Disintegration Scheme of Rb⁸³[†]

M. L. PERLMAN AND JOAN P. WELKER Chemistry Department, Brookhaven National Laboratory, Upton, New York (Received June 9, 1955)

The decay of Rb⁸³ has been determined to proceed by electron capture to an excited state of Kr⁸³ which is 0.566 Mev above the ground state. This excited state is depopulated exclusively by emission of a 0.525-Mev gamma ray (*M*1) to the 0.041-Mev state, Kr^{83m}. Little or no electron capture direct to the 0.041-Mev level or to lower levels occurs. The spin-parity designation of the 0.566-Mev state is $p_{3/2}$, and that of the Rb⁸³ ground state is $f_{5/2}$.

URING the course of an investigation concerned with certain features of the decay1 of Rb⁸⁴, sufficient information was obtained about the radiations of Rb⁸³ to ascertain the disintegration scheme of this nuclide. According to published work^{2,3} Rb⁸³ has a half-life of 83 days; x-rays, conversion electrons corresponding to gamma rays of energies ~ 0.15 and ~ 0.45 Mev, and a gamma ray of energy ~ 0.8 Mev are reported to be emitted. The energy measurements are described as being crude.3 At least a fraction of the decay proceeds to 114-min Kr^{83 m}, as shown³ by the growth of activity in rubidium fractions freshly separated from Sr⁸³. The level scheme of Kr^{83m} has been thoroughly investigated; the multipole orders of the electromagnetic radiations are established, and the spins and parities of the levels are known.⁴ This information is summarized in Fig. 1.

EXPERIMENTAL METHODS AND RESULTS

The method of source preparation has been described in the paper which precedes this one.¹ Tests showed that the sources used in the following experiments did not emanate Kr^{83m} . As has been stated, decay measurements made with proportional counters and suitable absorbers confirmed the earlier observations that Rb^{83} disintegrates with the emission of K x-rays and of gamma rays, and that very little if any particle emission occurs. From the information shown in Fig. 1 of the preceding paper and with a knowledge of the particle to x-ray intensity ratio from Rb^{84} , it may be estimated that less than one percent of $Rb^{83} \rightarrow Kr^{83}$ events are associated with the emission of particles with energy exceeding 40 kev.

It has been noted also that a gamma ray of energy very nearly the same as that of annihilation radiation¹ is associated with the decay of Rb⁸³. The evaluation of the energy of this radiation was made from data

obtained in a set of coincidence measurements in which Na²² and Rb^{83,84} were compared. It was observed in the case of Na²² that the 0.511-Mev photopeak in coincidence with 0.511-Mev quanta was centered at the same position as the simultaneously recorded 0.511-Mev "singles" photopeak; in the case of the Rb^{83,84}, however, the "singles" peak, composed of annihilation radiation and the Rb⁸³ gamma ray, was consistently a little higher in energy than the coincident photopeak. From the relative displacement of the two peaks and from a knowledge of the fraction of Rb⁸³ gamma radiation present in the Rb^{83,84} "singles" photopeak at the time of the measurement,¹ the energy of the Rb⁸³ gamma ray was determined to be 0.525 ± 0.007 Mev. This radiation was found to be in coincidence with Kx-rays and not in coincidence with annihilation radiation.⁵ Several gray-wedge photographs of the gammaray spectra of Rb^{83,84} were observed both with and without the requirement of coincidences with K x-rays and with 0.511 (0.525)-Mev gamma rays. There was no evidence for the emission, in the decay of Rb⁸³, of any gamma ray other than that of energy 0.525 Mev.

A determination was made of the fraction of Rb⁸³ K-electron capture events which is associated with the emission of the 0.525-Mev gamma ray. The K x-ray, 0.525-Mev coincidence rate was compared with the K x-ray count rate. Two NaI(Tl) detectors and pulseheight selectors were employed. The result of this comparison measurement is independent of all x-ray efficiency factors. Apportionment of the x-ray rate between the 83-day Rb⁸³ and the 33-day Rb⁸⁴ was made by the methods described in the foregoing paper. Further, the Rb⁸³ x-ray rate was corrected to take into account the fact that a part of the intensity, 0.22, is produced by internal conversion of gamma rays⁶ from Kr^{83m} ; the evaluation of this correction is described in the next section. For the coincidence-rate measurement, the area under the 0.525-Mev coincidence photopeak was scanned; small backgrounds associated with the radiations of Rb⁸⁴ were evaluated and subtracted. The absolute efficiency of the detector and pulse-height selector for the 0.525-Mev quanta was measured by determination of the area of the 0.511-Mev annihilation

[†] Research performed under the auspices of the U. S. Atomic Energy Commission. ¹ J. P. Welker and M. L. Perlman, preceding paper [Phys. Rev.

¹ J. P. Weiker and M. L. Periman, preceding paper [Phys. Rev. **100**, 74 (1955)]. ² D. G. Karraker and D. H. Templeton, Phys. Rev. **80**, 646

^{(1950).} ^a S. V. Castner and D. H. Templeton, Phys. Rev. 88, 1126

 <sup>(1952).
&</sup>lt;sup>4</sup> M. Goldhaber and R. D. Hill, Revs. Modern Phys. 24, 179 (1952).

⁵ Reference 1, Table I.

⁶ I. Bergström, Phys. Rev. 81, 638 (1951).

FIG. 1. The decay scheme of Rb⁸³.

photopeak from a calibrated Na^{22} source. The comparison experiment gave the result that 0.99 ± 0.10 of the electron-capture processes are followed by emission of the 0.525-Mev quanta.

DISCUSSION

The decay scheme shown in Fig. 1 was arrived at by combination of the experimental results given in this paper with information about the internal conversion⁶ of the 32-kev transition in Kr^{83m} and about the growth of Kr^{83m} in freshly separated Rb^{83} fractions.³ According to the compilation of Way and Wood⁷ the disintegration energy of Rb^{83} is expected to be approximately 0.8 Mev; under this condition the ratio of *L* capture to *K* capture may be taken as 0.10.⁸ The number of *K* vacancies per disintegration of Rb^{83} is expressed by the relation,

$$K_{\rm vac} = 0.91 + 0.26 f.$$
 (1)

The 0.91 vacancies are produced in the act of capture, f is the fraction of Rb⁸³ disintegrations which populates the 0.041-Mev Kr^{83m} state, and 0.26 is the fraction of the 0.032-Mev Kr^{83m} transitions which produces a K vacancy.⁶ The term 0.26f is evaluated as a function of K_{vac} from the growth curves of Castner and

Templeton:

$$0.26f = (0.22 \pm 0.01)K_{\text{vac.}}$$
 (2)

The solution of Eqs. (1) and (2) gives $K_{\text{vac}} = 1.17$ and f=1.00. Three assumptions about the growth curves are implicit in Eq. (2): (a) the growth sources did not emanate Kr⁸³, (b) the count-rate measurements⁹ were begun before appreciable growth had occurred, and (c) the count-rate data taken with a Geiger-Müller counter represent only the x-radiations. It should be noted that inaccuracy in any of these assumptions would tend to make f exceed 1.00, which would be an absurd result. Since each capture process in Rb⁸³ populates the 0.041-Mev level and since 0.99 ± 0.10 of the capture events are in coincidence with 0.525-Mev quanta, capture followed by emission of 0.525-Mev gamma rays must populate the Kr^{83 m} state. Moreover, little or no capture proceeds directly to the 0.041-Mev or to lower Kr⁸³ levels. The allowed log ft value,¹⁰ 5.4 \pm 0.4, for the capture transition to the 0.566-Mev level is based on the decay energy estimated from the curves of Way and Wood.

The spin-parity assignments for the ground and first two excited states of Kr⁸³ are well known.^{4,6} Only two reasonable single particle assignments¹¹ remain for the 0.566-Mev Kr⁸³ level, $p_{3/2}$ and $f_{5/2}$. If the level were characterized $f_{5/2}$, it should be depopulated more rapidly by *E*1 transitions to the 9-kev level than by *E*2 transitions to the 41-kev level, in contradiction of the experimental facts. The characterization $p_{3/2}$, on the other hand, is in agreement with the observation that all transitions from the 0.566-Mev level populate the 0.041-Mev level.

For the odd proton of Rb⁸³ reasonable single particle characterizations are $f_{5/2}$, $p_{3/2}$, and, less probably, $p_{1/2}$ or $g_{9/2}$. Of these four $g_{9/2}$ is excluded because very little or no capture to the ground state of Kr⁸³ occurs. Since the capture transition to the 0.041-Mev krypton state would be much more probable than that to the 0.566-Mev level if the assignment were $p_{3/2}$ or $p_{1/2}$, these two possibilities are excluded. Thus, $f_{5/2}$ would appear to be the designation for the ground state of Rb⁸³. The capture transition to the 0.566-Mev level of Kr⁸³ is then allowed and the capture transitions to the other states of Kr⁸³ are forbidden, which is in agreement with the experimental evidence. It may be noted that the ground-state assignments of the neighboring odd-even nuclides, Rb⁸¹ and Rb⁸⁵, are $p_{3/2}$ and $f_{5/2}$ respectively.^{11,12}

⁷ K. Way and M. Wood, Phys. Rev 94, 119 (1954)

⁸ M. E. Rose and J. L. Jackson, Phys. Rev. 76, 1540 (1949).

⁹ Reference 3, Fig. 1.

¹⁰ S. A. Moszkowski, Phys. Rev. 82, 35 (1951).

P. F. A. Klinkenberg, Revs. Modern Phys. 24, 63 (1952).
¹² Hobson, Hubbs, Nierenberg, and Silsbee, Phys. Rev. 96,

^{1450 (1954).}