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Theory of Neutron Reactions with Nuclei at Low Energy*
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A theory of the interaction of low-energy neutrons with nuclei has been developed using methods pre-
viously applied to the study of the nuclear ground state. It is show that an average potential is predicted
by the theory which very closely resembles that used by Feshbach, Porter, and Weisskopf in their studies
of the neutron cross sections. The calculated parameters for scattering at a few Mev are a real depth of
41 Mev and an imaginary part somewhat less than 1 Mev. The theory also predicts the appearance of
characteristic narrow compound-state resonances in the cross section; these are the result of sharp Quc-
tuations in the real and imaginary part of the equivalent potential acting on a neutron which are the result
of appreciable coupling between the single-particle and compound-nucleus states. An estimate of the level
width is given for a simple class of compound-state levels and is of the order of typical widths observed
experimentally.

A comparison of these results is made with a theory of Wigner, Lane, and Thomas; the principal difference
is in the much smaller imaginary part of the potential determined by this theory.

I. INTRODUCTION

~'ESHBACH, Porter, and Weisskopf' have shown
that certain average cross sections for neutron-

nuclear reactions can" be represented by a model con-
sisting of a single neutron scattering on a complex
neutron scattering on a complex square well. It is the
primary aim of this paper to show how this model may
be derived and the complex potential calculated from
the Schrodinger equation for many nucleons in strong
interaction with each other. The secondary aim is to
examine the finer detail of the resonance structure which
will be seen if one does not average cross sections over
finite energy ranges.

The basis of the method is the construction of a
transformation operator which relates the independent
particle model of the nucleus to the actual nuclear
state. This operator has to be constructed so that not
only the stationary states of the nucleus are accurately
described but also so that in the model a single neutron
scatters on a potential well in the same way as it would
on the actual nucleus. It is found that the methods
developed for discussing the gross properties' ' and also
the detailed properties~' of the nuclear ground-state
wave function can be extended so as to apply to the
present problem in the energy range under discussion
(incident neutron 0 to 5 Mev). In Sec. II, an equivalent
one particle potential for the incident neutron is con-
structed and is found to be complex and strongly
energy dependent at certain energies. An approximation
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related to smoothing out this energy dependence enables
us to calculate this potential which is found to have a
real part of about 41 Mev and an imaginary part of
about 1 Mev which increases slowly with energy.

The method can be described also in terms of shell
model language which gives a useful interpretation of
the collision process and approximations though of
course it is a picture which must not be taken too
literally. If the neutron was bound it would appear to
move simply in the shell-model potential which is real
and can be calculated' 4 from two-body interactions
within the nuclear medium. An incident neutron above
zero energy sees a formally similar potential well,
however, there are two important differences: (1) the
incident wave when matched on to the single-particle
wave functions in the real well leads to a broad reso-
nance; (2) at these energies there are, in addition to
excited states of one independent particle in the well,
also excited states of the same energy of two (or more)
independent particle modes of motion. The potential
seen by the incident neutron contains an imaginary
part which is the result of coupling between the single
particle and two (or more) particle levels. These two
particle levels themselves are also broadened by similar
coupling. The imaginary part of the potential appears
in a term containing a sum over discrete states; if this
sum is replaced by an integration one no longer obtains
the strong eGects of the individual levels as the energy
is varied but rather obtains an average effective poten-
tial; it is this which corresponds to the imaginary term
in the model of Feshbach, Porter, and Weisskopf.

Certain simple aspects of the resonance 6ne structure
are examined in Sec. III using a diQ'erent approximation
for the potential in which the neutron scatters. We
consider a somewhat idealized case in that we suppose
that at neutron energies of two or three Mev, where the
single particle levels are very broad and overlap many
more complicated compound nucleus levels, we can fix
our attention on the sharp resonance resulting from a
particularly simple type of excitation. This is possible
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only if we assume that the overlap in energy of the
compound nucleus levels can be neglected; a conse-
quence is that broadening of the levels occurs only
because of transitions to the single-particle level. It is
found that if two particles are in excited states, there
is an imaginary part to the effective potential acting on
this state which arises from tranisitions to single-par-
ticle excited states. On the evarage the imaginary part
is of the order of 10 kev at excitations corresponding to
the incident neutron energies of a few Mev; it corre-
sponds to the width of a type of sharp "compound
state" resonance. It is also found that the real part of
the equivalent potential well seen by the neutron
changes rapidly in this narrow energy range. The Ruc-
tuation in the real potential is the same order of rnag-
nitude ( 2 Mev) as the width of the giant neutron
resonance. It is this Quctuation which is responsible for
the narrow resonance may give either a peak or a peak
followed by a sharp dip in the cross section as a
function of energy.

In Sec. IV, the results of Secs. II and III are sum-
Inarized and a comparison is made with a theory
recently developed by Wigner, Lane, and Thomas. '
Finally some concluding remarks are made in Sec. V.

IL EQUIVALENT SCATTERING POTENTIAL

A. Real Part of the Potential

We consider the matrix element for elastic scattering
of a neutron on a nucleus, The wave function of the
particles in the nucleus is antisymmetrized, and we will

also later introduce a device which takes account of the
indistinguishability of the incoming neutron and the
neutrons in the nucleus.

The equivalent potential for elastic scattering has
been derived by Francis and Watson, " neglecting
exchange sects and assuming knowledge of the nuclear
wave functions. Adopting their formula to the notation
used in references 2—8, this potential is

V,=P(+(A), t&;F&,+(A)),

where 4'(A) is the ground-state wave function of the
target nucleus (which contains A nucleons), tr; is the
two-body scattering matrix evaluated in the nuclear
medium, Il~; is an operator which allows for the eQects
of incoherent scattering in the nuclear medium.

The difhculty of using the formula (1) for V& lies in
the fact that the ground-state wave function %(A) has
a very complicated form, and further this formula does
not take account of the identity of the scattered neutron
with the other neutrons in the system so it is not di-
rectly applicable at the energies (0 to 5 Mev) which we
wish to consider. We must therefore modify the form
(1) of the potential to overcome these difhculties. This

' Lane, Thomas, and Wigner, Phys. Rev. 98, 693 (1955).
'0 N. C. Francis and K. M. Watson, Phys. Rev. 92, 291 (1953).

where

4(2+1)=FC (A+1),

1
F=1+—Q' I@F;g,

(2)

g Lmgi j
"The same method was used in reference 2 and a result nearly

identical with the following was obtained.

we shall do by making use of the extensive knowledge
of the nuclear ground-state wave function given us by
the results of references 2—8. We could in principle do
this by introducing a second transformation of the
wave function %(A) of Eq. (1); this method, however,
is inconvenient since the treatment of the A+1
nucleons is unsymmetrical and the effects of the
identity of the particles, for example, cannot easily be
taken into account. Consequently we shall use a method
closely related to that of references 2—6 which treats all
nucleons symmetrically. " This we do by solving not
Eq. (1) for the potential, but instead by considering
the problem of determining the potential acting on a
shell model particle in a stationary state with the same
energy as the energy of the actual problem. That is we
shall neglect the fact that we are actually dealing with
a scattering problem and consider instead a stationary
problem with boundary conditions such that the wave
functions vanish at the nuclear surface. This clearly is
a good approximation if in the actual scattering problem
the reQection coefficient at the nuclear surface is suf-
ficiently close to unity so that the nonstationary
character of the state due to Aux loss through the
nuclear surface can be treated as a perturbation. In
this approximation we have replaced the scattering
problem by a stationary problem which we can solve
using the technique developed by dealing with the
ground-state problem.

An additional advantage of this method is that it
allows us easily to take into account the identity of the
scattered particle with the nuclear particles since the
methods we have developed' treat all particles in an
equivalent way using the powerful and convenient
formalism of second quantization. Here as in other
papers we shall use the somewhat more compact and
intuitive language of particle description but keep in
mind that in actual quantitative evaluation, the quite
simple translation to the language of second quantiza-
tion must be made.

In this approximation we determine Vo by considering
the excited states of the nucleus containing A+1
nucleus. It has been shown in previous papers' —' that
these states can be related to a model of equal energy
which describes independent particle motion. The
nuclear wave function @(A+1) is given in terms of the
model wave function C (A+1) by the relation
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The operators here are labeled by the independent-
particle states of the model. The two-body operator t;;
is defined in terms of the two-body potential v;; by the
integral equation

k'= 2M*(E„+68Mev), (12)

where (1/M+1/o) '=M*—0.60M. Using this result,
we find

l
&ij =&ij+&ig jij ~ (4)

M* M*q
V, (k)= — (68Mev)+~ 1— ~E .

3f M)
(13)

The operator t;; is then separated into

3„.;=diagonal part of t;;,

Using M*/M=0. 60, which is an approximate value
valid at energies near the Fermi energy, we find

and
I;;=nondiagonal part of t;;. (6)

V= —41 Mev+0.40'„. (14)

The propagator t. ' is the reciprocal of

A+1 A

e=E pT;—

In these expressions a prime to the left of an operator
means that matrix elements to the state C (A+1) must
be omitted. The independent particle or model wave
function C(A+1) is a product of single-particle wave
functions which are eigenfunctions of the kinetic energy
operator satisfying boundary conditions appropriate to
the model. The energy of the system is in the first
approximation characteristic of this method:

A+1 A

E=P T+ g (8)

k'/2M+ V, (k) =E . (10)

In the energy range of interest, a good approximation
to the potential is

V, (k) = —68 Mev+ (1/2o)k'

It will be seen that the Eqs. (4) and (7) for t;j and e form
a coupled set for which a self-consistent solution has to
be sought. This has been done by one of us (K.A.B.)'
and leads to an energy-dependent potential V, (k) where
the wave number k specifies the state of the particle.
The higher approximations to this equivalent potential
involve higher order terms in the incoherent reaction
matrices I;; and can be disregarded' ' since they have
a very small effect on the energy.

Next we determine the potential energy of a particle
moving with such a wave number that the total energy
of the nucleus plus one neutron is equal to the energy of
the nucleus in its ground state together with a separated
neutron of energy E„. In the present approximation,
the energy of the excited nucleus of A+1 nucleons
differs from the ground-state energy by

E(A+1)=E(A)+k'/2M+ V, (k),

where k is the wave number of the particle moving in
the nucleus. Thus, to determine the wave number and
hence the potential, we have

Consequently the potential is slowly energy-dependent
decreasing in strength by a few percent as the neutron
energy is increased from 0 to 5 Mev. This is the
equivalent well depth experienced by a particle having
neutron mass, and determines the wave function which
has to be matched on to the incoming neutron wave.

B. Imaginary Part of the Potential

The real well depth 41 Mev has been calculated on
the assumption that the independent particle states
are stable. This assumption will not be valid if the
incident neutron has energy greater than zero. However,
it is reasonable that the variation of the real potential V1
with energy will be correctly given by Eq. (14) for low
neutron energies where as mentioned before the neutron
wave function inside the nucleus can still be approxi-
mately represented by that of a stationary state. The
main change will come from the appearance of an
imaginary part in the equivalent potential encountered
by the neutron. Physically this imaginary part of the
potential comes from the existence of states of the
compound (A+1) nucleus which are coupled to and
have a larger lifetime than the single-particle (positive
energy) states. Mathematically it comes from the
change in the equation for t1,. where the subscript 1
refers to the particle excited above zero energy. In
deriving the real part of the potential, we have not
fully taken into account the change from discrete states
to the continuum scattering states. The principal effect
is the appearance of excited states of the system with
the same energy as the initial state. Consequently the
singularity in the propagator can no longer be specified

by eliminating matrix elements to the ground state. We
must instead change the nature of the singularity by
introducing a small imaginary part to correspond to
the fact that the scattering wave function contains out-
going scattered waves. "This we do in the usual way by
replacing Eq. (4) for the reaction matrix by the modified
equation for the scattering operator

/ I
&ij =&ij+&iz &aj

e+iri
n B. Lippman and J. Schwinger, Phys. Rev. 79, 469 (1950).
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We see now that t; must have an imaginary part,
hence

must also have an imaginary part which in turn must
be inserted in the propagator e '. This means that the
self consistent solution which we are seeking is con-
structed to correspond to a set of states within the
nuclear volume which are moving in a complex poten-
tial.

We introduce a device here to allow us to treat the
scattering single-particle state in a manner symmetrical
with the compound-nucleus states. The stationary
single-particle state which would exist if the boundary
conditions appropriate to a stationary state were im-
posed at the nuclear surface is in fact considerably
broadened by the possibility of actual penetration of
the nuclear surface and particle loss. At low energies
the state is quite long-lived, however, since the reQection
factor at the surface is nearly unity; consequently it is
a good approximation to replace the eGects of particle
loss through the nuclear surface by the effects of a
uniform imaginary part to the potential. Thus we use
an approximate wave function for the single-particle
state inside the nucleus which corresponds to a poten-
tial with imaginary part

W=W+Wp, (17)

where 8' is the result of transitions to other compound
nucleus states and 8 & is adjusted to give the same
attenuation of the state that would result from surface
penetration. We shall use this approximation only in
the derivation of the imaginary part of the potential
associated with absorption processes and in actually
solving the scattering problem we will need to work
with a potential having onlyi W for its imaginary part.
In this approximation we can write for the potential
acting on particle i:

V„'=V;+iw;.

Both the real and imaginary parts of the potential will
in general depend on the state of the particle, par-
ticularly the imaginary part which will increase rapidly
with the excitation energy. The solution of Eq. (15) for
all of the relevant t's will determine the V,'s; conse-
quently a problem of self-consistency arises. Although
in determining the real part of the potential we have
solved the problem following a self-consistent procedure,
we shall work with less rigor in determining the imagi-
nary part of the potential. This is possible since the
states and energies are only slightly perturbed by the
transition processes and the imaginary part of the well
is very small. This we shall determine only approxi-
mately; the result will then be self-consistent in first
order. The precise approximations to be made will be
evident as we proceed.

The imaginary part of the potential due to absorption

for particle 1 is given by (writing the diagonal matrix
element explicitly)

W, =Im Q (Cp(A+1), tt,'Cp(A+1)), (19)

where by Im f }we mean the imaginary part of f }.
We will estimate this by replacing the repulsive core
potential V;; in the equation for t; by a regular poten-
tial" and work to second order in this potential. This
gives

W, = Im P P (C p(1,j), t t,C»(1,j))

w.=p (0 l. l)i) s

(&—K)'+WP
(21)

where Ez Tz+ Vz is the——real energy which determines
the positions of the energy levels of the compound
nucleus and

(01~1))= ()tlpl0) =(Cp(1,j),»,c~(1,j)). (22)

C. Evaluation of the Imaginary Part of
the Potential

We shall determine the value of 8" by two quite dif-
ferent methods, both of which give only an average
value and neglect fluctuation due to the discreteness
of the sum over states. We shall not attempt to give a
precise determination of 5' although such an evaluation
is in principle straightforward in the approximation of
Eq. (21).

We first evaluate the average value of 8' over an
energy interval A. Such an average is related to the
averaging process used, by Barschall et a/. " in their
analysis of the neutron scattering data. The average is

This we evaluate making use of several simplifying
approximations. We will assume that 5 is large enough
so that the number of states X with energies E~ in 6
always includes many levels, i.e.,

h»D, (24)
'3This approximation derives its validity from the fact that

for low momentum values the correct t; closely resemble the
scattering from a regular mell of correct depth and range.

'4 H. H. Barschall, Phys. Rev. 86, 431 (1952); Am. J. Phys. 22,
517 (1954); N. Nereson and S. Darden, Phys. Rev. 94, 1678
(1954);M. Walt and H. H. Barschall, Phys. Rev. 93, 1062 (1954).

X (8 T~ V~——i—w&)
—'(C~(1,j), t»Cp(1, j)), (20)

where we have made the matrix product explicit by
inserting the intermediate states Cq(1,y). Tq is the
kinetic energy in this state, Vz+swz is the complex
potential acting on this state. We next write this sum
in more compact form, combining the summations over
j andX,
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where D is the mean spacing of the levels Eq. We then
can approximate to the results of the integration of Eq.
(23) by

(25)W, &'&=s Px(kl vl0)'I'n(Ep, E),),
where

~ Ep+b, /2

r, (z„z,) =
7' 4 zp—ats (E E),)s—+Was

=1/~ if lap —z,
l

&-',~
(26)—0 if leap

—Eyl &-',A.

This function F~ is analogous to a spread-out delta
function; it is independent of the level widths H/'~ as
long as d))Wq which will be satisfied if

the excited states by plane waves of definite momenta.
This approximation is accurate for large nuclei as long
as we are not interested in precise details such as the
exact positions and widths of resonances, for example.
It is to be noted that this approximation is not equiva-
lent to assuming that the actual nuclear wave function
4' is a Fermi gas, 0' being related to the model wave
function C by the transformation operator F (Eq. 3).

We first evaluate (Ol v lX)A,
s in this representation.

For v we use a Yukawa well with Serber exchange
mixture. Introducing the momentum states explicitly,
we find

(2sVp& 1
1 2 ~ 1 2

0 ttv ) tt'+(ki —ki')'
D&S),.

Using this approximation to the integral, we have

(27)

~trr+&s &r'+trs' (31)
ttsy (ki+ki')'

W, &'&=s. P —
l (XlvlO) l'.

Zg In~ 6

Now making use of our assumption that many levels
X lie in 6, it is reasonable to replace (XlvlO)' by its
average value, giving us

The average over states ) is equivalent to averaging
over states of excitation Eq in 6 and also to averaging
over the angles of ki'. Making use of the fact that the
states which interest us are of low excitation so that
the vectors ki and ki' are both approximately equal to
kp in magnitude, the average gives

1 7r

W.&'& =s.(X l vl0)A, '—P' =—(X l vl0) A„', (29)
6 Z), In~ D

(2s Vpi ' 1
(Ol vl) )"=—

l

4 ttv ) tt'kv'
(32)

where 6/D is the number of levels in d, . Thus we have
a simple relationship between the level width, the
matrix elements for transitions between the states 0
and X, and the level spacing. Before evaluating this, we
shall give another way of estin1ating 8' .

We make another approximation suggested by the
result we have just derived. This is to make use of the
fact that W does not depend on the level widths or on
the value of E but rather on the density of levels. Con-
sequently, it is reasonable to estimate W by replacing
the discrete states X by continuum states and letting
A))R') approach zero. In this case we find the result
of ordinary perturbation theory'5

W &'&=s- dX(Xlvl0)'b(Ep —E),) (30)

where the integral over ) has replaced the discrete state
sum.

For simplicity we shall in evaluating the two values
of W given by Eqs. (29) and (30) use a simple repre-
sentation of the nuclear states, i.e., we shall represent
the model ground state by a degenerate Fermi gas and

"This approximation to Eq. (19) for the imaginary part of
the potential is formally similar to an approximation used by
Lane (unpublished). His method differs in that he replaces the
correct combination v(1/e)t of Eq. (4) by t(1/e)t instead of our re-
placement by v(1/e)v. He also supposes that the actual nuclear
wave function can be represented as a degenerate Fermi gas; we
regard this approximation as valid only in describing the model
wave function (see also the remarks at the beginning of Sec. III).

where we have dropped a small term using kv'/p, '»1.
Taking Vp ——0.252tt, v= (4/3)s-A/tts, kt ~1.8tt, and in-
serting the results in Eq. (29) for W, we find

W (1)=(200/A)')&68 Mev/D(kev). (33)

Thus, for a typical heavy nucleus (A=200) and for a
level spacing D=100 kev, this gives 8' =0.68 Mev. It
will be noted that the level spacing D will decrease with
energy so that the predicted imaginary potential 5'
will increase as the energy of the incident neutron
increases.

To evaluate the continuum approximation given by
Eq. (30) for the level width, we re-insert explicitly the
sums over the relevant momentum indicies and replace
the summations by integrals. The result

W ('~=
(2sVpq' t' t.

l
1

(2s.)' ~ tt ) " I tt'+ (ki —k, ')'

g (Er+E,.—grl —jv, ~)

tt'+ (kt+»')' (34)

This integration must be carried out in such a way that
the exclusion principle is not violated; the requirement
is that

lk, 'l &u„ lk l= ll,+k;—k, 'l ~f~.
In addition the integration over k; runs only over the
unexcited states of the core, i.e., over the Fermi gas.
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To remove the delta function on'momentum, we
make use of the reduced mass approximation' for the
energies

(36)E= Io'/2M*.

Consequently the integral over kt' becomes

kt'dkt'
~dkg'8(Er+E; Et' E— ) =—M*)

[kt+k[
where we have used

8 kt's (kr+k; —kr')'

8 cosHy 8 cosl9y 23f

(37)

(2orVoq ' 1 kpsM* t dx,dfi'dxt'

fi ) (2a)' p4 ~
[ kt+k

/

(40)

where p; is the cosine of the angle between kt and k;.
We have simpli6ed the result by taking terms in the
square of the potential which are large when the
approximations k~ —kt' and kr ——kt' are made, these
being the values of kt which give the principal con-
tribution for transitions near the Fermi momentum.
We also correct for our neglect of the exclusion prin-
ciple by multiplying by a factor of ~3 which corrects for
the apriori probability for interactions in even states
to occur. The restrictions on the integration now are that

xg' &0, xr+x;—xr') 0, (41)

where we have made use of the energy conservation
condition in simplifying the second of these. We shall
finally make another approximation in relaxing the
conditions of energy conservation on the integration.
These have only the eGect of somewhat decreasing the
range of integration so that we shall in neglecting them
overestimate the integral. Estimates of the error made
in this approximation indicate that it is rather small.
Using these restrictions, we find

3 f'Voq ' ks'M*
IT' tsl =

Sor&pl p' ~o

(&r &i pl
—

. dp
X dx&'

t (2kp' —2k''fi) &

3 (Vo) s(4)'M*xt'
s~l f ) Ef, ) (42)

= (kt+k; I
~t'/M*,

where 8~' is the angle between kt+k, and kt'.
To evaluate the integral we shall use the fact that

the restrictions due to the exclusion principle severely
limit the range of interaction, and make an expansion
valid for k» near kg. That is, we let

k,=kp+x, k, '=kg'+x', k;=kp"—x;, (39)

and keep only terms linear in the x's. The integral then
becomes

This we bring to final form by using the approximation

x=P 7i~—~(&to &s—s)/27os = (Et—Es)M*/Er. (43)

The result is
3 ( V,~ qM*~ ~E,-E,~

s~(P) 4@) E fi ) (44)

III. RESONANCE FINE STRUCTURE

In the previous section, we have been primarily con-
cerned with an approximation appropriate to deter-
mining the average effective potential for the scattering
of a neutron on a nucleus. The average was dined over
an energy range which was required to contain many
two-particle excited states for the equivalent shell-
model problem. It is to be emphasized that although
these shell-model states are used to dehne corresponding
nuclear states and are used also in computation of the
average potentials, the method does not assume weak
interactions between nucleons. The apparent paradox
is explained by considering the complicated relation
between the actual nuclear wave function and the
model wave function Lsee for example Eqs. (2) and
(3)7. It will be noted that the transformation operator
which changes a shell model state into a nuclear state
introduces strong correlations into the nuclear wave
function which correspond to strong forces between
nucleons. The great value of the shell model lies in its
use in determining observables which'do not depend
strongly on short-distance correlations between nu-
cleons, and it is in this coranotation that we have used
it in the previous section.

In the present section we shall investigate not the
average equivalent potential acting on the neutron over

"The result obtained by Lane (see reference 15) is larger
than this, primarily due to the appearance of (3f*/3E)o~r' jn our
formula LEq. (45)g. This is a consequence of the strong momentum
dependence of the self-consistent potential predicted by our
methods. 4

This is an overestimate of the original integral since
both approximations made have increased the result.
8;&sl shows a quadratic dependence on the excitation
energy measured relative to the energy Ep of the
particle in the highest Fermi level. The magnitude
predicted is

(M*) ' (Et Er ) '—
&M) 4 S4 )

where E~ and Ep are measured in Mev. Thus, at excita-
tions of 10 Mev corresponding to scattering states of
low energy, W, is a few tenths of a Mev (taking M"/M

0.6). This agrees with the previous estimate; we
conclude that the imaginary part of the potential for a
single particle is roughly one Mev and probably
somewhat less. '6 However, it should be noted that there
will in addition be (smaller) contributions from more
complicated forms of compound states which will tend
to increase the imaginary part of the mean potential
which has been estimated here.
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a fairly wide energy interval, but we will consider
instead the detailed behavior of the equivalent poten-
tial in the neighborhood of a two-particle excited state
of the nuclear model. It is clear that such an excited
state will correspond to a much more complicated
compound state of the system, target nucleus plus
neutron, and the fluctuation in the equivalent potential
which we will derive will correspond to some compli-
cated change with energy of the compound nuclear
state. There are two aspects of the problem; the first
we shall consider is the level width of the two-particle
excited states, and the second is the manner in which
the resonances arise in terms of the scattering of a
neutron on the equivalent potential,

A. Comyound Nucleus Level Widths

In Sec. II, we have seen that there are terms in the
equivalent potential which result from the incoming
neutron interacting with a single shell-model particle
in the target nucleus and forming a two-particle excited
state. We will examine the broadening of these two-
particle levels which arises because they are ener-
getically capable of decaying by the inverse process.
This process can be represented as a transition to a
single-particle excited state of the nucleus followed by
a decay of this state through absorption to other com-
pound states or through penetration of the nuclear
surface. In this evaluation we will neglect direct transi-
tions to nearby two- and many-particle excited states,
assuming that these levels in contrast to the broad
single-particle levels do not overlap appreciably with
the two-particle level we are considering.

To evaluate the broadening of the two-particle level,
we use a generalization of the result for the imaginary
part of the potential given in Eq. (21), i.e.,

where ), is the excited two-particle state and the sum
over )' is over all other excited states of the system.
We have in Eq. (46) taken the energy E to be the
energy E), . which determines the position of the level.
%e make use of the approximation just described which
assumes that all of the level broadening is due to transi-
tions to the single-particle excited state. Thus in the
sum over ) ' we include only the state "0".Furthermore
we write for this state Tq +Vq =E~ and W&, ——W. The
result is

where hk is the momentum transfer and AE is the
energy diGerence. Taking the nuclear volume

~= (4/3) n.A/p'

and the Yukawa well strength Vp=0.25@,, this expres-
sion becomes

(200~ ' 1
W&=0.070 Mev~

EA) W(Mev)

X (49)
(1+6k'/p')' [1+(AE/W)'g

For a typical case, with good energy and momentum
overlap (hk AE 0), if one takes A=200 and W=3
Mev, this gives 8'~=23 kev.

There obviously can be great Quctuations in the
widths of these two-particle levels, particularly as a
result of the great possible variations in Dk, the mo-
mentum transfer. Since the momentum in a low
excited state is quite large (k kp 1.8p), (Ak'/p') can
range from zero to about four, leading to variations in
width from 23 kev to about 1 kev. In spite of the
roughness of our approximations, it is apparent that
level broadening of these two-particle excited states of
the model (which correspond to excited compound
states of the nucleus) is comparable with the broadening
of the detailed resonances which are observed in
neutron scattering at energies of one or two Mev. '

In addition to these two-particle excited states,
there will be more complicated excited states cor-
responding to three or more particles not in the
lowest unoccupied levels. For the initial single-particle
state to couple to a state with three particles excited,
the incoherent scattering operator I;; [Eq. (6)j will
have to act twice on successive pairs of particles to
bring about the necessary changes in excitation. This
more indirect coupling will tend to make the levels nar-
rower than the simple two-particle excited states. In
order to investigate them in the present formalism, it is
necessary to use the more exact form for the equivalent
potential given by

(50)

To see explicitly how a resonance associated with a
three-particle excited state can arise, consider a typical
term of third order in the incoherent scattering matrices
I;;.This is

W, =( i.io)
(K—»)'+ W'

(4I)
(51)p (

C'0 I,, I g Il,po I—-
e e i

To estimate (X
~
m~0), we use the expression for v used

before [Eq. (31)$ and And

(2s.Vp) ' 1 1 1
W, =i (48)

0 pm ) p'W (1+6k'/p, ')' [1+(AE/W)')

'7 It should be emphasized that the determination of resonance
widths which we have made here is valid only when the single-
particle levels are suKciently broad to overlap in energy the
compound nucleus levels. This condition is not well satisfied at
low energies where all levels become very narrow as the metastable
states of the bound system are approached. This restriction is
evident in Eq. (49) since if AB)&IV as is the case at very low
energy, the level widths become very small.
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To evaluate a typical matrix element, let the operator
act on an initial system with particles a,b in the ground
state and particle c in the single-particle excited state.
Under the action of the incoherent operators, the fol-
lowing transitions can occur in succession:

ab (c) —+ a'b'(c),

a'(b')c ~ a(b')c',

(a)b'c' ~ (a)bc,

(52)

where we write explicitly the matrix elements of e—'.
The three-particle excited state reached in this process
are a', b', c and a, b', c'; if either of these states has the
same energy as the initial state, then the matrix element
of Kq. (53) will be markedly increased and a fluctuation
in the potential strength will occur. This is of course a
consequence of transitions occurring between the single-
particle and the three-particle states. These terms are
expected to be considerable smaller than those resulting
from simpler types of excitation since they are of higher
order in the interaction operators t,; or I;;. We shall

not proceed farther in considering these more com-
plicated excitations.

Before considering the way in which the resonances
arise there is one further point to be noted about the
width of the two particle resonances. According to the
formula of Eq. (49), the width Wz depends on the
energy of the levels relative to the single-particle levels
in a simple way, namely

Wb [1+(DE/W)'j '. (54)

This dependence will be considerably masked by the
strong fluctuations in the matrix elements of v and also

by the fact that the experiments do not serve to dis-

tinguish whether a particular resonance corresponds to
a two- or three- (or more-) particle excitation.

B. Resonances

In order to show how it is that resonances in the
scattering cross section occur at energies which cor-
respond to the two-particle excited states we consider

the behavior of the equivalent potential near these
energies. In the approximation of Eqs. (8) the equiva-

lent potential is

V.(1)=P(C„t,P,) =P (C„v,P.)

+Z (C'P, v&,4b) (C b, ti,4P) . (55)
E—E),—i8'),

where we have indicated the particle unaGected in a
transition by parentheses. For such a possible series of
transitions, the contribution is

Ibcb'c' (,Eb+Ec Eb' Ec')
Xlcccc(E, c+Eb Ec—Eb—) 'I. b,.b) (53)

We wish to exhibit the fluctuation in V, (1) which
occurs for energies near the energy of a particular two-
particle excited state C)„ thus we break the expression
for V, (1) up into two terms:

V.(1)= V.'(1)+(+.. .+ ) . (C,t Po) (56)
E—Eg—iW),

We can now expect that if E is close to E~ the term
V,'(1) will be slowly varying, partly because it is
mainly determined by contributions from far off states
and partly because the rapidly varying term depending
on the state C) has been omitted. The remaining term
will be rapidly varying and we will consider its variation
by approximating v and t with a Yukawa well. This
gives a term:

AV. (1)= (Oiviz)'
E—Eg—i Wg

(57)

It is clear that the real and imaginary parts of this part
of the equivalent potential will vary rapidly as E is
varied near E&. The variation can be estimated by using
the relation of Eq. (47) for the width of a level X. Sub-
stituting the potential matrix element (X~ v~0)' given

by this equation into Eq. (57) we obtain

8'), E Eb+i Wb-
~V.(1)= [(Eb—Ei)'+W'j (58)

(E Eb)'+W), '—

For Eb near Ei so that (Eb—Ei) (W, this simplifies to

E Eb+iWb—
0 V, (1)—WWb

(E—Eb)'+Wb'
(59)

We see that both the real and imaginary parts of AU,
change by amounts of order 8', 5' being the width of
the single-particle level (absorption plus surface pene-
tration). Thus W is the width of the giant resonance
and is of order 3 Mev'. The sharp variation in U, occurs
over energy interval determined by W'z which we have
shown in the first part of this section to be of the order
of tens of kev.

A variation in the real part of the equivalent potential
U, of the order of 3 Mev is of course quite sufhcient to
lead to a pronounced resonance in the scattering cross
section, particularly if the energy E is separated from
the giant (single particle) resonance by an energy less
than the variation. Although it is rather an over-
simplification to regard this change in real well depth
as equivalent to a change in the incident energy, this
comparison is certainly adequate to show that either
a true resonance or a resonance followed by a sharp dip
in the cross section can arise from a fluctuation in U, of
the order of 3 Mev.
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(Wi)A„W W

D (E—Ei)'+ W'
(60)

where 8' is that part of the single-particle level width
due to absorption, 8" is the total single-particle level
width, and E& is the energy of the single-particle state.
This result shows similarity to a result used by Wigner
et ul. ,

'
(61)(&,'),„(D=S(E),

where S(E) is a "strength function" which is assumed
to have a dependence on energy similar to Eq. (60).
Consequently, both in this work and in %igner's, the
average compound-state level width is governed by its
proximity to the single-particle state. It is to be noted,
however, that very great Quctuations of the widths of
individual levels are to be expected due to the range of
variation of the matrix elements of the operator con-
necting the single particle and compound nucleus states.
In addition, on our work the strength function S(E)
does not play a dominant role in the determination of
the scattering. We instead transfer our emphasis to the
determination of an equivalent uniform and constant
potential which will automatically lead to the giant
resonances.

Another departure of our results from those of Wigner
et a/. , is in the determination of the real and imaginary
part of the single particle equivalent potential. The
most important qualitative departure is in the imagi-
nary part which in our formalism is given by Eq. (21),
repeated here for convenience,

w.=1m' E(ol» l~) . P l»~lo) (62)
E—Eg—i S'y

IV. DISCUSSION AND COMPARISON WITH THE
THEORY OF WIGNER, LANE, AND THOMAS

The results we have obtained can be described quali-
tatively in the following way: the average scattering of
a neutron by a nucleus can be represented by the scat-
tering by a complex well, the real part being given by
Eq. (14) and the imaginary part by Eqs. (33) and (45).
Such an interaction leads to giant resonances in the
cross section at the position of the independent-particle
states; the general behavior of the cross section is due
almost entirely to the real part of the potential, the
imaginary part giving only a slight broadening of the
resonances and a general smoothing of the cross section.
Consequently, the appearance of the giant resonances
is a manifestation primarily of the representation of
the neutron-nucleus interaction by a uniform-potential-
well small imaginary part.

It is possible to derive an interesting relationship
between the average level width of the compound
nucleus and the parameters of the single-particle levels.
Combining Eqs. (29) and (47) we find

This formula, as we have shown, predicts correctly the
approximate magnitude of the average imaginary well
strength. It is possible to show that Wigner's result'

W,'= Q, (0
I

v P I
0) (63)

corresponds to a certain approximation to Eq. (62).
Suppose that it is assumed that S"q is constant and
equal to W, i.e., that the imaginary part of the poten-
tial is the same for all states. Further suppose that the
important contributions to the sum over X come from
such states that IE—E&, l((Wq. In this approximation

(64)

or

w.s= P 2 (ol.» ll ) (l~ I.» I o) =P(o I.,P Io), (65)

which is Wigner s result. This approximation, however,
is not a good representation of the summation of Eq.
(62) since the widths Wq are not constant and, more
important, the summation over X includes states very
different in energy from E so that, over most of the
sum,

I
Ei, E

I
»W&—,. Consequently, a different approxi-

mation such as we have used in Sec. II must be used
and as shown there gives a much smaller value for 8',
than Eq. (65).

V. CONCLUSIONS

We have applied to the neutron reaction problem
methods' ' which are based on a detailed study of the
problem of many nucleons in strong interaction. These
methods have in other applications given detailed and
quantitative insight into many aspects of the ground
and low excited states of nuclei. In extending them to
the study of the neutron reactions at low energy, we
have shown that the "cloudy crystal ball" model of
Weisskopf et al. ,' appears in a natural way and that the
predicted parameters 'of the interaction agree closely
with those determined empirically. "The methods also
show the origin of the sharp compound-nucleus reson-
ances as a manifestation of coupling between the single-
particle states and the two- (or more-) particle excited
states of the compound nucleus.

It is apparent from these results that the simplicities
of nuclear structure which are evidenced in the shell
model also persist strongly in the behavior of the
nucleus in low-energy scattering. The very small
imaginary part of the equivalent potential acting on a
particle in a scattering state at low energy rejects the
close relationship which exists between the low excited

' We have not inserted the effects of the exclusion principle
explicitly; these automatically included if, as we have remarked
in the introduction, we interpret the v s as appropriately second
quantized operators.' The calculated imaginary part of the potential is somewhat
smaller than that determined in the empirical analysis; the dis-
crepancy is perhaps due to our omission of the effects of transi-
tions to more complicated (than two-particle) states of the
compound nucleus.
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states and the ground state where the shell model
behavior is most apparent and the single-particle orbits
best defined.

It is to be emphasized that the equivalent potential
which we have determined is constructed to give the
correct scattering of the neutron by the nucleus, i.e., to
predict correctly the asymptotic behavior of the wave
function. This does not imply that the actual wave
function for the system is also given correctly every-
where by this interaction. The actual strongly corre-
lated and highly mixed wave function is instead given
in terms of the wave function determined by the equiva-

ent uniform potential by an extremely complicated
transformation LEq. (3)g. Thus we expect that the
Weisskopf complex potential can be used to predict
only the asymptotic behavior of the scattering wave
function, any more detailed information being available
only if the transformation is explicitly constructed.
This situation is analogous to that which exists in the
shell model theory of the nucleus where again pre-
dictions of the detailed behavior of the nuclear ground
state can be made only if the departures of the nuclear
wave function from the shell model wave function due
to the strong particle-particle forces are determined.
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Two-Nucleon Potential from the Cut-Off Yukawa Theory*
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Using the Yukawa theory with cutoff, the two-nucleon interaction is calculated up to fourth order in the
coupling constant. The resulting potential at large distances ()10 " cm) is similar to the well-known

potential with no cutoff. At small distances, however, the tensor potential approaches zero, and the central
potential is strongly repulsive. The details are essentially determined by two parameters, the coupling
constant and cuto6. The Schrodinger equation for the two-nucleon problem at low energies is solved numeri-

cally, and values are obtained for the binding energy, the quadrupole moment, and the four n-P scattering
parameters. It is found that the triplet experimental values are reproduced quite well, and the singlet
parameters reasonably well by the same coupling constant and cutoff required to explain pion-nucleon
scattering and photoproduction.

I. INTRODUCTION

S INCE the time that Yukawa erst proposed to
explain nuclear forces as a manifestation of the

exchange of 6eld quanta by nucleons, numerous papers
have been published on the predicted properties of
nuclear systems due to this exchange of pions by
nucleons. ' ' To make any sort of progress, utilization
has usually been made of perturbation expansions in

the coupling constant as well as the so-called static
approximation in which nuclear recoil is almost com-

pletely neglected. It has been found that with a local

theory (no cutoff) the resulting two-nucleon potential

has a strong singularity at small distances, and that
this singularity is aggravated by including higher order

terms in the expansion. The Schrodinger equation for

a two nucleon system is not soluble with such a poten-

tial, and the tendency has been to replace the interaction

at small distances with a phenomenological, in6nite
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Ph.D. degree at the University of Illinois.

f Part of this work was done while the author held a General
Electric fellowship.
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repulsive core. Thus, Brueckner and Watson' were able
to fit most of the low-energy e-p data, treating the
widths of the repulsive cores in the singlet and triplet
states as adjustable parameters. Similarly, Taketani'
utilizing the depth of the cores as an additional param-
eter, found that best agreement was obtained to the
low energy m-p data with in6nite repulsive cores.
Neglect of nucleon recoil has been justified by the
argument that one was interested primarily in low-
energy phenomena, where the nucleon velocity is small.
Attempts to include recoil terms, 2' have not led to
conclusive results.

Recently, Chew' has shown that reasonable pre-
dictions for photo-meson production, pion-nucleon scat-
tering etc. are obtained by the cut-oG form of the
Yukawa theory. There are two adjustable parameters
in this theory, the renormalized coupling constant, f',
and the cut-oG energy of virtual mesons, co . The pur-
pose of the present paper is to show that all of the low
energy e-p parameters (i.e., the binding energy, the
quadrupole moment as well as the four scattering
parameters) can be produced with reasonable accuracy
by the above theory with the same values for f' and u
as are required by pion-nucleon scattering and photo-
pl oductlon.

4 G. F. Chew, Phys. .Rev. 95, 1669 (1954).


