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states and the ground state where the shell model
behavior is most apparent and the single-particle orbits
best defined.

It is to be emphasized that the equivalent potential
which we have determined is constructed to give the
correct scattering of the neutron by the nucleus, i.e., to
predict correctly the asymptotic behavior of the wave
function. This does not imply that the actual wave
function for the system is also given correctly every-
where by this interaction. The actual strongly corre-
lated and highly mixed wave function is instead given
in terms of the wave function determined by the equiva-

ent uniform potential by an extremely complicated
transformation LEq. (3)g. Thus we expect that the
Weisskopf complex potential can be used to predict
only the asymptotic behavior of the scattering wave
function, any more detailed information being available
only if the transformation is explicitly constructed.
This situation is analogous to that which exists in the
shell model theory of the nucleus where again pre-
dictions of the detailed behavior of the nuclear ground
state can be made only if the departures of the nuclear
wave function from the shell model wave function due
to the strong particle-particle forces are determined.
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Using the Yukawa theory with cutoff, the two-nucleon interaction is calculated up to fourth order in the
coupling constant. The resulting potential at large distances ()10 " cm) is similar to the well-known

potential with no cutoff. At small distances, however, the tensor potential approaches zero, and the central
potential is strongly repulsive. The details are essentially determined by two parameters, the coupling
constant and cuto6. The Schrodinger equation for the two-nucleon problem at low energies is solved numeri-

cally, and values are obtained for the binding energy, the quadrupole moment, and the four n-P scattering
parameters. It is found that the triplet experimental values are reproduced quite well, and the singlet
parameters reasonably well by the same coupling constant and cutoff required to explain pion-nucleon
scattering and photoproduction.

I. INTRODUCTION

S INCE the time that Yukawa erst proposed to
explain nuclear forces as a manifestation of the

exchange of 6eld quanta by nucleons, numerous papers
have been published on the predicted properties of
nuclear systems due to this exchange of pions by
nucleons. ' ' To make any sort of progress, utilization
has usually been made of perturbation expansions in

the coupling constant as well as the so-called static
approximation in which nuclear recoil is almost com-

pletely neglected. It has been found that with a local

theory (no cutoff) the resulting two-nucleon potential

has a strong singularity at small distances, and that
this singularity is aggravated by including higher order

terms in the expansion. The Schrodinger equation for

a two nucleon system is not soluble with such a poten-

tial, and the tendency has been to replace the interaction

at small distances with a phenomenological, in6nite

*Submitted in partial fulfillment of the requirements for the
Ph.D. degree at the University of Illinois.

f Part of this work was done while the author held a General
Electric fellowship.

' M. Taketani et al. , Progr. Theoret. Phys. 7, 45 (1952).
'K. A. Brueckner and K. M. Watson, Phys. Rev. 92, 1023

(1953).'E. M. Henley and M. A. Ruderman, Phys. Rev. 92, 1036
(1953).

repulsive core. Thus, Brueckner and Watson' were able
to fit most of the low-energy e-p data, treating the
widths of the repulsive cores in the singlet and triplet
states as adjustable parameters. Similarly, Taketani'
utilizing the depth of the cores as an additional param-
eter, found that best agreement was obtained to the
low energy m-p data with in6nite repulsive cores.
Neglect of nucleon recoil has been justified by the
argument that one was interested primarily in low-
energy phenomena, where the nucleon velocity is small.
Attempts to include recoil terms, 2' have not led to
conclusive results.

Recently, Chew' has shown that reasonable pre-
dictions for photo-meson production, pion-nucleon scat-
tering etc. are obtained by the cut-oG form of the
Yukawa theory. There are two adjustable parameters
in this theory, the renormalized coupling constant, f',
and the cut-oG energy of virtual mesons, co . The pur-
pose of the present paper is to show that all of the low
energy e-p parameters (i.e., the binding energy, the
quadrupole moment as well as the four scattering
parameters) can be produced with reasonable accuracy
by the above theory with the same values for f' and u
as are required by pion-nucleon scattering and photo-
pl oductlon.

4 G. F. Chew, Phys. .Rev. 95, 1669 (1954).
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Since the interaction Hamiltonian of reference 4
assumes that the motion of the nucleons can be
neglected during the transit times of the pions, for
purposes of computing the potential, we consider a
physical situation in which two very slowly moving
nucleons approach each other and are scattered. (By
very "slowly" it is meant that the kinetic energy of
the nucleons is small compared to the average total

energy of an exchanged pion. ) In the standard way, we

separate out those diagrams of the transition matrix
which do not have two simultaneous bare nucleon lines
between two exchanged-meson lines. The sum of such
diagrams is then called the potential V. The justi6cation
for this procedure is that if we use this V in the
Schrodinger equation to solve the nucleon-nucleon
scattering problem, we obtain exactly all of the dia-
grams included in the original transition matrix. The
approximation considered here then, is that terms
involving M&k2/M where M is the meson energy and
k2/M is the nucleon energy, are consistently replaced
by co, while energy denominators, such as occur in the
solution of the two nucleon Schrodinger equation,
k2/M, are kept intact. Further, we utilize the potential
to calculate the deuteron properties on the assumption
that the mean velocity of the nucleons in the deuteron
is small.

II. DISCUSSION OF THE POTENTIAL

Using the above outlined technique, the calculation
of the potentials is straightforward. For the interaction
between pions and nucleons, we take4

second- and fourth-order potentials
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(r is the internucleon distance) which except for the
v(k) factors are identical to the corresponding terms of
formula (60) of reference 2. If p(r) is spherically sym-
metric, it follows from Eq. (2) that v(k) is also angle
independent. The angular integrations are then ele-
mentary but tedious and ultimately yield:
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where fp is the dimensionless, unrationalized, unre-
normalized coupling constant (k=c=1), p is the pion
mass, p(r) is the "source function, "with the property
J'p(r)dr= 1, e~, ~~ are the Pauli spin and isotopic spin
operators for the lit'th nucleon respectively, pk(r) are
the three real components of the pion 6eld and r~ is
the position vector of the Nth nucleon. It is useful to
introduce the function v(k) which is the Fourier trans-
form of p(r),
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where M is the maximum energy for which v(k) differs
appreciably from zero. Using (1) we obtain for the
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where f,=sin(k, r)/r; i=1, 2, the prime means differ-
entiation with respect to r, and S»——(3e' ra'r/r')
—e' e' as usual.

In the formulas (3) to (6),the unrenormalized coupling
constant, fo, does not appear; instead the renormalized
coupling constant, f, appears. This replacement, as is
well known, has the eGect of including many seemingly
higher-order terms in the expansion of the potential.
Thus, for example, if the coupling constant in the
second order potential, Eq. (5), were fo instead of f,
then this term would correspond to the exchange of a
single meson by two "bare" nucleons. If one modifies
this term to include also those diagrams in which
various numbers of mesons are emitted and reabsorbed
by the same nucleon while a single meson is exchanged,
then the sum of this series is equal to the one-meson
exchange term provided only that we replace fo by f
This in turn means that one may speak of a single
meson being exchanged between two physical nucleons,
i.e., nucleons which are modified by their associated
mesonic clouds. Similarly, in the case of two-meson
exchange, one can speak of the crossing of two mesons
between two physical nucleons. In this situation, how-

ever, one may not so simply state that the effect of
the nucleons not actually being bare is equivalent to
replacing fo by f. For there are the well-known multiple-
scattering corrections" which will not be included in
the potential by this method. Thus, use of the re-
normalized coupling constant in the potential enables
us to include many seemingly higher-order terms.
However, radiative corrections, which go at worst
like f, have been completely left out; this neglect is
further discussed below.

The effect which the factor v'(k) has on the behavior
of the above potentials is worthy of notice. To observe
the small-r dependence one may expand the integrands
of (5) and (6) in powers of r and keep only the first
term. It is easily shown that there are no singularities
in the potentials, that at small r the second- and fourth-
order central potentials are strongly repulsive in singlet
as well as in triplet even states, and that the second- and
fourth-order tensor potentials approach zero with r.
All the details in this region are completely determined

by ~(k) and f'. Further, it can be shown that for

sufficiently small r the behavior of the potentials, to a
good approximation, is given by a certain function of
the argument, k r, which means that a change in k is
equivalent to changing the scale of r in this region.
For large r, on the other hand, the potentials, (5) and
(6) coincide with the corresponding formulas of refer-
ence 2, showing that, as expected, e(k) has little effect
in this region.

To see the functional dependence of the potentials on
e(k) more clearly, let us examine (3) or (5) more closely
in the absence and presence of e(k). To be specilc, let us
concentrate on the central part of the force and in
order to be able to evaluate integrals analytically, let

which corresponds to a delta-function repulsion at the
origin and Yukawa attraction for r/0. If now, how-
ever, we use e(k) as given by (7), there results

1Ik„~'
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in which the first term on the right corresponds to the
delta function in Eq. (9) and the second term to the
Vukawa potential. In the cut-og theory, since co —6p,
(10) approaches the Vukawa potential for large
r(&1/p) but remains finite for r=0. Specifically in
the limit of small r, equation (10) becoines

and approaches plus infinity as (k /y) —+~, which is
identical to the result of (9). Also, it is clear from
Eq. (10) that if for r&0 one takes the limit as
(k /p)~~, then one obtains the usual result, namely,
(9). However, in our case, where k„ is finite, the delta-
function repulsion of (8) becomes spread out away
from the origin and gives a repulsive core of nonzero
width which is determined by the values of k and f'

In evaluating the potentials (5) and (6) one has sub-
stantial freedom in selecting the function, v(k). A basic
feature of the cut-o6 theory is that the precise functional
form of e(k) is irrelevant as far as predictions of the
theory are concerned; the only requirements on v(k)
being that it be close to unity for values of k less than
k and be electively zero for k greater than k . This
invariance of the theory does not mean, for example,
that the potentials themselves are independent of the
form of s(k) but only that physical quantities which
are predicted by these potentials are. The numerical
value of k was obtained by the comparison of the

us select
~(k)=k '/(k'+k ').

The central part of Eq. (3) in even states can be
written in general as
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In the no-cutoB theory, e'(k) =1 and (8) becomes



AWA THEORYYU KApOOTF NTIALT

terin a a. '
1terin data. ' Speci6cal y,o ion-nutheory t p

are oq' t grals of the approx'were in eg

~O NUCL FQ

off function&

) ( $2/24m ).
;th it theor since wlk is satlsfactoy

b isequalto
Th;s choice o

2 and the integ» .
ls (5)

~

becomes
Th e pot

integra ( . .
thin 1p/o o ' . h' choice of

hich is wit in .
with t » c

„2(y)d(k')'V

0

of (5) an .
haractenstscs

Evaluatip
t the follpwing c

the prig»&
89 brings pu

aches zero at

nd

f ' '
force approorder tensor o

t and has ™t max~mum

0

second-prd
ll. the way put, a

The fourth-

'
ttractive a

r p= p.6/IJ.

pf these is then a "
t 140 Mev near =

with y but

utoff, the erst o
. ttraction of abpu

a roaches e o '
an

as a square "p '
h second, &2 an t '

tenspr po
ut pne-

tential also app
-third a,s large an

Selecting ( ~

& d to be &

(p) selected order
d is only abou

11 attractive

integrals w
t functional fPim

as de ne
for &

he o . '
n, thusyieMing

As fpr the

ther han ' .
an. over-

1f now a d&&"'""
on v(u) th«ition

oftheopposi
b t 100 Mev ".. "f

btractlng'bihty o su

we imppse the

tensor fprc
l f e the ppssi y

l es the
orc

~

E (g) eav

~00

second-order .
re ulsion L q'

~'normal"

g(y)d($2) =km
0

the attractive P
/p )2. Fvaluation o "

h t although

~eeing "
by a factor o "

s—p.pg9, sho

and check t e
1 (b) " k

f "h
i the integran'"'""b'""- '

~ 4-, , ~

Th f

q

og
b

(5) cl

s not convenien h

-order attractive
t ntlals pf abokes evaluation

erentia e

ontribution
'

s

long tail ma es

hi her orders. i
ff tdecided to select a

cult. s a
Gaussian

ate the fourth-order

two ex rem
'

deci et mes it was deci e

P ~,
h -odod

(

substantially arger
-IO—

-20—

-50—b

-40—

-50—

-IO

-20

-50

W
CO

CO

l—
Z:
UJ

D
CL

-60—

-70—

-80—

-90—

& -40
(0

i= -50z
WI-
O

-60

-70

-80

.08

IO

.6i t .4 .5
-100 —

i

r {4.5l5 xlO crn)

tentials inus ou — central an tensor po elus fourth-order c
=6@,.

-p
n lar momen u

5 G. F. Cheer, Phys. Rev. 9,

-90

0.5 0.6 07O.s QA0.I a2 0.0
r{4.3I5x IO cm)

let otentials in evenlus four - eth-order sing e p n evenro. . Seco - p
xQgANQt:grA sta es



904 SOLOMON GARTENHAUS

TABLE X. Triplet parameters obtained with the potentials using
the indicated values of f' and co .

f~ co~(p) Pa (%) Q (10» cm2) vol (10» cm) ag (10» cm)

0.089 6.00
0.093 5.60
Experimental

6.80
7.00
2—8

2.90
3.08
2.74

1.75
1.81
1.70

5.42
5.47
5.39

ness of the tensor potential, however, leads one to feel
that higher-order corrections to the triplet potentials
will not be as important as those to the singlet.

The accuracy with which the second- and fourth-
order terms alone represent the potential is difFicult to
gauge. As of now, no attempts have been made to
derive the higher-order corrections to the potential
within the cut-oG theory. Indication from other con-
siderations makes the author feel that these corrections
will not radically change the potentials computed here.
Brueckner and Watson' have concluded as a result of
their studies that for r&0.6/p the second- and fourth-
order terms are good approximations to the potential,
in that multiple scattering corrections are unimportant
in this region, amounting to about 30% at maximum
and decreasing very rapidly with r. In the present case,
the maximum attraction of the triplet potential is very
near to r=0.6/p and thus the central potential com-
puted here should be a reasonable approximation. The
core of the singlet potential, on the other hand, occurs
at about r=0.5/p and thus may require some higher
order corrections in this region. In any event, a very
strong assumption made here is that higher-order
corrections will not remove the repulsive core.

6 M. H. Kalos and J. M. Blatt, Internal Report No. 50, Uni-
versity of Illinois, .Digital Computer Labor@t;ory, 1953 (unpub-
lished).

III. COMPARISON TO EXPERIMENT

The potentials (5) and (6) were evaluated numerically
for even angular momentum states using

w(k) =exp( —k'/2k„')

for co =5.6p, and 6p, . The deuteron characteristics and
the e-p scattering parameters were obtained using the
Blatt-Kalos routine on the Illinois electronic computer. '
The characteristics of this code are such that it will

multiply the given tensor force by a constant which is
determined by the condition that the potential. in
question shall give the exact value of the binding
energy. Subsequently, it utilizes the resulting potential
to compute the other physical properties of the low-

energy e-p system. Now in the present case, the value
of f' was adjusted in this fashion to give the exact
binding energy. This value of f' was then used in the
remainder of the computation.

The results for the triplet state are tabulated in
Table I for both values of ~ . The corresponding S
and D deuteron wave functions, N(r) and w(r) respec-
tively are plotted in Fig. 3. Remarkably good results

were obtained for ce = 6p, and f'=0.089. The agreement
for co =5.6p, although not as good as the other case,
still gives results which probably lie within errors due
to the approximations made in neglecting higher-order
terms (e.g. , the fs and higher terms are neglected). We
conclude thus, that all the triplet parameters of the n-p
system can be obtained, via the cut-oG meson theory,
provided only that higher-order corrections do not
appreciably change the qualitative features of the
potentials, which have been obtained here.

With the above values of te„and f', the singlet
parameters were ostensibly not in as good agreement
with experiment. The singlet potential, even though it
has about three times the depth of the triplet central po-
tential, does not have enough attraction with f'= 0.089,
to give the large singlet scattering length which is
observed. However, the conclusions of Brueckner and
%atson, ' that corrections to the potential due to
multiple scatterings are attractive and of the order of
30'Po near r =0.6/p tends to make the lack of agreement
appear not too unreasonable. Since for a value of
f'= 0.089, the maximum attraction in the singlet
potential occurs at about r=0.6/p, it seems plausible
to simulate some of these higher-order multiple scat-
tering eGects by an increase in the coupling constant.
Thus it is found that for co =6@, a value of f'=0.10
(this differs by 12%, from the value of f' required in
the triplet state) gives the correct singlet scattering
length and yields 2.54)(10 " cm for the value of the
singlet eGective range. Similarly, for co =5.6p, a value
of f'=0.11 was required to give the exact singlet
scattering length and yield 2.65)&10 " cm for the
effective range (see Table II). Thus, provided the
higher-order corrections to the singlet potential do not
appreciably change the sign and width of the core, it
appears hopeful that the cut-oG theory also predicts
correctly the singlet behavior of the e-p system.

Chew and Low, ' using an improved technique, have
shown that agreement with the low-energy pion-

l.2—

I.O

0.8

0.6

0.4

.0,2

0 0,2 04 050.8 IQ „ l2 14 I6 g 2.0
r (4.315 ~ IO cm)~

Fro. 3. The deuteron wave functions, normalized so that

(gs+w )dr =1,where N(r)/r and w(r)/r
0

correspond to the 5 and D states respectively.

r G. F. Chew and F. F. Low (to be published).
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1

phenomena is obtained by a coupling constant in the
neighborhood of 0.07—0.08 and a cut-off energy near 6p, .
These values are quite close to those used here to give
best agreement for the low-energy rs p-system. Thus,
except possibly for peculiarities which may appear in
higher orders, it seems that the low-energy ss-p sys-
tem can be predicted without recourse to adjustable
parameters.

The application of these potentials to problems at
higher energies has not yet been considered by the
present author. In making the calculation here, nucleon
kinetic energies have been consistently ignored relative
to total meson energies. How large the nucleon energies
may become before the calculation breaks down is a
question which is dificult to answer without further
work. Since the depth of the attractive part of the
triplet central force is of the order 15 Mev, it is expected
that the nucleon kinetic energies in the deuteron also
are of this magnitude. The agreement obtained for the
deuteron thus leads one to speculate that the potentials
may be reliable for nucleon energies beyond the range
of reliability of the efI'ective range theory. Indeed,
Fujii et al. have applied their potentials to ss-p seat-

s S. Fujii et ai., Progr. Theoret. Phys. 11, No. 1 (1954).

TABLE II. The singlet effective ranges obtained by adjusting f'
to give the exact singlet scattering length.

0.10
0.11

6
5.6

r0s (10 Ig Cm)

2.54
2.65

tering at 40 and 90 Mev and have concluded that the
characteristic features of the high-energy nucleon-
nucleon scattering are reproduced quite well. It seems
reasonable, therefore, that the potentials derived here
may also apply at these higher energies.
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The familiar problem of state-vector normalization and, in field theories, the related problem of charge
renormalization are shown to arise in a natural manner in the formal scattering theory introduced by I,ipp-
mann and Schwinger. The mathematical arguments necessary for dealing with these problems are developed
entirely within the framework of the formal theory and lead to the customary rules for the construction of
the renormalized S-matrix and reactance operator, provided mass renormalization is simultaneously carried
out and the one-to-one correspondence between perturbed and unperturbed eigenstates is set up in a
"natural" fashion.

I. INTRODUCTION

IPPMANN and Schwinger' have shown that the
~ stationary states which describe scattering proc-

esses for a given system may be represented formally by

P+= lim' E—XI&is

where II is the Hamiltonian operator of the system, e

is a positive infinitesimal, E is the energy of the
state in question, and the vector p represents a
plane wave of the same energy. The + sign refers to the

*This work was performed under the auspices of the U. S.
Atomic Energy Commission.' B.A. Lippmann and J. Schwinger, Phys. Rev. 79, 469 (1950).

states with outgoing or "retarded" scattered waves, and
the —sign to the incoming or "advanced" wave states.
That it

+ are indeed eigenvectors of H corresponding to
the eigenvalue E is immediately seen by multiplying
Eq. (1) on the left by Il H&ie and th—en passing to
the limit.

Although Eq. (1) was initially introduced in the
limited context of simple scattering theory, its use as a
method of constructing eigenvectors of an operator II
has a much wider range of validity. For example, II may
be a finite matrix, or an operator with discrete rather
than continuous eigenvalues. In a review article (to be
published) the author has used Eq. (1) as a starting
point for a discussion of bound-state perturbation
theory. It is the purpose of the present note, however,


