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where p is the reduced mass of the meson, n the 6ne
structure constant, Z the atomic number, and 'n the

. principal quantum number.
The solution for the finite nuclear radius (nonpoint

source) is obtained by a first-order perturbation calcu-
lation using the potential. "

V (r) = —(Ze'/R) (ss —-'r'/R') for r(g
Ze'/r- ior r&R,

where 8=1.2X10 "2& cm (nuclear radius).
It suSces for low-Z materials to calculate the per-

turbation of the 1s level. The higher levels e& 2, except
in the heaviest elements, satisfy the point nucleus solu-

tions. The fractional energy shift due to the perturba-
tion is"

AE/Ei, —-' Z(——R/ap)'
2' See reference 6, footnote on p. 173.
N'This result is obtained also by L. N. Cooper and E. M.

Henley, Phys. Rev. 92, 801 (1953), their Eq. (11).

TAnr. E IV. ts-mesonic atoms —lowest energy levels (in Mev).

Z 1sg 2pk 2py 2sy 2paa —2sg Computed from

6 —0.1018 —0.0254-0.1019 —0.0254—0.1015

8 —0.1823 —0.0456-0.1824 -0.0456—0.1807

(2pg -12 kev)

(2pg —47 kev)

0.0764
0,0765
0.0761

0.1367
0.1368
0.1351

Schrodinger
Dirac
Perturbation of

Dirac solution

Schrodinger
D li ac
Perturbation of

Dirac solution

where up=5'/tie =2.52&(10 cm (radius of the first
Bohr orbit of the mesonic hydrogen atom).

The E and I. shell energies obtained from the point
nucleus solutions of the Schrodinger and the Dirac"
wave equations are shown in Table IV. The perturba-
tion correction has been applied to the is level.
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In decay processes of the types: hyperon —+nucleon+pion; or E-meson~pion+pion, the most general
distribution function in g—the angle between the decay plane normal and a reference direction N normal to
the line of flight of the unstable particle —has the form of a finite Fourier series. The degree of the highest,
harmonic is simply related to the spin of the unstable particle. The coe%cients in the series depend on the
state of polarization of the spin with respect to the reference direction N. It is possible however to set upper
limits on the coeKcients; this may prove useful in any attempt to analyze angular correlation data, partic-
ularly in the case of hyperon decay. The upper limits for various low spin values are computed, and other
consequences of the angular momentum and parity conservation laws are discussed.

I. INTRODUCTION

A NGULAR correlation eGects in V-particle decay
have been investigated recently by a number of

workers, ' ' in an attempt to learn something about the
spins of the new unstable particles. For reasons of parity
and angular momentum conservation, a particle of
spin zero or spin one-half must decay isotropically in
its rest frame. In the case of particles which undergo
two-body decay, this means that the distribution in

' Ballam, Hodson, Martin, Rau, Reynolds, and Treiman, Phys.
Rev. 97, 245 (1955); see also Proceedings of the Fifth Annual
Rochester Conference on IIigh-energy Physics (Interscience
Publishers, Inc. , New York, 1955).

2 Report by C. D. Anderson, Proceedings of the Fifth Annlal
Rochester Conference on High Energy Physics (Inte-rscience
Publishers, Inc. , New York, 1955).' G, D. James and R. A. Salmeron, Phil. Mag. 46, 571 (1955).

4Sreekantan, Pevsner, and Sandri, Phys. Rev. 98, 642 (A)
(1955).

'Fowler, Shutt, Thorndike, and Whittemore, Phys. Rev. 98,
121 (1955).

g—the angle between the decay plane normal n and
any reference direction N which is normal to the line
of Qight of the unstable particle and which is defined
independently of n—must be uniform. ' A nonuniform
distribution in q would automatically imply spin
greater than one-half; and from the form of the distribu-
tion (see below) one could set a lower limit to the value
of the spin.

Even for particles of very large spin, however,
angular correlation sects would show up only if the
spins were somehow polarized (i.e., nonrandomly
distributed) with respect to the reference direction N.
This suggests that the effect, if it exists at all, would be
most likely to manifest itself with unstable particles
produced in low-energy interactions of elementary
particles, e.g. , the reaction sr +p-+hyperon+K-meson
observed at Brookhaven. Nevertheless, early Princeton
work' on V'-particles produced in generally complex

e Treiman, Reynolds, and Hodson, Phys. Rev. 97, 244 (1955).
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cosmic-ray interactions gave some indication of angular
correlation eRects for events involving a pair of V'-
particles which have a common origin. However, other
groups, ' 4 also working with cosmic-rays, found no
appreciable eRect. But recently, the Brookhaven
workers' have reported results on the distribution in
angle q between the decay and production planes of
unstable particles, and they find a marked correlation
eRect for the hyperons, the angle q tending toward small
values. They conclude that the spins of the hyperons
are probably greater than one-half.

In view of the affirmative Brookhaven results, we
consider it worthwhile to present a further discussion
of the relationship of angular correlation eRects and
spin. The discussion does not involve any detailed
model of the unstable particles but is instead based
solely on the conservation laws of parity and angular
momentum.

II. ANGULAR DISTRIBUTION FUNCTION

In a recent note it was shown that for a particle of
given spin j, which undergoes two-body decay, the
most general form of the angular distribution in q is
given by'

P(n) =
2g

The equation for P'(rt') is more restricted in form than
that for P(ri) because of the lumping together of prob-
abilities from the four quadrants of g. Some information
is then necessarily lost.

The angular momentum and parity conservation laws
not only prescribe the above forms for P(ri) and P'(ri'),
however, but also impose other restrictions on the
angular distribution. For one thing, the conservation
laws can'be used to set upper limits on the magnitudes
of the Fourier coefficients AM and BM,. and in any
attempt to fit data to expressions of the above form it
will be very helpful to take these limits into account.
This is especially true in the case of hyperon decay,
where, as it turns out, the upper limits on the coefFi-

cients are fairly small in certain cases (see Table I).
The main purpose of the present work is to compute the
limits on the Fourier coefIicients. Ke shall also briefly
discuss other consequences of the conservation laws.

Equation (1) is derived by forming the expression
~P~'—where P is the final state wave function in the
rest system of the unstable particle —and integrating
over all variables except for the azimuthal angle g of
the relative momentum vector of the decay products
(the s-axis lies along the line of Right of the unstable
particle and the y-axis along the reference direction N). '
The Fourier coefKi.cients AM and J3M are evidently then
the respective expectation values with respect to P of
the operators 2 cosllfq and 2 sinMg:

where

M ma x

1+ Q (A sr cosMr)+Bsr sinMt)); (1)
M=2, 4, . . .

Asr=2(P) cosMr))it),

Bsr=2(P( sinMr) jit).
(3)

(integral j)= 2j3f, =
2j—1, (half-odd integral j).

P'(~') =P(n')+P(~ ~')+P(~+~')+P —(2~ n')—
2 M ma x

=—1+ P A sr cosMri',
M=2,4, . ..

In the derivation of this equation, it is assumed that
the decay plane normal n is a vector with a well-

defined sense as well as direction and that the angle q
between n and the reference vector N ranges from 0 to
2~. (One could, for example, take n to have the sense
of the vector product of the two 6nal particle momenta,
taken in a prescribed order. ) In practice, however, one.
has not thus far associated a sense with n, so that one
in fact measures the smaller of the two angles between
the directions of n and N. For the sake of clarity we

denote by g' the angle so defined (0&r)'& —,'s.). The
distribution P'(r)') in r) is then related to the distribu-
tion in' by

TABLE I. Maximum possible value of Fourier coeKcient A~
(or Jjsr) in angular distribution P(g) or P'(q') —for decay process
of type: hyperon —+nucleon+pion. The spin of the hyperon is
denoted by j.

3/2
5(2

0.577
0.775
0.447
0.9i4
0.577
0.378
i.Oi9
0.655
0.500
0.333

The wave function f contains as a factor an angular
momentum eigenfunction corresponding to j and having
definite parity, determined by the parity of the unstable
particle. This function can be expressed as a linear
combination of the eigenfunctions q; of the operator
J,(—j&m&j). We take the q&P as our basis functions.

(2)
2i

~ See reference 6. The equations are written here in a slightly
diferent notation.

'Angular correlations effects must properly be discussed in
terms of mixtures of states P; and expectation values must
correspondingly be taken with respect to density matrices. For
the present purposes, however, it is enough to consider only pure
states.
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We can then form the matrix elements of cosMg and
sinMq with respect to the y, , and it is then evident
from Eq. (3) that the maximum possible value of Asi,
for example, is just equal to the largest eigenvalue of
the resulting matrix 2( jm'

~

cosMrl
~
jm). (Since the

upper limits on AM and BM are clearly identical, we
discuss the former only. )

III. LIMITS ON THE FOURIER COEFFICIENTS

For decay processes of both types: (a) hyperon~
nucleon+pion; and (b) E-meson~pion+pion, one
can show that the matrix elements are given by'

TABLE II. Maximum possible value of Fourier coeKcient A~
(or Bsr) in angular distribution p(u) or p'(q') —for decay process
of type: E'-meson~pion+pion. The spin of the E'-meson is
denoted by j.

1.00
1.00
1.00
1.06
1.00
1.00
1.13
1.00
1.00
1.00

2(jm')cosM&~ jm)

where

.0, (otherwise)

Iml.

—

(q —m)!

(jism)!

-:
(—1)'~,(m'= maM)

. ('j—m')!(j+m')!

has absolute value unity. This means that there is
always a state, namely (1/%2) (I'P~& I'; '*~), for
which AM=1. Thus, the upper limit on AM is always
at least unity. In fact, whenever M&j, the upper limit
is precisely equal to unity. For M&j, the upper limit
exceeds unity, although not by very much when the
spin is fairly small (see Table II).

In particular, for the largest permissible value of M,
M=2j —1, we have

max —(1/2j)$ (6)

It is apparent from these equations that for the larger
values of M, the upper limits on the Fourier coeKcients
fall oG with increasing j; whereas, from Table I we see
that A ~~' increases with j for the smaller values of M.

In the case of E-meson decay (integral j), we note
that the particular matrix element

2(j,—',M
~
cosMq~ j,——,'M)

9 We would like to thank R. K. Adair and R. Dalitz for calling
to our attention an error in our original expression for the matrix
g)ement.

As we have already seen, the maximum eigenvalue of
the above matrix is just equal to the maximum possible
value of the coeflicient Air in Eqs. (1) and (2). Under
certain circumstances, mentioned below, it is possible
to give a simple formula for the largest eigenvalue for
given j and M. In other cases, we have determined
the eigenvalues by numerical procedures. Results are
set forth in Tables I and II, which refer to hyperon and
E-meson decay, respectively.

In the case of hyperon decay (half-odd integral j),
whenever M&j+sr the matrix takes the simple form in
which nonvanishing elements occur only within the
upper-right and lower-left quadrants. The maximum
eigenvalue is then simply equal to the magnitude of
the largest matrix element. For this, one finds from

Eq (4:)

)2j+1 Mp -*'—
!

mxx —
~

&2j+1+M&

IV. DISCUSSION AND FURTHER APPLICATIONS

It is perhaps worth emphasizing again that on the
basis of the angular distribution data taken alone, there
is no way to determine the exact value of the spin. As
has already been pointed out, even if the spin were very
large, the distribution in q might under the experi-
mental conditions be uniform (unpolarized spins).
The best one can do is determine a lower limit on the
spin. There are many procedures which can be used for
this purpose, all of them based on angular momentum
and parity conservation and all, in part, independent
of one another. The problem is to find the best procedure
with respect to a given set of data, i.e., the procedure
which leads to the largest lower bound on the spin j.

We have discussed two methods, which are partly
independent of each other. The angular distribution
p'(r)') can be expressed as a finite Fourier series. The
degree of the highest harmonic required to 6t a set of
data automatically determines a lower limit on j.
However, if any one of the Fourier coe%cients AM

required to fi.t the data exceeds the limit imposed by
angular momentum and parity conservation, one ob-
tains a larger lower bound on j. For example, it could

happen that the experimental data for a set of A'-

particle decay events is perfectly consistent with an
angular distribution of the form p'(r)') = (2/s) (1+As
cos2t)'), so that one has immediately j&ss. But if the
required value of A2 is say 0.70, then from Table I it
follows that in fact j&S/2. Furthermore, it should be
noted that there is no state for which two or more of the
coef6cients AM have their maximum values simul-

taneously. Thus, when A& has its maximum value for
given j, A4 is certain to have a value less than its
IQaxlmuIQ.
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TABLE III. Maximum possible value of 2 '(-', ~), the prob

ability that p'&&~—for decay process of type: hyperon~nucleon
+pion.

TABLE IV. Maximum possible value of E'(47r), the prob-
ability that p'&~~—for decay process of type: E'-meson~pion
+pion.

3/2
5/2
'//2
9/2

0.684
0.747
0.788
0.817

0.818
0.818
0.834
0.850

The number of Fourier terms, and the limits on their
coeKcients, by no means exhausts the limitations im-
posed by the conservation laws on the shape of p'(ti')
for a given spin. Ke have emphasized these features
because they are simple from a computational point
of view and because they provide a useful basis for a
6rst survey of experimental data. One could go on,
however, and calculate for example the limits on the
various moments of the angular distribution; or the
limits on the actual value of p'(rl') itself fol' any speci-
fied angle q'. In such procedures one maximizes not the
individual Fourier coef6cients taken one at a time but
rather a suitable sum of coeKcients. Thus, the state
which maximizes A~, for example, is not the same as the
state which maximizes the value of p'(ti') for ri' equal to
say 50'. It could happen that a given set of data is
perfectly consistent with a certain j value on the basis
of the tests described above but that the experimental
value of p'(50'), say, exceeds the limit for that value
ofj.

Ke mention one particular test which seems to be
especially suited to analyzing quickly a limited amount
of data and which occurred to us in connection with the
Brookhaven results. ' The Brookhaven workers find
that in seven examples of hyperon decay (4As; 3V+) the
angle g' between the decay and production planes is
less than 45' in all cases. Ke therefore ask: for given
spin of the hyperon, what is the maximum possible
value for the fraction of cases in which q'&~7r?„. %e
denote the integral distribution by P'(ti'), where

From Eq. (2), it follows that

M=2, 4, ... ~
=—+—(As —

—s,As+ . ). (8)
2 7r

Just as before, we form the matrices Asr with respect
to the basis function q;, and then, summing these
matrices according to Eq. (8), we find the matrix for
E'(~r7r). The maximum eigenvalue gives the largest
possible value of P'( x.)~~. We have carried out this
procedure for the case of hyperon decay, for spins up
to j=9/2 inclusive; and E-meson decay, for spins up
to j=4 inclusive. The results are given in Tables IH
and IV, respectively. It should be noted, incidentally,
that because of the symmetry about ~~+, these results
also represent the upper limits on the probability that
q' lies between ~x and —,'m.

Comparison of Tables I and III on the one hand with
Tables II and IV on the other indicates that the maxi-
mum possible deviations from isotropy are much more
restricted in the case of hyperon decay than in the case
of E-meson decay. Pronounced angular correlations in
the case of hyperon decay would immediately force one
to a high spin assignment for the hyperon. Although the
experimental situation is far from clear as yet, the
results reported from Brookhaven seem to point in this
direction.


