TWO-NUCLEON POTENTIAL FROM YUKAWA THEORY

phenomena is obtained by a coupling constant in the
neighborhood of 0.07-0.08 and a cut-off energy near 6u.
These values are quite close to those used here to give
best agreement for the low-energy #-p system. Thus,
except possibly for peculiarities which may appear in
higher orders, it seems that the low-energy n-p sys-
tem can be predicted without recourse to adjustable
parameters.

The application of these potentials to problems at
higher energies has not yet been considered by the
present author. In making the calculation here, nucleon
kinetic energies have been consistently ignored relative
to total meson energies. How large the nucleon energies
may become before the calculation breaks down is a
question which is difficult to answer without further
work. Since the depth of the attractive part of the
triplet central force is of the order 15 Mev, it is expected
that the nucleon kinetic energies in the deuteron also
are of this magnitude. The agreement obtained for the
deuteron thus leads one to speculate that the potentials
may be reliable for nucleon energies beyond the range
of reliability of the effective range theory. Indeed,
Fujii et al.® have applied their potentials to #n-p scat-

8 S. Fujii et al., Progr. Theoret. Phys. 11, No. 1 (1954).
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Tasrk IL. The singlet effective ranges obtained by adjusting f?
to give the exact singlet scattering length.
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tering at 40 and 90 Mev and have concluded that the
characteristic features of the high-energy nucleon-
nucleon scattering are reproduced quite well. It seems
reasonable, therefore, that the potentials derived here
may also apply at these higher energies.
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The familiar problem of state-vector normalization and, in field theories, the related problem of charge
renormalization are shown to arise in a natural manner in the formal scattering theory introduced by Lipp-
mann and Schwinger. The mathematical arguments necessary for dealing with these problems are developed
entirely within the framework of the formal theory and lead to the customary rules for the construction of
the renormalized S-matrix and reactance operator, provided mass renormalization is simultaneously carried
out and the one-to-one correspondence between perturbed and unperturbed eigenstates is set up in a

“natural” fashion.

I. INTRODUCTION

IPPMANN and Schwinger! have shown that the
stationary states which describe scattering proc-
esses for a given system may be represented formally by
+ie
yr=lim——9, M
0 E—H--ie

where H is the Hamiltonian operator of the system, e
is a positive infinitesimal, E is the energy of the
state in question, and the vector ¢ represents a
plane wave of the same energy. The 4 sign refers to the

* This work was performed under the auspices of the U. S.
Atomic Energy Commission.
1B. A. Lippmann and J. Schwinger, Phys. Rev. 79, 469 (1950).

states with outgoing or “retarded” scattered waves, and
the — sign to the incoming or “advanced” wave states.
That ¢+ are indeed eigenvectors of H corresponding to
the eigenvalue E is immediately seen by multiplying
Eq. (1) on the left by E—H-ie and then passing to
the limit.

Although Eq. (1) was initially introduced in the
limited context of simple scattering theory, its use as a
method of constructing eigenvectors of an operator H
has a much wider range of validity. For example, H may
be a finite matrix, or an operator with discrete rather
than continuous eigenvalues. In a review article (to be
published) the author has used Eq. (1) as a starting
point for a discussion of bound-state perturbation
theory. It is the purpose of the present note, however,
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to point out that Eq. (1) may also be used as a basis for
a connected description of scattering theory as it appears
in the complicated context of the remormalization
program for quantized fields. It is easy to see, in fact,
that the normalization (or renormalization) problem
arises quite naturally in a formalism based on Eq. (1);
for, when E is an eigenvalue of H then the operator
+ie(E— H=-ie)™! projects out only that portion of ¢
which lies in the corresponding eigen-subspace. There-
fore y* as given by Eq. (1) is not generally normalized.
The fact that it s normalized in simple scattering
problems is due to special circumstances.

In dealing with discrete spectra one may use almost
any vector ¢ on the right of Eq. (1) in order to con-
struct an eigenvector of H. When continuous spectra
are involved, however, it appears to be not only a
convenience for physical interpretation but a practical
mathematical necessity to choose ¢ in a special way,
namely, to be an eigenvector of an ‘“‘unperturbed”
Hamiltonian operator H, which is obtained from H by
subtracting a portion H; which has an obvious signifi-
cance as a scattering potential, an interaction, or a
“coupling”:

H,=H—H,. 2

One then sets up a one-to-one correspondence between
the eigenvectors ¢,* of H and the eigenvectors ¢, of
H, in such a way that the y,* approach the ¢, as
H,— 0, where the vanishing of H, is assumed to take
place in a linear fashion; i.e., g— 0 where H;=g3C, g
being often referred to as a “coupling constant.” This,
of course, involves some sort of assumption about
quantities being analytic in g at the origin, which may
or may not be justified but which nevertheless underlies
all proposals for dealing with quantized field problems
which have had any success to date. If the criterion of
analyticity in g is satisfied, then, as will presently be-
come apparent, Eq. (1) becomes an adequate vehicle
with which to express the one-to-one correspondence
between the ¥,* and the ¢,.

We shall follow the accepted practice of rendering
the continuous spectrum discrete by imposing periodic
boundary conditions with respect to a fundamental
volume V'=L? upon the eigenfunctions of H, so that
the uniform orthonormalization,

(¢b:¢a} = 0Obas (3)

may be employed for all the eigenvectors ¢,. When V is
very large we shall speak of the resulting spectrum as
“quasi-continuous.”

II. THE NORMALIZATION CONSTANTS

In order that normalization be properly taken into
account in contexts more general than simple scattering
theory, Eq. (1) must be modified by the insertion of an
appropriate normalization constant. For compactness
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of notation let us introduce the Green’s function?
GEH(E)=GT(E)t=(E—H=ie™!
=Gt (E)[14+H.,G=(E)]
= |:1‘|‘Gi (E)HJG():t (E) (4b)

=G (E)[1—H\G*(E) ™
=[1-GHE)H:T"'G*(E), (4c)

(4a)

where

Goi(E) =G0:F(E)T= (E—Ho:i:’ie)_l, (5)

and then write
Za%\!,a:!:: iieGi(Ea)d’ay (6)

where the Z, are the normalization constants and the
E, are the eigenvalues of H. Here (and from now on)
the limit e — O is to be understood.

In the case of quantized fields, as in bound-state
theory, the spectra of H and H, are not generally
identical. We shall therefore redefine H, and H; ac-
cording to the scheme?

Hy— H0+Za¢a>AEa<¢a7
H,— H,— Za¢a>AEa<¢m

where the AE, are the level shifis which may be com-
puted later in the course of solving the problem (if
desired). The AE, evidently play a role in the definition
of the one-to-one correspondence between the y,* and
the ¢q, for it must be assumed that AE,— 0 as g— 0.
It is to be observed that the switching off of the “per-
turbation” (H;— 0) is no longer a linear process, since
H, now involves not only g3C but also the AE, which
are complicated functions of g assumed to be analytic
at the origin.
With these modification one has

H‘pai: Ea\bai, H0¢a= Ea¢a; (8)
so that Eq. (6) may be rewritten in the form

Za%‘pai = Gi (Ea) [GU:!: (Ea) ]-l¢a
= [1+GO:{:(EG)R:£ (Ea)]¢a7 (9

™

where

R*(E)=R¥(E)t

=[G*(E) 'GH(E)H1=H:G*(E)[Go*(E) I (10a)
=H,+H,.G*(E)H, (10b)
=H\[1+GH(E)R*(E) ]

=[1+R*(E)Ge*(E) JH, (10c)
=H\[1-GHE)H, ' =[1-H\Go*(E) ]"'H,. (10d)

2 The Fourier transform of G*(E), namely
GE(t) = (2m) 1 S G (E)e " EUE,

satisfies the differential equation (29/9i—H)G*(#)=4(f) in the
limit e — 0.

31In relativistic field theories the customary redefinition of Ho
and H, is slightly different from this. Equation (7) amounts to a
renormalization of energy, which is not relativistically invariant.
The invariant mass renormalization, however, involves only a
trivial modification.
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Equation (9) now shows explicitly the correspondence
Yot — ¢o, Zo— 1, as the perturbation is switched off,
since R*(E) — 0 as H; — 0.4

The Z}, as has already been intimated, are projection
coefficients and hence have a simple physical signifi-
cance. To see this, take the scalar product of Eq. (6)
with ¢,* and impose the condition W.ty.t)=1,
obtaining

Za%‘_“ (‘pa:‘:, :’:ieGi(Ea)an)
= (:Fieﬁ(Ea)‘»&ai; ¢a) = (‘I’ai:(ﬁa)' (11)

The phases of the ¥+ will be assumed to be defined by
taking the Z,! to be positive real numbers. Then Z, is
the probability of finding the state ¢o in the state Y=, and
hence

(12)

The nondependence of the Z, on the = signs may be
inferred by taking the scalar product of Eq. (6) with
itself.

0<Z,<1.

III. ORTHOGONALITY

We have now to investigate the orthogonality of the
Yot. It will be convenient at this point to record three
identities satisfied by the operators R*(E):

R¥(Ey)—R*(E,)= (E,— Ey:2ie)R¥ (Ey)

XGo¥ (EBy)Go*(Ea)RE(E,), (13)

R#(Ey)— R*(E,)= (E,— Ey) R*(E,)
XGo*(Es)Go*(Ea)RE(E,), (14)
dR*(E)/d0E= — R*(E)[Go*(E) PR*(E). (15)

The first two identities follow from Egs. (10a, b) and
the third is obtained from the second by passing to the
limit By — E,.

Using Egs. (3), (9), and (13), one may writes

(Z vz a) ¥ (‘l/bi,‘pui)
= (¢, [14+RF (Ep)GoT (Ep) J[14+Go*(Es) R*(Ea) Jba)

1 1
=‘6ba+(_ A Jl R )
E,—Eyt+ie E,— Eyt2ie

X (¢5, [RF (Es) — R*(Eq) Joa)

0, Eb# Ea’
= (16)
0 | Spate ! (¢b, ImRian), Ey=E,,
where
Ri:ZwRiEa) (¢‘a><¢a- (17)

4If H possesses eigenstates (e.g., extra bound states) which
have no counterparts among the ¢,, then these states and their

corresponding eigenvalues are to be excluded from the present -

discussion. Also to be excluded are unstable eigenstates of H,,

since these have no counterparts among the eigenvectors of H.

In passing from Ho to H these latter states undergo a mathe-

matical as well as physical decay, and their renormalization con-

stants Z, vanish rigorously.

( 5;\4) Gell-Mann and M. L. Goldberger, Phys. Rev. 91, 398
1953).
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In simple scattering problems the operator H, is
chosen in such a way that H; refers to a scattering force
which is confined to a limited region of space. The vectors
¢, are usually taken to correspond to (1) plane waves,
(2) spherical harmonics of plane waves, or (3) Coulomb
wave functions if part of the scattering force is inverse-
square. The matrix elements (¢v,H1¢,), and hence
(¢s,R*¢,), are then of order V! in magnitude, owing to
the normalization condition Eq. (3). Gell-Msnn and
Goldberger® have argued that the limiting process
€¢— 0 must be accompanied by a simultaneous limiting
process V' — « of such a nature that (e¥V)™1— 0, and
hence that the term involving ImR* in Eq. (16)
vanishes, implying the orthonormality of the ¥,* with
Z,=1. As the argument given by these authors is
rather obscure we feel it advisable to restate it in a
different form. The matter is really quite simple.
With the imposition of the periodic boundary condi-
tions the level separation in the quasi-continuous
spectrum is of order L. In order that the imaginary
parts ==ie of the energy denominators of the Green’s
functions give the correct causal description of the
scattering process (i.e., be able to make the distinction
between retarded and advanced waves), e must be
much larger than the level spacing so that the summa-
tion over intermediate states will take on a fine-grained
aspect with respect to e and be representable as an
integral over a contour which passes definitely to one
side or the other of the energy pole. Therefore L~1/e— 0
and @ fortiori (eV)™1— 0.8

In cases in which the Z, are not simply equal to
unity Eq. (16) may be used to compute their values.
A problem evidently arises if the spectrum of H is
degenerate. It is necessary to show that the quantity
(¢v, ImR*¢,,) is diagonal in @ and b when Ey=E,, in
order to insure the orthogonality of the y,* within de-
generate subsets. It is useful to consider first the
situation as it occurs in simple bound-state (discrete
spectrum) theory. If we exclude the possibility of acci-
dental degeneracy, then the degeneracy in question
persists for all values of g, and in particular when the
perturbation is switched off. This type of “nonremov-
able” degeneracy has its origin in special symmetry
properties possessed by Hj, and it is well known that
the ¢, can then be chosen in such a way that (¢,¥.*) =0
if a#b with E,=FE,. The combination of this result
with Egs. (9) and (11) implies (¢o,REp o) = tie(Zo— 1)
for E,=E;, and hence the orthogonality of the y,* via
Eq. (16). The nonremovability of the degeneracy also
implies Z,=Z, for E,= E,.

The situation in field theory is quite similar. Again

6 A more physical argument involves the recognition that the
use of e is related to an adiabatic switching procedure in which
the perturbation H, is “turned on” for a length of time of order
€ L. If this mathematical trick is to provide an adequate substitute
for an actual physical process involving a wave packet which
moves unperturbed both before and after scattering, then 7!
must be much shorter than the length of time L/v taken by the

packet to traverse the fundamental volume, v being the packet
velocity.
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nonremovable degeneracy arises from the symmetry
properties of H;. Let us suppose that the ¢, represent
free-particle momentum states, the operator H, de-
scribing the noninteracting fields. The closest analogs
of the states of discrete-spectrum theory are the 1-
particle states and the vacuum state. For these states
the result (¢,REp,)==1¢(Z,—1)d, again holds. Here,
moreover, on account of the symmetries of H; and the
relativistic invariance of the theory, Z, depends not
just solely on the energy but solely on the particle in
question. As in discrete-spectrum theory the constants
Za4, and hence (¢»,R*¢p,) for these states, are inde-
pendent of the normalization volume V.

For many-particle states the operator R* may be

separated into two parts, one which is dependent on
and the other which is independent of V. We shall call
the latter the “singular part” and the former part the
“remainder,” writing

Rt=SingR*+RemR*, (18)

The structure of these parts is easily visualized in terms

of Feynman diagrams. RemR* corresponds to all those .

diagrams in which at least two real particles (as opposed
to virtual particles) interact. The contribution to R+
from such a diagram is of order V—"/2 where NV is the
number of irreducible vertex parts leading to external
real particles. Therefore RemR* makes no contribution
to the normalization of the y¥,*. The normalization is
completely determined by SingR#, whereas the physi-
cally observed scattering is completely described by
RemR#,

SingR* corresponds to the diagrams in which the
real particles involved (as well as the vacuum) undergo
self-energy interactions with virtual quanta but other-
wise suffer no change of state. One may therefore write
generally

Sing (¢v,¥a*) = Za*0va (19)
and
(¢w, SingR*p,) =F=1€(Zo— 1)dpq, (20)
it being here not even necessary to specify E,=F,.”
This completes the proof that

(‘»bb:hy\&ai) = 6ba-

IV. MISCELLANEOUS RELATIONS

It is useful to have alternative statements of the
facts expressed by Egs. (19) and (20). We first intro-
duce the convenient abbreviation

Fyo= (¢v,F o) (22)

for an arbitrary operator F, and then expand the Green’s
function of H in terms of the Y, *:

(¢b;¢0i) (‘)bci}d’a)
E—E.+ie

7If H possesses any nonrelativistic features, such as in the
problem where it describes a particle which is bound by a fixed
potential but which scatters incident radiation, then the specifica-
tion E,= E; must be retained. Moreover Z, will then generally
vary from one stable bound level to another.

21

Gba:l: (E) = Z c
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Taking the singular part of this equation one gets,
with Eq. (19),

SingGyo*(E) = (E— Eqz=1€) 7 Z 4pa. (24)
This implies
i€ SingGoat (Ea) = Z abpa, (25)
a result which could also be inferred from Eq. (6).
Using Egs. (4b) and (10a), one may write
R*(E)=[GH(E) 7'GH(E)[Go*(E) I
=[G (BT, (26)
and hence
Ryt (E)= (E— Eyie) (E— Ey=ie)
(qsb)'pci) (¢ci)¢a)
X2e (E—E.d1€)dpe.  (27)
E—E +ie

The singular part of this equation, with E=E,, leads
directly to Eq. (20). Differentiation of this equation
with respect to E gives

aRbai (E) _ [1 (Ea_ Ec) (Eb—Ef)]

oOFE (E—E Z1¢)?
X (¢b,¢ci) (\l’c:hﬂsa) — 0 (28)
and hence
Sing[dRy.E(E)/IE |E=Eo= (Z4—1)bpa, (29)

a result which will be needed later.

Equations (25) and (29) also hold in discrete-
spectrum theory provided the specification E,=E,; is
added. ‘
V. THE S-MATRIX

The elements of the S-matrix are defined by
(SF)pa= (&7 Wa®).
Using Egs. (9), (14), and (15), one may write
(ZvZ ) (SF)pa
= (¢, [1+R*(Ep)Go* (Ey) [ 14-Go* (Ea) R*(E4) J¢a)
=8pat (60, RE(Lp)Go® (E0) Go (Ea) R (Ea) o)

1

2
(s, [RE(Ep)+R:(E,
o [REE) R

(30)

4 (Ea— Ey) RE(Ey) Gt (Ey) Got (Eg) RE(E) Jobu)

1

(s, [RE(Ea)+R=(E)

E,—Ey+1
+ (Ey— Eo)RE(Ey) Gt (Ey) Go* (Ee) R*(E,) J¢a)
= f————— by + a a
BT e [REED+RH(E) I

(40, RE(B) Gt (E) G(E) RE(EL) b,
(Eb—Ea)2+e2<¢b (B CHEIGHEI R Ee)e)

—:)51,,,?:27”'5 (Ev—E,)

X{Roa=F3ie[dRyF(E)/AE E=R,}, (31)
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where the representation
(By==—
§(E)=—
w F2-é

(32)

for the delta function has been used. Only the singular
part of the term in dRyE(E)/dE contributes to the
S-matrix in the limit e— 0. Hence, use of Egs. (20)
and (29) and the formal identity § (Ey— Eq4)0pa= (1€) " 0bq
gives

(S s0= (ZoZo)"H[1TF 2 (2ieF 1ie) (Za—1) Tova
F2mid (Ey— Eo) RemRy.*}
= aba:{:imbaii (33)
where
Root= (ZsZ.)~* RemRy* (34)

and where boldface type is used to denote, for any
operator, the energy shell operation

Foo=2m8(Ey— Eo)Fpa. (35)

R=* is the remormalized transition operator which
describes physically observable scattering processes.
Owing to the orthonormality conditions (21) the .S-
matrix, as defined by Eq. (30), is unitary.8 ){* therefore
satisfies the probability conservation law

RERF=RTRE= L (RE-RT) (36)
or, since RF=R=,
RERE = R{ERE=F2 ImR+. 37

In discrete-spectrum theory R* has no nonsingular
part; hence R+=0, Y=y, -, and the S-matrix reduces
to the triviality S=1.

VI. THE PARTICLE PROPAGATION FUNCTIONS
AND THE RENORMALIZATION PROGRAM

The demonstration of the internal consistency of the
renormalization program in quantum field theory is
conveniently carried out in terms of irreducible dia-
grams, each of which is used as a replacement for an
infinite class of diagrams.? In the computations for a
given scattering process only irreducible diagrams need
be considered, provided the products of diagonal one-
particle matrix elements of the unperturbed Green’s
function G¢*(E) occurring in the expansion of Egq.
(10d) are replaced by corresponding products of
diagonal one-particle matrix elements of the perturbed
Green’s function G=(E):

| Gape®) |
ot (B) =% ————. (38)
¢ E—E tie
When ¢, is a one-particle state the only terms which
contribute to the above sum, other than c=a, are those
for which % involves two or more real particles with

8 For the proof of unitarity when bound states are present see

reference 5.
9 F. J. Dyson, Phys. Rev. 75, 1736 (1949).
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E.>E,. Expression (38) is then called the modified
propagation function of the particle in question. Its
structure may be displayed by writing it in the form

~Zs I (¢a:¢ci) lz
Gaad:(E) = { Zc ]
E—Eaiie Ec>Eq E—Ec:*:'ié

(39)

from which it is seen to have a behavior similar to Z,
times the unmodified propagation function Go..*(E) in
the neighborhood of E= E,. The renormalized propaga-
tion function is defined in such a way as to remove the
factor Z,: _

Got(E)=2,."G.* (E). (40)

The practical computation of the modified propaga-
tion functions is conveniently carried out in terms of
the self-energy functions. These functions are introduced
by separating the right-hand side of Eq. (4b) into
diagonal and off-diagonal parts:

Gt (E)
= __—_.‘[6ba+HlbaGaai (E) +Z cHlchcai (E)]
E— Eytie c#a
et B0t (B)Gun)]
= a > a aa ) 41
E— Eyt+ie ’ ’ ( )
where .
zbai(E) = Hlba+2 cHlbc R zcai(E)' (42)
c#a E—E +tie
Iteration of Eq. (42) gives
2yt (E)= (¢, Hi[1—1.Go*(E)H, ] ¢a),  (43)
where
laE 1_¢a><¢a- (44)

The diagonal one-particle elements =,,£(E) are the
self-energy functions, in terms of which one may write

1
E—E,—Z,%(E)=tie
=Goaa* (E)[1—2Zoa®(E)Goea® (E) I
Comparison of Eqs. (45a) and (39) allows one to infer!

Gaa® (E) = (45&)

(45b)

[Eaai (E) :'E =EFie=0, (46)
(024t (E)/dE]E =EiFice=—Fa 47
Zo= (1457 (48)

An evaluation of the diagrams corresponding to Eq.
(25) readily shows that the normalization constant Z,
associated with a many-particle state is simply the

10 Tf the redefinition (7) of Ho and H; had not been carried out

initially then one would have obtained, in the limit e— 0,
AEa= Zaai(Ea) = (¢a; H1[1 - laGOi (HOaa+AEa)Hl:I_1¢,,),
from which the level shifts can be computed.
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product of the normalization constants associated with
the individual particles in that state. Strictly speaking,
a vacuum normalization constant should also be in-
cluded, but since it is uniformly present in all states it
is uniformly ignored. In a typical boson-fermion two-
field theory in which the coupling is linear in the boson
field and bilinear in the fermion field, the fermion and
boson normalization constants are customarily called
Zs and Z; respectively.

Let us consider the contribution to the operator R+
from a given irreducible diagram. Suppose the numbers
of initial fermions and bosons for this diagram are F,
and B, respectively, and suppose the corresponding final
numbers are Fp and Bj. Then

Za"—‘ZzF“ZsB“, Zb=Z2FbZ3Bb, ZbZa=Z2FZ3B; (49)

where

F=F,t+Fy,, B=B,+Be. (50)

Let V be the number of vertices in the diagram. Then
the number of internal fermion lines is V—3%F (F must
be an even number), and the number of internal boson
lines is 3 (V' — B). Each internal fermion line contributes
a modified fermion propagation function G,, each in-
ternal boson line contributes a modified boson propaga-
tion function G;, and each vertex contributes a modified
vertex operator T' (sum of all proper vertex diagrams)
times the coupling constant g. Here we omit the =
signs and the energy dependence of these functions.
Ignoring also the order in which these quantities must
appear and the momentum-energy integrations in
which they are involved, we may write the total con-
tribution from the internal parts of the diagram
schematically as gVT' VG, # G5 (V—B),

The external lines do not contribute propagation
functions since, as may be seen from the expansion of
Eq. (10d), scattering diagrams must begin and end with
vertices. Instead, each external line contributes a
quantity

Gcci (E) ’:GOcci (E) ]—1 = [1 —Ecci (E)G()cci (E) ]—1: (5 1)

in which the dangling unmodified propagator has been
cancelled out by its inverse, and in which the subscript
¢ refers to the particle in question. When this quantity
is evaluated on the energy shell, with E=E,, it reduces
to Z.. Therefore each external line contributes simply a
normalization constant, the total external contribution
being Z.¥Zs. Combining these results with Egs. (34)
and (49), one gets for the renormalized transition opera-
tor the schematic expression

R=T Y (ZSZE) VTGV GH V=B (52)
where the summation is over all irreducible diagrams
and where T is a formal symbol replacing the weight
factor 278 (E,—E,) on the energy shell.

The well-known result that i can be expressed en-
tirely in terms of renormalized quantities® follows im-
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mediately. The renormalized particle propagation func-
tions are

Gz=Z2_IG2, G3=Z3_1G3. (53)

One may also include the vertex renormalization,
although it plays no role in state-vector normalization:

T=ZT (54)

where
Zy= (14507, (55)
§ry=g"[02:*(E)/0A Jp~pric, 4 =05 (56)

the latter quantity denoting a derivative of the fermion
self-energy function with respect to a constant external
boson field A, and vy denoting the unmodified vertex
operator.!! If now the renormalized coupling constant is
introduced, namely

g=Zl_1Z2Z3%g, (57)
one may write

R=T7Y g"TVGV G178, (58)

VII. THE REACTANCE OPERATOR

In simple scattering theory the reactance operator is
introduced by splitting up Eq. (10c) in the form

1
[I—Hl(P
E

— 4o

Jrsa
=H\[1Fmid(E— H)R*(E)] (59)
with the use of the representation
1/ (Exie)= ®(1/E)Fmid (E), (60)

the symbol @ denoting the *principal value’” when
appearing in an integral. Equation (59) yields

R:=K(1F%R%), (61)

where

K=Za[1—H1(P ]~1H1¢a><¢a. (62)

e 1190

The same procedure is valid in field theory provided
a certain amount of caution is exercised in performing
the energy-shell operation (35) which appears in Eq.
(61). In simple scattering theory the matrix elements of
the operator R* vary smoothly across the energy shell.
In field theory, on the other hand, the singular part of
this operator varies abruptly across the energy shell.
Multiplying the singular part by 276 (E,— E,) is equiva-
lent to multiplication by 2/¢, but not so for the smooth
nonsingular remainder. Since the quasi-continuous spec-

1L As is well known, the modified vertex operator itself may be
expressed as I'=vy-+g152,/64, where the derivative is now a
variational one with respect to an arbitrary external field. There-
fore the renormalized vertex operator reduces to v in the neighbor-
hood of E=E, and k=0, k being the momentum energy of the
associated boson line. In a gauge-invariant theory, or in a theory
in which' the vertex operators commute,? the differetiation in

Eq. (56) becomes equivalent to the energy differentiation in Eq.
(47) and Z1=2Z,. [J. C. Ward, Phys. Rev. 78, 182 (1950).]
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trum is fine-grained with respect to e there are many
states lying on the energy shell, and not just a single
state with E, exactly equal to E,. These closely packed
states may be replaced by a single state with E,=E,
only if 278 (Ey— E,) is replaced in RemR#* by a factor
much larger than 2/e. This factor is the formal T-
symbol of Egs. (52) and (58).12

Using Eq. (20), one may write in the case of field
theories

Roat=t1e(Za—1)8pa+RemRy0%, (63)
Ryot=42i(Z,—1)8s+RemRy,* (64)
and hence, from Eq. (61),
+1e(Z,—1)8a+RemRp =
=KyoZoF31 2. Ko RemR, .t (65)

The reactance operator is obtained by performing the
energy-shell operation on K. It will appear presently
that this operator has no singular part, and hence the
limit €— 0 may be taken at once in Eq. (65) with
consequent elimination of the first term on the left.
Multiplying the result by (Z,Z,)~% and performing the
energy shell operation, one gets the renormalized
Heitler integral equation

RE=QR(1FLRD), (66)
where
Qba’_“ Zb.—%zn,%Kba- (67)

A contrast between Egs. (34) and (67) is immediately
apparent. The reactance operator K may be analyzed
in terms of exactly the same diagrams as the transition
operator R*, as comparison of Egs. (10d) and (62)
clearly shows. The propagation functions, modified
vertex operators, and self-energy functions may all be
again introduced, the only difference being that the

12 The meaning of the 7T-symbol is expressed by the identity
2r=TAE, where AE is the level separation of the quasi-continuous
spectrum. For a single particle AE=9Ap=2wv/L, where Ap=2x/L
is the momentum interval and v is the velocity of the particle.
Therefore T may be regarded as the time L/v for the particle to
traverse the fundamental volume. (The units here are such that
#=1.) In the computation of cross sections the square of the
absolute value of the transition operator is needed. The square of
of the delta function is therefore encountered on the energy shell.
Division by T cancels one delta function and gives the transition
rate, while the remaining delta function has the effect of intro-
ducing a “density of final states.”
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imaginary parts -=7e are to be omitted and all integrals
evaluated in the sense of the principal value. And yet
the renormalization factors now appear with different
exponents.

The explanation of the apparent contradiction is
quite easy and has to do with the values to be assigned
to the external lines associated with the particles in
the initial state. These values are

Gcc (Ec) [GOCG(Ec) ]—1 = [1 _zcc (EC)GOcc(Ec) ]—1: (68)

the & signs being now omitted. Unlike the situation
in Eq. (51), the energy evaluation is here taken directly
at the pole of the modified propagation function rather
than immediately above or below it. When =+ signs
are inserted expression (68) has the value Z,. However,
when they are omitted it is to be interpreted as having
the value 1, because Z..(E.) vanishes owing to the
redefinition (7) of the unperturbed Hamiltonian. That
is to say, the iterated self-energy diagrams which ex-
pression (68) evaluates are to be regarded as making
no contribution since the particle self-energies (level
shifts) have been adjusted to zero. For the same reason,
the diagrams which contribute to the singular part of
R+ make no contribution to K.

The values to be assigned to the final particle lines,
however, are determined by the requirement of smooth-
ness for K across the energy shell, which demands an
evaluation of the form

lim Goo(B)[Gooo( B) I =Z.. (69)

The total external contribution in the present case is
therefore Z,F2Z3Bv=Z,. Combination of this result with
Eq. (67) leads once again to Eq. (52) with i now
replaced by R, and one sees that the renormalized
reactance operator, like the renormalized transition
operator, can be computed entirely in terms of re-
normalized quantities.
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