of each rigid structure. Again, terms present in this
spin spectrum may be excluded subsequently by the
dynamical equations of the system.

TABLE I. Under Type is given the number of degrees of internal
&reedom. When there is more than one type of a given number of
degrees of freedom, primes or subscripts are added to distinguish.
Under Symmetry group is given a set of infinitesimals generating
the symmetry group, in the 2)&2 spin-representation. Here

01o+= ,'(ai+-to. s)= . Under Parametriratiors ip given a coordi-00
nate system for some of the types, with the constraints if any.

Type

C67

C67

C5r7

L47
L4'7
C4II

7
L37
C3'7

C3f7

L27

Lo7

Symmetry grou p

0+
~ij'/2~

0+)$0+
0+)$0 3

0'3)$0 3

Ol)02p03

$01)$02p0 3

Cr+,$O-+, e'f~20-3

0'+)$0+)0'3)$0'3

0 I)0 2)0 3)$0 I)$02)$0 3

Parametrization

4-spinor $; (+(=1, g+~&)=0

6-vector (R,H); (R+iH)'=0

6-vector (R,H}; (R+iH)s= 1

4-vector r' r.r'=1
4-vector r'; r;r'= —1

VI. ENERGY SPECTRA

In the present section, a covariant Lagrangian is
selected for mathematical simplicity to show how the
rotational energy of the structures considered can con-
tribute to their rest mass. Since the Lagrangian chosen
is very unrealistic only the briefest exposition is ap-
propriate.

We will discuss only a particularly easy question:
which structures possess Dirac states %(0,—', )? The sub-
spaces in point are by (39)

Qllpp~g Ql spp~ri Qppls~g Qpps s~'g

It is readily seen now that Cppp and 'kppH belong to
%(Q) only if the first column a ' of each matrix in the
2)&2 spin representation of A(Q) given in Table I
vanishes, while 0'; &pp and 0'pp& ~ are present only if the
second column a ' vanishes. Inspection of Table I
shows that only the structures [4], [5],and [6]possess
either of these properties. We thus conclude: owly the
structures [4], [5] anct [6] cari have Dirac like states. -

Of these three structures, two can be realized by
rigid systems of space-time points, [5] and [6]. (See
Fig. 1.) If anything, this makes these two less appealing
as models for an elementary particle. The simplest
case [4] does not have this property and has some
intriguing characteristics of its own. It can be described
as a point in space-time to which is attached as internal
coordinate a six-vector (E,H) subject to

K'—8'=0, K H=o,

according to (25), where w=H+iE. Such a six-vector,
usually associated with a spin-one particle, can by its
rotation give rise to spiv-a states, while a four-vector, or
a six-vector not obeying (44), cannot. Of course, the
wave-functions of these states are double-valued, and
devoid of singularities. It seems that the structure [4]
might be worthy of further study.
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The form chosen for the Lagrangian density I. is
analogous to that of the Klein-Gordon particle, and is
the sum of a scalar which is quadratic in it and a scalar
which is quadratic in the first derivatives of it .

1.= '[8 $-*8'p ri'8—p8 f m i—pef$. (45)

Here 8,—=8/Bh'. Likewise, 8 represents differentia-
tion with respect to the internal coordinates q", and the
metric form y pdq dq&=dq dq assumed for the in-
ternal coordinates q is discussed in a footnote. "

The action principle is then

order di8erential operators S and S* introduced in
Part V:

~ s= —
s (&+~*')

Thus, the eigenfunctions and the eigenvalues of 6,
have the form

A,T„(q)= ——',(s(s+1)+s*(s*+1))I'„(q),
and if P is expanded in terms of these "internal spherical
harmonics", the coeKcient f„*(h) of I'„»(q) in this
expansion obeys the wave equation

[g+nP+-', ri'(s (s+ 1)+s*(s*+1))jP„(h)=0.

where

and

I.(Cx) (Cq) =0,

(Ch) =Ck' Cx'

(Cq) =p'*Cq' Cq", (p=detp p)

Defining the rest mass M by the relation p;p'=M', it
is seen that the state f„» has the rest mass

M„*=tn 1+-',
I

—
~
[s(s+1)+s*(s*+1)$ . (47)

s

&mJ

are invariant volume elements and t/' is a volume in If one puts) =m ' for the Compton wavelength of the
4+%-dimensional configuration space. This leads to unrotating particle and R=ri, then by (47) the spin
the wave equation energy 8when )«&E. is

(Q risk, +m—')f =0,

where Q =B~'—V' and d, =y:8 y&8 are the Laplacians
with respect to the external and internal coordinates.
Inasmuch as this is a second-order diGerential equation
it is not of the Schrodinger form. Only for certain
models is it possible to write an invariant equation of
the first order in time differentiation. We present the
above wave-eciuation only for its simplicity and
generality. The second-order scalar differential operator
6, can be expressed, of course, in terms of the first-

"This form is completely determined throughout g-space up to
a constant scale factor when its value is given for a single diGer-
ential dg at any one point q, if it is assumed —as we do—that the
form is invariant under Lorentz transformations. Because Q is
realized as a quotient space of 6, to fix scale factor it sures to
.define a metric on the Lorentz group itself, as is required for the
case (6g where Q=G. In that case, we take for the index a the
couple o.=(i,j) with i(j=0,1,2,3. Setting dg =c'&, where ~'& is
the skew-symmetric tensor associated with an inlnitesimal
Lorentz transformation in (29), we then define dg»dq»= —',e;,s".

E (X/R)'tlc'.

Thus q
' is like a radius of gyration. For 'A~R or) &R,

the result (7) of Part I is modified considerably: from
(47) it follows that the rest mass M of an excited state
of this particle is 137 [instead of (137)'j times the
rest mass m of the state of spin zero, if the classical
Coulomb radius of the particle is taken for its radius
of gyration. In nature the situation appears reversed:
m 2&&137m„ the particle of spin zero is heavier than
one of spin —', .

This Lagrangian (45) is quite unsatisfactory, but
shows the possibility of a covariant quantum theory for
one particle. The many-particle or second-quantized
theory will not be treated in this paper.
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