
VISIBLE LIGHT FROM Si p —I JUNCTION

If the light emission is coming from the bulk silicon,
then the spectral distribution curve should be corrected
for the self-absorption of the sample. The spectral
distribution curve so corrected is indicated in Fig. 4.

If the light is identified with the avalanche break-
down process in the silicon, then two possible processes
suggest themselves. The first process involves the radia-
tive recombination of the high-energy electrons and
holes produced in the junction region during breakdown.
The radiation produced by this process would presum-
ably have a low-energy threshold at about the band gap
( 1 ev) of silicon. Since the probability of carriers
having a given energy will decrease with increasing
energy the spectral distribution would, of course, show
a tailing off at the high-energy end as well. ' The spectral
distribution for this case might resemble the curve of
Fig. 4. The results of Wolff's calculation' of the carrier
distribution function would appear consistent with the
observed spectral distribution curve. It would be ex-
pected that the light output would increase as the square
of the current for this mechanism.

The second process involves an intraband relaxation
That is, a high-energy carrier could lose its energy by
radiation and drop into a lower level in its own band.

' P. VVolff, Phys. Rev. 95, 1415 (1954).

Such a process would also produce a tailing oG of the
emission at high energies (see the foregoing). However,
the radiation would presumably, not have a definite low-

energy limit. It would be expected that the total light
emission would be linear in current.

For both these radiation mechanisms the decay time
for light emission would presumably be of order
0.1—0.01 @sec.' Our measurement indicated a decay
time that was 4 @sec or less. This result was limited by
the instrumentation.

In summary, the evidence suggests that the light emis-
sion results from radiative relaxation processes involving
high-energy carriers in or near the barrier during
avalanche breakdown. However, further study will be
required before this conclusion can be made rigorous and
a detailed mechanism elucidated.
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A method is developed for calculating the effects of a strong oscillating Geld on two states of a quantum-
mechanical system which are connected by a matrix element of the Geld. Explicit approximate solutions are
obtained for a variety of special cases, and the results of numerical computations are given for others. The
eRect of an rf field on the J=2~1 l-type doublet microwave absorption lines of OCS has been studied in
particular both experimentally and theoretically. Each line was observed to split into two components when
the frequency of the rf Geld was near 12.78 Mc or 38.28 Mc, which are the frequencies separating the J= 1
and J=2 pairs of levels, respectively. Sy measuring the rf frequency, vo, at which the microwave lines are
split into two equally intense components, one may determine the separation between the energy levels.
The measured value of vo depends upon the intensity of the rf field and the form of this dependence has been
calculated and found to be in good agreement with the experimental results.

I. INTRODUCTION

1.1 Outline of the Problem

RELATIVELY weak perturbation varying sinu-

s

~ ~

soidally in time may affect a physical system by
causing an occasional transition between quantum
states. These transitions are accompanied by the ab-
sorption or emission of photons and may be observed

* Work supported jointly by the Department of the Army
(Signal Corps), the Department of the Navy (Office of Naval
Research), and the Department of the Air Force (Air Research
and Development Command).

$ Present address: Lincoln Laboratory, Massachusetts Institute
of Technology, Lexington, Massachusetts.

spectroscopically. However, if the perturbation is
strong enough, transitions are rapidly induced and a
variety of other observable phenomena can occur. We
shall discuss. some of these in the case of a system where
relaxation processes are negligible, i.e., where the effects
of the sinusoidal perturbation are much more important
than those due to processes which dissipate energy. In
particular, an experiment will be described which
involves the simultaneous effects of two electromagnetic
fields on the molecules of gaseous OCS. One field is
much stronger than the other and is in the radio-fre-
quency range; the weaker field is in the microwave
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region and is transmitted through a wave guide con-
taining the gas while absorption lines are observed by
the usual techniques of microwave spectroscopy. At
certain frequencies the rf field induces rapid transitions
between the molecular states, which a6ects the absorp-
tion of the microwaves. The absorption of the rf 6eld,
which is not directly observable can thus be indirectly
studied by microwave spectroscopy.

After a statement of definitions and a short intro-
ductory theory, some of the previously published work
related to our subject is discussed. Then a general
treatment is developed for the eGects of a sinusoidally
varying 6eld of any strength and frequency on a simple
quantum-mechanical system for which only two sta-
tionary states need be considered. The general solution
is expressed in terms of in6nite continued fractions, but
simple approximations are given which are valid over
certain ranges of field strength and frequency; for
other ranges numerical results are given.

The case of "resonant modulation" where the fre-
quency of the field coincides with an internal frequency
of the system is of particular interest. Although our
theoretical treatment was developed primarily for this
case, and is compared in some detail with experimental
results, it is applicable to a wider range of conditions
including some found in molecular beam experiments.

1.2 Preliminary Theory and De6nitions

The discussion of the effects of an oscillating field
will be simpli6ed by assuming that the wave function
of the system may be expressed as a linear combination
of just two of its unperturbed eigenfunctions. Thus,

e= T.(t) U.+ Tb(1) U„ (1)

where U, and Ub are the space-dependent parts of these
two eigenfunctions. The states are assumed to be non-
degenerate and to have energies S' and S'b with
S"b)S;. Relaxation processes will be completely
ignored, so the energy levels are treated as perfectly
sharp.

We may expect Eq. (1) to be a valid approximation
in a number of cases. If the frequency of the perturbing
field is close to (Wb —W,)/Js, it has a much greater effect
on these two states than on others, which may then be
ignored. This is also permissible for any frequency if
S" and S"b are much closer to each other than to any
other states; this requirement is satis6ed by the states
of the OCS molecule which were studied in our experi-
ment. Later a microwave 6eld will be allowed to induce
occasional transitions to a third state well removed in
energy, but if this field is weak it has a relatively small
effect on the states under study.

The time-dependent wave equation is

iM'= [Hs —p E cos~o1]+, (2)

where H =unperturbed Hamiltonian containing all
internal interactions, p =permanent electric dipole
moment of molecule, E cosoit=applied electric field.

Substituting (1) into (2) gives

ihT = W T +2AP~ COSoitTb,

ihTb= WbTb+2hp», coso~tT. ,
where

(3)

P.b =
(~It El&)

P.b=Pb.

H'U, =8;U„H'Ub= WbUb.

+ 4p~b~ cos oA—
S' Wb iS';

+ o~ tano&1 T,

obtained by eliminating Tb from (3) indicates why this
is so. One must therefore obtain approximate solutions
for various values of the parameters P~ and oi.

The ranges of P,b and oi will be denoted as follows:

Field strength Frequency

Weak: p~f,&&co~f, Low: co«co,f,

Intermediate: P~f =~,b Resonant: ro =co b

Strong: p f,))co,f, High: co))or,b

Cu,b= (Wb —W,)/h.

II. REVIEW OF RELATED %'ORE

2.1 Resonant Modulation

The authors have previously reported results of an
experiment' in which a radio-frequency field was used to
produce transitions between two energy levels of the
molecules of OCS gas and thus modulate the probability
of 6nding a molecule in either state. The gas was kept
in a wave guide and a microwave absorption line in-
volving one of the levels was observed while the rf 6eld
was applied across the wave guide. When the frequency
of the rf field was made resonant with the separation
between the two levels, the microwave absorption line
appeared to split into two components of nearly equal
intensity. Although the possibility of measuring energy
differences by this method was established, there were
certain discrepancies between observations and theory.
In this paper, more precise experimental data and more
detailed theory are reported and better agreement is
obtained.

Time-dependent perturbation calculations are carried
into a somewhat broader range of frequencies and field

' S. H. Autler and C. H. Townes, Columbia Radiation Labora-
tory Reports, June 30, 1949 and September 30, 1949 (unpub-
lished). S.H. Antler and C. H. Townes, Phys. Rev. 78, 340 (1950).

P and Pbb equal zero if states a and b are nonde-
generate. p.b may be assumed real without loss of
generality as any phase factor may be absorbed into
T and Tb.

In spite of their rather simple appearance, these
equations have not been solved in terms of tabulated
functions. The complicated form of the equation

8 T~ 8Tg
0= + —(W,+Wb)+a& tanoit-

Bt' Bt
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strengths in this paper. than has previously been
reported. Some previous results are reviewed below in
order to show their relationship to the present work.

2.2 Extremely Weak Fields
In discussing the eGect of a resonant field in inducing

transitions between two stationary states, it may be
assumed that the system is originally known to be in
one of these states and that the probability of finding
it in the other state remains small. This gives a transi-
tion probability which increases as t'. It is then usually
assumed that the final state can be any one of a very
closely spaced group of states, or that the radiation
consists of a band of frequencies. This leads to the
familiar result in which the transition probability grows
linearly in time at a rate proportional to the square of
the field strength until a collision or some other relaxa-
tion mechanism terminates the process.

2.3 Rotating Fie1ds

For fields which are somewhat stronger, though still
weak according to the definition adopted above, it is
no longer possible to neglect the probability of 6nding
the system in the second state. This problem has been
discussed by Majorana and by Rabi' for the case of a
magnetic dipole in a rotating magnetic field. For a spin
of —,', Rabi obtained the equations

gppH, gppH~
iACp, ,

——Cp;+ e '"'C;,
2

'
2

(4)
gg pII~ gp pII~

shC i= — C i+ e+'"'C ~

where Her=component of rotating field which lies J
to B„H,= average value of magnetic Geld H, g =Lande
g-factor of particle, pp=Bohr magneton. C+~ and C ~

are the probability amplitudes of the two spin orien-
tations.

The form of these equations diGers from that of Eqs.
(3) only in the replacement of cosa&t by exponentials.
This difference, however, allows Eqs. (4) to be solved
exactly.

The result obtained is that the probability of finding
the dipole in the —rs state, assuming it starts in the + sr

state, is:
(gl p&~)'

P(-;, —-', )=
As(PP —

PPp) s+ (glbpP~) s

(glJ pH~ l
Xsin' — (pp —a&p)'+

~ ~, (5)
a

where cop
——glisk, /A is the Larmor angular frequency of

the dipole in the field.
The particle oscillates sinusoidally between the two

states with an amplitude which is equal to one when
40=6)p.

2 L. SchifF, Quantum Mechanics (McGraw-Hill Book Company,
Inc. , New York, 1949), Chap. X.' I. I. Rabi, Phys. Rev. 51, 652 (1932).

Torrey' calculated this in a somewhat different
manner in connection with an investigation of the line
shape of molecular beam radio-frequency resonances.
We shall use an approach similar to Torrey's, whose
result is obtained as the 6rst approximate solution of
our general equations in Sec. 3.3.

2.4 Weak Oscillating Field
Equation (5), which describes precisely the effect of

any rotating field, is also a good approximation for an
oscillating field if that field is weak and its frequency
near resonance. This is to be expected since a field
varying as cosset can be separated into two rotating
fields, —e+'"' and ~g '"' One of these can be thought of
as rotating with the precessing particle and the other
oppositely. A small oppositely rotating 6eld will have
little effect compared to the resonant one. Bloch and
Siegert' made an approximate calculation of this effect
for the case of a particle of spin ~~ in a polarizing mag-
netic field by expressing the equivalent of Eq. (3) as an
integral equation which was then expanded in a series.
They showed that the first eGect of the counter-rotating
field is to increase the resonant frequency by the frac-
tional amount ~'~(H~/H, )'. In our notation this can
then be written

~p/PPab= l+ (Pab /PPab ),
where Mp is the observed resonant frequency. This result
is discussed in Sec. 4.2.

2.5 Double Modulation

The simultaneous use of radio-frequency and ultra-
violet radiation to investigate the structure of atomic
energy levels has been described by Brossel, Kastler,
and Bitter. After exciting mercury vapor atoms by
resonance radiation, they ingeniously employ the rf
field to alter the population of the atoms in the excited
state and then observe the change in polarization of the
spontaneously emitted ultraviolet radiation. They
obtained a radio-frequency resonance and splitting
similar to that described in Sec. 2.1. The theory given
for "resonant modulation"' is in fact applicable to
Brossel and Bitter's case. However, Pryce' has inde-
pendently calculated the splitting which occurs in this
experiment. Brossel and Bitter also obtain a shift in the
resonance approximately equal to that calculated by
Bloch and Siegert. ~

2.6 Low-Frequency Perturbation
If the frequency of the applied 6eld is suKciently

low, its eGect can be treated quasi-statically, i.e., the
solution can be regarded at any instant as being the
steady-state solution appropriate for the instantaneous
field. The instantaneous value of the 6eld appears as a
parameter in the solution, and as the 6eld varies, the
solution is presumed to follow along.

4 H. C. Torrey, Phys. Rev. 59, 293 (1941).' F. Bloch and A. Siegert, Phys. Rev. 57, 522 (1940).' J. Brossel and A. Kastler, Compt. rend. 229, 1213 (1949);
J. Brossel and F. Bitter, Phys. Rev. 86, 308 (1952).

r M. H. L. Pryce, Phys. Rev. 77, 136 (1950).



S. H. AUTLER AN DC. H. TOWNES
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(X+tob ttM)Bn = pgbA n 1 pabA n+ir—

Townes and Merritt' calculated and observed the
second-order Stark eGect due to fields of several hundred
kilocycles, and also calculated the first order case. They
found that when cu is larger than the width of the ab-
sorption line each Stark component breaks up into lines
spaced by the angular frequency ~, with amplitudes
depending upon the field strength. In second-order
Stark eGect each energy level breaks up into a number
of components with angular frequencies displaced from
its unperturbed value by -,'aE'~ 2eco, where n is any
integer, a is a constant, and E the field strength. Relative
intensities of the ™ponentsare given by J„'(u&/2).
The agreement between theory and experiment was
found to be excellent. A derivation of the above result
is given in Sec. 3.5.

Since the present work ignores the eGects of collisions,
the case where co is comparable to the line width requires
another treatment. This has been given by Karplus, '
who used the methods of quantum statistics and treated
in detail several cases where the molecular resonances
are shifted by fields with particular wave forms.

III. THEORY

3.1 General Formulas
A solution is desired for T and Tb in Eq. (3). Use

will be made of Floquet's theorem" which shows that T
and Tb have the form

+00 +00

T eixt p A a inst T ——&ixt Q B &
inst (6—)

n n~
where e is any positive or negative integer or zero. If
(6) is substituted into (3) after expressing cos~t in
exponentials, and terms with the same exponents are
equated, one obtains

X+G3s—11M An= psbBn —i pab—

where io, =Ws/A, tob
——Wb/A. This set of equations can

be separated into two completely independent sets as
follows:

L~s I—~/Pab jAk = B—k i -B—k+i,

L~a+tcab/Psb ~~/Pab5Bi= A—i i A—t+»

with all odd A 's and even 8's being zero. Also

Ll b toab/Pab fto/Psb jA i Bi i —Bl+r&

t Ib hto/p b jBk Ak —1 Ak+1

with all odd 8's and even A 's equal to zero. Here

(8)

(9)

Lb-=
P.i P.b

and k runs through all positive and negative even
integers and zero; l runs through all positive and nega-
tive odd integers.

Since Eqs. (8) and (9) are independent, a complete
solution may be obtained by adding any solution of (8)
to any solution of (9).

We will 6rst concentrate on (8), an infinite set of
linear homogeneous equations with an infinite number
of unknown quantities (the A' s, B's, and X) to be deter-
mined. One could set up the infinite secular determinant
of the coefficients and attempt to solve it. Instead, the
method to be used here is to express the ratios of the
A 's and 8's as infinite continued fractions and then
obtain an equation for X involving them. This method
of attack arises naturally and the continued fraction
expressions are fairly amenable to algebraic and nu-
merical calculations to any accuracy.

In Appendix 3.1a, it is shown that if one assumes
that the amplitude coefficients (A's and B's) become
negligible for

~
k~ and

~
l~ sufficiently large, then

By(k—1) ~ab (L.+k
Pab ~ Grab~ arab teak f tcI.+ ~ (&+&)

P b Psb (tcab) abI.~ (ttl+ 2)
Pab ~ tcab~ ab &ab( ~I.+ + (&+3)

Pai Psb
(10)

Aytt rr ~ab ~ab ( M

wl
Pab Psb ( arab) Cu, b ( OrJ.~ (~+1)

Pgb ~ tosh~
~.+ ~ (~+2) I

Psb Psb ~ tcab ~ ~ab( ~ )I.~ (l+3)
Pab ~ teak~

s C. H. Townes and F. R. Merritt, Phys. Rev. 72, 1266 (1947).
t R. Karplus, Phys. Rev. 73, 1027 (1948).I H Margenau and G M. Murphy jfapemaftcs of Qhysscs and Chemssfry (D. Van Nostrand Company, »o, New &o: "» P
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In reading the above expressions, either the upper or
lower sign should be used throughout.

In Eq. (10), the ratios of successive amplitude coef-
ficients are expressed as functions of ~~/P~ and &o/pp~,

two dimensionless quantities which are natural measures
of the intensity and frequency of the applied field and
completely determine the problem. I. is defined as
(X+~,)/P~ and in Eq. (11)below is given as a function
of &u~/p, b and co/&o~. Equations (10) then may be
regarded as expressing successive amplitude coefficients
(A's and B's) as functions of the physical variables. For
example, by letting l equal one, an expression for

B+y/A p is obtained. Similarly, A~p/B~q, B+p/A~p, etc. ,
can all be expressed as continued fractions, and the
ratio of any of the A's and 8's to A p written as a product
of these quantities. Ap is one of the arbitrary constants
which appear in a general solution of a second order
differential equation, and may be evaluated by applying
normalization and initial conditions to P.

Besides being necessary for calculating the amplitude
coefIicients, I., has a physical interpretation which will
be discussed at the end of Sec. 3.3.

By setting k=0 in Eq. (8) and then making use of
Eq. (10), we obtain

CO~b ( Gl

L.+
Pgb E Msb) (~,bl

E P.b j & PP.b) cv, b ( 3cv$
L.+

Pabst ,Pgb )

PPeb ( M

L+
I

1+
Pub ~ ~ab~ (~.b) f ~ l

L.+2l
(P.b& &(O.b)

Equations (10) and (11) are general expressions which,
at least in principle, can be used to determine I and
then the amplitudes for all values of co~/P~ and cu/or~.

To actually solve (11) for L„one must in general retain
only a Qnite number of the quotients in each continued
fraction, but by retaining a sufficient number 1., can be
evaluated to any desired accuracy. Eventually, the
denominators are dominated by the terms of the form
m~/P~ and the quotients approach zero; which is a
necessary condition of the fractions are to converge.
The larger co/P~, the more rapid the convergence, so it
will be necessary to retain fewer quotients for high
frequencies and weak fields.

No proof has been obtained that the continued
fractions always converge. However, it is shown in the
Appendix 3.1b that when co=0, assuming convergence
leads to the correct steady-state solution. That this is so

in the case when one expects least rapid convergence
indicates that the fractions probably converge in all

other cases.
If only a few quotients need to be retained, Eq. (11)

can be expressed as an algebraic equation of low degree
and solved either exactly or approximately by familiar
methods. This will be done for weak fields. For stronger
fields where more quotients must be kept, it is easier
to work numerically with the continued fractions them-

selves, and solutions for 1. have been obtained numeri-

cally for a wide range of frequencies and for fairly
strong fields.

The equation obtained by retaining all terms and
expressing Eq. (11) in powers of L„would. be of infinite
degree and have an infinite number of solutions. Fortu-
nately, because of the periodic properties of the original
differential equation, all these solutions are related in a
simple manner, so that if one is known all the others
may be readily obtained. In Appendix 3.1c, the fol-
lowing relations are proved:

Assume L„Ap, Ap, ' ', By, Bp, satisfy Eqs. (8).
Then L ', Ap, A2, ' Sy', 83', ~ ~ give another solution
lf

and

(o.b —(2m+1)(o
I.,'= —I. —

~l A 2m+1—l) Ak ~2m+1—k)
I

(12)

(13)

where m is any positive or negative integer.
Another set of solutions of (8) is

L."=L.+2m (u /P~),

Ak Ak —2m) ~l ~l—&m ~

There are other solutions which satisfy (9) rather
than (8). In Appendix 3.1c, the following simple
relationship between the solutions of (8) and (9) is
proved: U L„A /A b'' ' pBg/Ap' ' ' define any solution
of (8), then Lb, Ag/Bp' ' ' Bb/Bp' ' define a solution
of (9), if

J.,= —L, ; A,/Bp —B g/Ap, Bb/B——p +A b/Ap (15)——
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The solutions of ~8~ con~ ~ contain only even A's and odd
s w )le the reverse is true for (9).
A complete solution is obtained bo ained by ddi g y

to any solution of ~9~. It i~ " q " " y
e in nite number of soluti s used in eac

, or ey a 1 contain the same hpy
ious solutions corres ondin

)

p 'g " y"o
o e amplitude coeKcients. Howev

necessary to underst d han t e nature of the sol
h t ll k 1 1

might arise b k'~ ~

ingca cu ationstoav
'

y s lppln f1oI11
voi errors which

p g one solution to another

A complete solution is obtains obta[ned by combining Eqs.

Equation (16) can then be written

f—l/ e
—bt(aa+ab) t g t[i(&a+(t)b)+&a] &

+~ AI,
g
—'bIco) 5

k= —~ Ap
even

go
I
e [t—(a'a+ah)+)al t—tt)'b g+tlro 5

Ap
Qdc1

f/bg
'i aa+a—b t

I
g i[-'( +'b s G)tb+G)b)+X(b] $ 'bio) t

t—~A 0

+ I
~

I
t, t[t(—aa+ab)+)a]t tt)— gsk405

0

(17)

[
+~ Ag

P
—l/ g gtba t P g

—ib tat

Ap
even

+~ A)
+g &tbbt p &

tlat-
Bp

odd

where

4,0—

&0 Ap

+()0 ~ l

+U g t, tbat Q ~ il ta-
Ap

QcId

(16)
+~ Bg

+g ei) bt P ~ ibat-
k= —~ g

even
0

3.C

2.0

Here X, A,
~ ~ ~, ~ may form ano,b,—o)„where I., is any solution of (11).Also

A +k ~+ (A:—1) ~+1

Ap 8
~ ~

p B~(p i) Ag(p 2) Ap

-2,0

-3.0

,2 8 1,0 1.2 14

8
Ap +(&—&) ~k(&—~) Ap

(a) Strong applied field, ca~/p~= 2

where the factors of the form A~I, 8

th in (15) o dto er)ve the solut[on of (9) to be

+ 2.0

+1.0

Lt)
0

and set

Then

A, =~ L—a =Pab a O)at )ib =Pabl b O)bt

Lg= —L,.
-2,0

I

0 10 12 1.6 1.8 2.0

Also,

) g= —) —co,—o)g.

&0 Ap

A g

Ap

(b) Weaker applied field, ca~/p~=5.

FIG.xG. . The numerically corn uty computed solutions of E . (11

ho th ref d I t'o
d-h d ----"l.ts of h
Eq. (33)

o s o t e approximation for I. given by
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depends upon the relative phase of Ap and Bp. Ap and
Bp must be chosen so as to normalize P and satisfy the
initial conditions. X„At/Ap' ' ' Bt/Bp' ' ' may still
form any one of the possible solutions of (8) and
the particular one chosen is chieQy a matter of con-
venience.

In Fig. 1 the solutions of L are plotted as a function
of the frequency for a number of field strengths. It is
based on numerical computations which are discussed
at the end of Sec. 3.3.

Although any of the possible solutions for L, could
be used in Eqs. (10) and (17) to give a consistent result,
one choice is most natural. This is the solution which
remains finite when the field intensity and, therefore,
P,p approaches zero. At any value of td, except for certain
discrete points, there is only one such solution; if L,
is this solution, it can be seen by Eqs. (12) and (14)
that the other solutions L,' and L,"become infinite as
P,p~0. When &p/cp, p= 1, —,', —',, there are two solutions
which remain finite. At these points we will choose the
one which is used at slightly larger values of co. The
darkened curves in Fig. 1 are the values of L, which
will be used.

Since X,+tp, =P,&I.„X, approaches —pp, for very
small field strength. Equation (10) shows that all com-
ponents except Ap and Bp then become zero, so that
Eq. (17) reduces to the unperturbed solution

itt~t+B p
A—abt—

Our choice of L, thus insures that for weak enough
fields Ap will be the dominant U, component, except
near the special points p&/pt, b= 1, p,

—„where another
component may be greater.

Up to now, we have concentrated upon obtaining a
general solution of the basic differential equations
which requires evaluating ) and the A's and 8's in Eq.
(6). In the next section, we will show how these quan-
tities may be used directly to calculate the eGects of
the rf field on an observed microwave absorption line.

In molecular beam experiments the values of interest
are the probabilities of finding the molecule in either
state at any given time. These are equal to

~
T, ~' and

~
T&

~

' in Eq. (1). From (17)

+~ (Ap)' +w (B tq'
IT'. I'=IApl' 2 I

—I+IBpl' 2 I

EA p) ~ KAp)

+2
~ (Ap) ( Ap )

even

+~ (B t$ (B
+/Bp/' P ( // /

cosh'cpt
t=—~ KAp) & Ap

+ +—2iAp/ /Bpi 2
&—~ &—~Ap Ap

&& cost (pt, +tpp+?X, +ltp) t+ei, (18)

+~ (Btp ' (A t p
'

IT I'=IAoI' ~ l
—I+IBpl'&(

KAp) EAp)

+00 + &i &i axZ
Ap Ap

+ A~gAg g,

+
~
Bp

~

' P cosh'cpt
&—~ Ap Ap

+oo +oo A —& Bk—l

+2IA. I!B.I E
&—&=~ Ap Ap

&& cosL(td, +tpp+2X. +ltp) t+0$. (19)

In Sec. 3.3 approximations are given to Eqs. (18) and
(19) in which only a few terms are kept.

3.2 Discussion of General Formulas

Before discussing approximations to the somewhat
cumbersome expressions given above, let us consider the
physical implications of these expressions.

In the absence of the external rf field, our system
consists of two energy levels having orthogonal wave
functions U and U~ multiplied respectively by the
exponential time-functions e '" ' and e '"".When the
field is turned on, the functions multiplying U and U&

are no longer simply exponentials, but are in general
complicated periodic functions of the time which may
be analyzed into a sum of exponential terms multiplied
by coefltcients, as in Eq. (17)

These terms will be referred to as making up a
"spectrum, "but not in the usual quantum-mechanical
sense of a series of stationary energy states or of transi-
tions between these states. In fact, since the interaction
of the molecule with the varying external field intro-
duces a term into the Hamiltonian which explicitly
involves the time, there is really no such thing as a
stationary state. Rather, there is a mixed (a,b) state
whose exact form is a function of the time.

In the following sense, however, it is useful to speak
of the spectrum which exists in the presence of the rf
field: Assume that a second field of higher frequency is
simultaneously applied to the molecule, and that this
field is so weak that its eGect on the states u and b is
negligible compared to that of the rf field. Now assume
that a third state, c, exists in the molecule, with the
wave function U, . When the frequency of the second
field is resonant with the interval between c and one of
the components of the mixed (u, b) state, an occasional
transition will be induced which may be observed as
the absorption of a photon from the second field. For
example, looking at Eq. (16), absorption will occur
when its frequency equals tp, +X„pt.+X,—2cp, tp, +X
—ken. The intensities of these absorptions will be pro-
portional to ~Ap)', )Ap~', ~A&(', respectively. It is
assumed that the matrix element of the electric dipole
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FIG. 2. The frequency spectrum of the components as a function
of the applied 6eld frequency, co, with a 6eld strength such that
co~/P, &= 5. The frequency of a component is given by its vertical
position while its intensity is roughly represented by the width
assigned to it. Very weak components are represented by single
lines. Components having wave function U are shown by solid
lines and components with wave function Ub by dashed lines.

moment between U, and U, is not zero. If these absorp-
tion lines are observed in a spectrometer, it acts as a
"spectrum analyzer" in the usual sense, i.e., an instru-
ment to analyze the frequencies and amplitudes of the
Fourier components of a time-varying quantity. This is
essentially what was done in the experiment to be
described in this paper; the amplitudes of the stronger
components being examined critically in the frequency
range near resonance.

Figure 2 shows what might be regarded as a typical
spectrum. With the field intensity held constant at a
moderate value (to,s/P, s= 5), the positions of the
various components are plotted as functions of ce/ce, s.
A rough indication of the relative intensity of a com-
ponent is given by the thickness of the curve represent-
ing it. The solid lines represent a-type components
which have the same wave function, V„as the unper-
turbed state "u". The dashed lines represent b-type
components. At any particular frequency, pairs of u-type
and b-type components alternate. Successive pairs are
separated by twice the frequency of the applied field.
At certain frequencies the separation between the two
components of a pair is a minimum, and somewhere
near this frequency the components have equal inten-
sities. However, if the rf field is not too strong one

component of each type is usually more intense than
all the others and the position of this component
changes slowly as the frequency is varied. One may
roughly think of this dominant component as being the
unperturbed state displaced by an average Stark effect;
the other, weaker components being some sort of
modulation side bands.

As discussed in the previous section, we have selected
the solution of L which insures that Ao will be the
largest component as the 6eld strength approaches
zero, so the dominant term in the spectrum is U+ pe'"'.
If the rf field is turned off, this becomes U&se '"".
Thus the Ao component undergoes a Stark shift equal
to X,+oi, or P,bL, In th. e presence of an actual field,
however, Ao is not dominant within small frequency
ranges near oi/oi, &= 1, s, —', . For example, if o~aQ/P, s= 5,
and a&/o~, s= —',, A s/As ——11.05, and A s remains greater
than Ao over the range —', ~&co&0.38. For weaker fields
the frequency at which A 3 and A p are equal approaches
o~,&/3. Similarly, A s is greater than As for a range of
frequencies above to/a&, &= s. At still lower frequencies
several components may be greater than Ao and the
picture mentioned above breaks down altogether as the
rf field becomes stronger and its frequency lower.

Our method of choosing L at different frequencies
does not succeed in making the situation look particu-
1.arly simple except for very weak fields. However, it is
no more complicated than any other method which
suggests itself, and it at least avoids some of the am-
biguity which would arise from other choices. In Sec.
3.3, we shall obtain approximate solutions by assuming
that higher components are negligible. In these solu-
tions L, is not many-valued and the situation is much
simpler. However, for strong rf fMlds these complica-
tions cannot be ignored if accuracy is desired.

Figure 2 is incomplete at the low-frequency end
because in this region the continued fractions converge
slowly and calculations are very time-consuming. The
general behavior in this range is apparent however. As
~ decreases, more and more components crowd into a
given frequency range on the vertical scale, and the
intensity is distributed more uniformly among these
components. Although there are more components
having appreciable intensity, these components are still
restricted to a band of width approximately 2P,b about
the unperturbed frequency of the levels. For several
special cases at very low frequencies, it is possible to
obtain simple expressions as in Sec. 3.5.

In the resonant region near o&/(o s=1, Ap aild A i
are approximately equal and all other components are
much smaller. An absorption line involving state "a"
therefore appears to split into two nearly intense lines
when the resonant rf Beld is turned on. This is the
basis of the "resonant modulation" experiments which
are fully discussed in Sec. 4.1.

The appearance of the spectrum in the high-frequency
range is quite anomalous. At all the lower frequencies
including dc, the most intense a-type and b-type com-
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ponents lie farther apart than the unperturbed levels.
But Fig. 2 shows that for ~)&~,~ the most intense com-
ponents are closer together than the unperturbed levels.
Thus, the familiar "repulsion of states" which occurs
in dc Stark eGect becomes an "attraction of states" if
a high-frequency Geld is used. As ~ is further increased,
the states return'to their unperturbed positions and all
eGects of the Geld become negligible.

3.3 Ayyroximate Solutions

If the strength of the applied GeM is not too great,
nor its frequency too small, one can obtain useful
approximate solutions which are simple functions of the
physical parameters by applying Eqs. (10) and (11)
and retaining only a small number of quotients in the
continued fractions.

First Ayyroxirnation

The simplest assumption is to approximate Eq. (11)
by

where Ap, Bp, and 8 are to be determined by the initial
and normalization conditions.

Two particular sets of initial conditions are of most
interest. The first is the case where a molecule was
definitely known to be in a particular state, say "b,"
at t=0. If we set IT, I'=0, ITbl'=1 and t=0, (24)
gives:

8+)/A p

8=0, Ap ——
) Bp—

1+(&+i/Ao)'
(25)

1g(a„/A, )'

The expressions for
I
T, l' and

I
Tbl' are quite simple

in this approximation. Equations (18) and (19) become

I
T.I'=

I
A

p
I'+

I
~p I'(~+i/A p)'
—2

I
A o

I I
~p

I (~+1/A p)

XCOS($(p)ab tp—)'+4Pab'$'t+0},
(24)

I
Tb I'=

I
A p I'(&+i/A p)'+

I &p
I'

+2
I
A p

I I
~p I (~+i/A p)

XCOS(P((dab PP) —+4Pab 3'~+~}

L
Q)ay G)

(20) Substituting those values into (24) and making use of

(23), we get:

This should give a solution which is nearly correct when
p)=p), b, for the first quotient of the first termof Eq. (11)
then dominates all of the others. As can be seen in Eq.
(10), this amounts to assuming that all the amplitude
coefficients except Ap, Bp, A y By are negligible.

Equation (20) is quadratic in I., and its solution is

0)a&
—

CO ag
—

GO

+4
2P~ Pab'

+for ~ (~.b,
—for ~ & ~.b.

where
Bp i/A p

= P,b/E~, — (23)

&.b=-' ((p~.b—~)~L(~.b —~)'+44.b'3' }

The sign is chosen according to the same convention as
for Eq. (21).

It can be seen from Eqs. (23) and (14) that in this
approximation

Ap Bp

when co=co q, and this is true for all Geld strengths.

In accordance with the discussion in Sec. 3.1, the sign
is chosen so that I., remains finite as p, b

—+0. It follows
from (21) that:

p (P)a+tdb)+ pP)+ pk((d. b P))'+4Pa—b'j *(22)-.
The relative intensities of the components may be
obtained from Eqs. (10) and (21).

where

4P.b' . V 4P.b' V

I
T, l'= sin' —/

I
Tbl'=1 — sin' —t, (26)

7' 2 7' 2

V =
I (~.b—~)'+4P.b'3'

cb
p g Qi (aa+ab) t( equi

(a+ t) t e, t( r 7) t}a
7

p.~ Pab &ab—+be (a+ b)t—'e$t( a+/)t+ e—ta(a+7—)t (27)
7 E~ P.b

Equations (26) and (27) have been derived by assuming
a system of molecules known to be in state "b"at I=0,
a situation which might occur in the case of a molecular
beam which has been prepared so that this initial con-
dition holds for all the molecules in the beam.

However, the conditions which must be applied in
the "resonant modulation" experiment are somewhat
diferent. Here we have a gas in a wave guide; the

Comparison of (26) with (5) shows that they are
identical when gyp'~=2p, bA, showing that this ap-
proximation is equivalent to assuming a rotating Geld

as Rabi' did. This solution is also equal to that of
Torrey. 4

It can be seen from (26) that the molecule oscillates
y/2tr times each second between the two states. When
(p=pp, b this oscillation frequency is p.b/2pr which is
directly proportional to the strength of the applied
field. If co4co,& the oscillation frequency is greater, but
the probability of finding the system in state "a"never
reaches one before it starts to decrease again.

Equation (17) can now be written
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1 1
IA()l =—

~2
I 1+(8+i/Ap)'j'*

This, together with (23) gives

I
Ta

I

'=-', (1—(2P,b/y) cos(yt+8) },
I Tb

I'=-', {1+(2Pab/y) cos(yt+9) },

(28)

(29)

where 8 is indeterminate for any particular molecule.
In considering the entire ensemble of molecules an
average must be taken over all values of 8. Equation
(29) then shows that at any time there are equal
numbers of molecules in the two states.

Equation (17) now becomes

~
—-', s(o&&+o)b) t

P=U (It e-,'t(a+p)t p itp &t2t(a y)—t}—
V2yE.b

U'~g—k s (~a+~b) t

v2yE b

(p p-', t(—a+))ty~ t8It t,——',i(+tt+y)t} (30)

In this form it is easy to determine the spectrum as
discussed in Sec. 3.2. If there is a third stationary state
of the unperturbed system, having the wave function
U, and for which l((bl tb E

I c) I' does not vanish, transi-
tions to this state may be induced by a weak oscillating
field of the right frequency. Equation (30) shows that
this will occur at two frequencies separated by y/2pr

sec ' and with relative probabilities
I
Eab/pabI'. Thus,

the a~c spectru~ which is a single line in the unper-
turbed system splits into two components in this ap-
proximation. Absorption lines involving state b will be
similarly split. When p)=(dab, Eab= p, b

——p/2 so the
spectrum of a-type states consists of two equally intense
components which are separated in angular frequency
by 2P,b sec '. The separation of the two components is
thus proportional to the intensity of the perturbing
Geld, but their relative amplitudes is independent of it.

When cp&cp, b, 1(.,b) p, b and one component is more
intense; however, when p»tp, b, E b&p, b and the inten-
sities are interchanged. Thus it appears that ~ & may
be determined by varying the frequency of the rf field

and observing when the two components are equally
intense. In higher approximations this relationship
does not hold exactly; the extent of deviation from it

molecules of the gas are colliding with each other and
the walls of the wave guide at random and have different
histories although they are all influenced by the same
rf Geld. All that we can say about a particular molecule
is that at a given time it is equally likely to be either of
the two independent states possible in the presence of
the rf Geld. Thus,

I
Ap I

=
I
Bp

I
while the phase angle 8

is undetermined. If this condition is applied and (24)
normalized,

I
2'. I'+ I2'bl'=1=2IApl'Ll+(~+i/Ao)'j

giving

depends upon the intensity of the applied field as dis-
cussed below.

L,=
tt)ab (t) Pab P)ab+P)

L+ +-
Pap 2p)

(31)

Ignoring L, in some of the denominators is justified
if we require a solution for which L,«p)/P, b Equat.ion
(31) may be further simplified to

M~I)) Go 2cogg
L, '+L — =0

Pab

which has the solutions

(32)

Mab M 1 (Nab M) M b
—(t)

+4+4 . (33)
2P,b 2 P,bP (t)ab+(t)-

This differs from Eq. (21) only in the last term inside
the brackets, and the same sign conventions are used.
Plots of Eq. (33) for several Geld strengths are given by
the dotted curves in Fig. 1.It can be seen that Eq. (33)
is a better approximation at the weaker Geld, but does
not show up the multiplicity of solutions or their rapid
variations in certain regions.

The amplitude coefFicients are:

Ap

A g

Bp p)ab tp Pab-
L,+ +-

2GOP.b

Ap

A+.2

Ap

A+i —p,b

)
~P tt)ab+ P)

~—2 Pab ++1

Bo 2' Ao

where L, is given by Pq. (33).
Very close to resonance when l(p, b

—
(pl «p, b, Eq. (33)

approaches (21), the rotating field solution. Even for
~= co ~, however, the counter-rotating component makes
its presence felt on the amplitude coefficients. Thus,
8+)/A p 1+(p b/2(d) when tt) = tt),b, showing that the
components A p and A & are not quite equal at resonance

Second Ayyroximations

The preceding solution is valid only for relatively
weak fields with the frequency near resonance. It is
simple to find a solution which is valid over a much
wider range, including intermediate and high-frequency
fields, and which reduces to the previous one near
resonance.

Equation (11) converges rapidly when P,b/p), b and
P,b/p) are «1. To the first power in these quantities it
can be written:
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in this approximation. Far from resonance where

(M~b
—M) 8M~b

))
Mab+MP.b'

(35)

Eq. (33) becomes

I.,= +
Mob+ M Mob

(36)

The condition of Eq. (35) may be satisfied for fairly
strong 6elds when cv)~, b but only for much weaker
6elds when ~&&co,b. In addition, the previous condition
for this approximation, P,b/M«1, must still be met.

In the intermediate and low-frequency ranges, Eq.
(36) or (33) gives a single-valued solution for I., to
replace the complicated one in Fig. 1. This should be
adequate except when it is possible to resolve a fre-
quency difference as small as that between Ao and A 3

these results as are the magnitudes of L, and the am-
plitude coefficients near resonance. The following pro-
cedure was used in calculating each point: A trial value
of I., was used and the two continued fractions in (11)
were computed, using two or three denominators in
each. If the sum of these two fractions did not give the
original trial value of L„a new value between the two
was tried. This was continued until the trial value of
L, and the computed value agreed to within one digit
in the second figure after the decimal point. This pro-
cedure was then repeated using several additional
denominators. When the result was unaffected by using
two additional denominators, the last value calculated
was considered final. The subfractions computed in
this 6nal calculation were recorded, for they represent
the values of 8+i/Ab, A~2/8~i, etc Th.is can be seen by
comparing Eqs. (10) and (11).

3.4a Solution Near Resonance

at their closest approach (Fig. 2). In this section, we will give a detailed discussion of
the solution including terms of second order in p, b/M, b

Better Approximations and p.b/M. Expressions will be obtained for the relative

o extend the solutions to include terms of order amplitudes of the components and a condition given
for equal intensity of the two main components into
which a level splits near resonance.

1 1 Making use of Eqs. (10) and (38),
(37)

ab

Mzb M

I,.+
P.b Ao

P.b—
cogb co 2P 1

p+ —p
p.b p'+1

(39)

p b2 2p2 —1
L~=p

4Mgb p +1
(38)

All other terms make contributions of third order or
higher. It has already been shown that L, is of zero
order near resonance and first order elsewhere. It is
only in the resonance region that the additional terms
in Eq. (37) give rise to a correction term in the solution
for L,. This solution, obtained in the Appendix 3.3a, is

which can be rewritten,

where

7

p.b' p.b' 2 —p'
K.b+ + p

2M 4M,b' 1+p'

K.b=+ (Mob M)+pabp—

(4o)

where p is the solution for I„given in Eq. (33). The
factor (2p' —1)/(p'+1) varies from —,'to 0 as j p~ runs
from one to 1/v2. Equation (38) may be used in the
region near resonance for which 2p' —1)0, but outside
this range the correction terms is disregarded.

A more accurate solution would retain more of the
fractions in Eq. (11) and include terms of higher order
in P,b/M, b and P,b/M. Third-order terms should show up
the rapid variations seen in Fig. 1(b) near M/M, b=0.40;
which are associated with the vanishing of (M,b 3M)/P, b-
in Eq. (11).It would be necessary to retain fifth-order
terms to represent in detail the behavior near M/M~b

=0.23.
Since the amount of algebra increases very rapidly

with the power of the solution, further calculations have
been done numerically. Figures 1 and 2 are based on

~+1 Pab
1

Ao E~L.

Pub Pab Pub (Pab 2 p .p+,I,— P.b I,
2M K~b 4M~b (K~b 1+p Kob

(41)

(&+i) ' P.b2 P.b P.b P.b'

+( Ab ) K~b M K~b 4M'

(3P.b'

Xi —2 P~ i . (42)
0 K~' 1+p' K,b j

Mab M 1 8Mobpnb

(M~b M) +
2 2 M~b+M

Use + if M&M, b and —if M &~M,b. To second order,
we may now write
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The other components are shown in Appendix 3.4a
to be

Ap &P

Pos Pab (Mas —M

+
4Mas E Pas

A+.2

Ap

8+3

Ap

B+l Pab Pab ( Mob+,I 2 +p I

P.,
A 2 A~2 Ps B~i P.bo

BP
)

Ap Gl&b
—360 Ap 4~b

A 2 8+2

Ap Bp 4Mgb

We deGne the "splitting, "
p, as the angular frequency

separating the components Ap and A ~ or Bp and 8+~
near resonance when they have approximately equal
intensities. Equation (17) shows that Ao and A l, the
two predominant a-type components, have relative
amplitudes B~l/Ao and are separated by

'r = 2Pab+a+Mab

Now make use of Eqs. (38) and (33)

3.5 Low-Frequency Perturbation

If the frequency of the rf Geld is low enough, the
problem may be treated quasistatically as outlined in
Sec. 2.6. We will first consider the part of the solution
which reduces to state "u" at zero rf field intensity.

For a dc electric Geld, the solution is

b

P=Ã U.— Ub-
+ (Mab/2)+ 2 (Mab +16P b )

Ma+Ms
)&exp i ——'(, '+16P, ')l t, (47)

2

where E is a normalization factor. If the frequency is
small and P,s((M, b, we may replace P b by P,b cosMt. Then

U Q A„ef(xa ba)t—

~ ' 4P.b2 cos2Mt
=EU,e'"'expI i — dt

I

"O MaS

2Pas') P.b' sin2Mt
=lvU exp iI M, — It exp i-

Mab ) — - Mab M

(Mab M) gMab Pab 2p
+

Pab Mab+M- 2Mab P +1

At ~=~.b
2-

8M~b

P,s' 2p' —1
p= 2Pasp 1 +Mab M&

4M.b2 p'+1
(45)

Clearly X,=M,—(2P,s'/M s), and

1 'll' (
A =—cv ' exp iI 222Mt

2x

Pas sll12Mtp

I
d(2Mt),

CO& b (d

2

A„=m.
I

&M,bM)

where k is any even integer and e any integer. The
integral is familiar, and A„may be written

Thus the U wave function has a spectrum given by

+ (P.s' l ( 2P, s'y
Ie """'exp iI M.—

EMabM) 4 Mab )

showing the frequency-shift of the main component and
the side bands, whose intensities fall oG as

I ~-(P.s'/MM. s) I'.

Equation (24) shows that the amplitude with which

the molecule oscillates between states u and b is propor-
tional to AoBo(B+l/Ao). In the case where a molecule

is initially known to be in one of the states this ampli-
tude is, from Eq. (25), (B+l/A o)2I 1+(B+l/A o)'j ' which

has a maximum when B+l/Ao 1. The frequency at-—
which this occurs may be obtained by setting B+l/A o 1——
in Eq. (50) of Sec. 4.2. Solving this equation gives the
condition for resonance:

P b2

(46)

where Ace, b is the energy difference between the two
levels. As was pointed out in Sec. 2.4, this result has
been obtained by Bloch and Siegert. 5 For stronger 6elds,
the shift in resonance may be calculated numerically
from Eqs. (10) and (11) by determining at each field

strength the frequency at which B+l/A o equals one.

This is the solution for second-order Stark. eGect
described and observed by Townes and Merritt.

For Grst-order Stark eGect, by setting ~,b
——0 in Eq.

(47) and proceeding as before one can show that the
main component is unshifted while the side bands are
separated by the ~ instead of 2M and fall o8 as

I J„(2P,b/M) I
2. When M s and P,s are of comparable mag-

nitude, there are no such simple expressions for the
positions and intensities of the components.
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IV. RESONANT MODULATION

4.1 Discussion of Resonant Modulation
Experiment in OCS

NO rf:
FIELD G+ I

(b)
&-&ab

0+I

(c)
&&&cb

Do «e[»»

G
I

G

38.28 Mc.

0+I
ii

Go

D I0
24,380.8 Mc.

24,355.5 Mc.
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V Aql
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Bo

A+2

Bo---
l2.76Mc.
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A-I
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FIG. 3. (a) The unperturbed OCS energy levels of interest in the
resonance modulation experiment. (b) The components are shown
when the applied field frequency is slightly above resonance. The
transition within groups (1) and (2) occur at the same microwave
frequency. (c) The components are shown relabeled according to
our convention when op&cy, q.

if the strength of the field is held constant while its
frequency is varied through resonance, Grst one and
then the other component becomes more intense. This
is illustrated in Fig. 2.

In the Grst approximation, valid for weak rf Gelds,
the relative intensity of the two components is inde-
pendent of the amplitude of the Geld, the two com-
ponents being equally intense when v is exactly equal
to s b or v,~. This suggests that one could measure v, b

directly by determining the rf frequency at which the
two components are equally intense. However, the
higher approximations in Sec. 3.3 predict, and experi-
mental results conGrm, that for greater rf Geld strength
the relative intensity of the components depends upon
field strength as well as frequency. One would like to
use as weak a GeM as possible in order to minimize the
dependence on Geld intensity and also because, as dis-
cussed in Sec. 4.3, the resonance is sharper for weak
Gelds and one could expect to measure v b more accu-
rately. However, as the field strength is decreased, the
separation of the components also decreases. Although
it has been assumed in the theory that the lines are
perfectly sharp, they, of course, actually have a Gnite
width, in our case about —,

' megacycle, due mainly to
pressure broads. ing. If the intensities of the components

"H. H. Nielsen, Revs. Modern Phys. 23, 90 (1951).
'2P. Kisliuk and C. H. Townes, Table of Microwave Lines,

National Bureau of Standards Circular 518, 1952 (unpublished)."R. H. Hughes and E. B. Wilson, Phys. Rev. 71, 562 (1947).

Measurements were carried out near resonance to
check the theory and also to determine the practicality
of using resonant modulation as a precision method of
determining the energy - difference between certain
molecular levels. For instance, one might wish to deter-
mine the interval between two hyperfine levels corre-
sponding to the same rotational angular momentum by
observing a microwave transition to another rotational
state while inducing transitions between the hyperGne
levels by an rf Geld.

As a first test, however, it was decided to use the
l-type doublets of the linear molecule OCS (carbonyl
sulfide). These levels satisfy our assumption of isolated
pairs of states and also provide fairly strong microwave
absorption lines to observe. They are also uncomplicated
by nuclear interactions.

Figure 3(a) shows the levels of the OCS molecule
which are of interest. The measured microwave fre-
quencies of the two allowed transitions a —+c and
b ~ d are indicated on the diagram. The energy inter-
vals (a, b) and (c, d) are much smaller; they arise from
the vibration-rotation interaction in which coriolis
forces remove the degeneracy between the two orthog-
onal bending vibrations of the linear OCS molecule. "
These interactions increase with rotational angular
momentum, J, as J(J+1) so the (c, d) separation
should be three times as great as for (a, b) On.
the basis of this assumption, and previous measure-
ments" of the frequencies u —+ c and b —+ d, the (a,b)
and (c,d) separations are determined to be 12.26 Mcps
and 38.28 Mcps respectively.

The resonant modulation experiment is carried out
by observing the two absorption lines u —+ c and b —& d

in a conventional Stark-type" microwave spectroscope
while the rf Geld is applied to the molecules. A schematic
diagram of the apparatus is shown in Fig. 5. With the
OCS gas at a pressure of about 10 ' mm in the wave
guide of the spectroscope, an rf Geld with an amplitude
of several volts is applied to the same septum as the
100 kc square-wave voltage used in spectrometers of this
type. This subjects the gas to a fairly uniform rf field
of the order of 10 volts-cm intensity. The 100 kc
square-wave Stark voltage simultaneously applied to
the septum plays no part in the resonant modulation
process, but is merely part of the microwave detection
system.

When the frequency, v, of the rf voltage is near either
s b or v,~, each absorption line appears to split into two
components. The relative intensity of these com-
ponents is sensitive to the frequency of the rf Geld, and
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are to be compared their separation must be comparable
to this line width, which sets a lower limit on the rf
voltage which can be employed.

A Stark-type microwave spectrometer, while sen-

sitive, is not very well adapted to measuring intensities
of absorption lines. It was therefore desirable to mini-
mize difhculties by con6ning all intensity comparisons
to deciding when two components were equally intense.
The experimental procedure was to hold constant the
intensity of the rf voltage as measured on a vacuum-
tube voltmeter and then vary the oscillator frequency
until the two components appeared equally intense. This
frequency was recorded as vp, the rf voltage changed and
the process repeated. In this way, a plot of vp as a
function of 6eld strength was made which, when extra-
polated to zero field strength, gives the actual value of
v b. This complicated procedure might be simplified if
one knew the relationship between vp and the Geld

strength. It might then be possible to determine v b

with only one or two measurements. In this connection
two problems need to be discussed, one theoretical and
one experimental.

The first is that in our experiment, one does not
observe the perturbed spectrum of a pair of levels by
means of transitions to a state which is completely
unaffected by the rf field. For example, when observing
the a ~ c transition (Fig. 3) in the presence of an rf
6eld which is resonant with v b, the field affects states
"c" and "d" as well as "a" and "b." Although the
eGect of the rf field on "c"will not be so great as on "u"
because v is not resonant with v,z, it may still be great
enough to change the results and must be calculated.
This is done in the next section.

The experimental difIiculty arose from the fact that
we were unable to make a reliable measurement of the
amplitude of the rf voltage. Equation (45) relates the
separation of the two components, or "splitting" to the
amplitude of the applied voltage, assuming that one
knows the matrix element between states u and b. The
matrix elements in this case can be calculated" and an
experimental check of the above relation gave a dis-

crepancy of the order of 30 /q. It was assumed that this
discrepancy was due to the vacuum-tube voltmeter
giving an incorrect reading of the actual effective
voltage across the wave guide. Smaller inconsistencies
between separate measurements of the voltage also
indicated that they were unreliable. As the basic
purpose of this experiment was to study the behavior
of "resonant modulation, " rather than to measure
frequency intervals, it was decided that the "splitting"
itself would be used as means of determining the voltage.
This "splitting" then was directly measured by using
a microwave frequency standard. This is a rather incon-
venient procedure which in eGect nulli6es one of the
advantages of using resonant modulation; namely, the
ability to make frequency measurements in the rf
rather than the microwave range. It seems likely that
a way to make reliable voltage measurements could bc

found and the need for a microwave frequency standard
eliminated.

4.2 Theory of Resonant Modulation in OCS

Figure 3 (b) shows the spectrum of the i-type doublets
of OCS when subjected to an rf Geld resonant with v, b.

The spectrum of the (a, b) state is characteristic of the
resonant condition. The (c, d) spectrum is nonresonant
since v=v, q/3. All the A components have the same
wave function, U, (x,y,s), as the unperturbed "a"state.
Similarly, the 8, C, and D components have the wave
functions of the other unperturbed states.

The components Ap and A y, Bp, and 8+~ are about
equally intense and occur in pairs which are "split"
by a frequency difference which is very nearly propor-
tional to the rf field intensity. The magnitude of this
"splitting" is given in Eq. (45). The weaker components
such as A+2 and A+~, 8 2, and 8 j also occur in pairs
of approximately equal intensity. In the upper state
the intense Cp and Dp components are shifted relatively
little from their unperturbed positions, while the other
components are weaker by a factor of the order P,d/~, ~.

For the 1-type doublets, the matrix elements of the
dipole moment vanish, except between the states a
and c or b and d. Therefore, as shown in Fig. 3(a), only
two microwave absorption lines are observed when
there is no rf field. In the presence of the field, corre-
sponding to each of these lines, absorption occurs at
two diGerent microwave frequencies which are separated
by the "splitting" frequency, y/2~. There are many
pairs of components separated by each of these fre-
quencies, but we will consider only the five pairs for
which the microwave absorption varies as the second
power or lower of the rf field. The problem is to calculate
the precise frequency, vo at which transitions (1) and
(2) are equally intense.

In absorption spectroscopy, the radiation used is
usually so weak that it induces transitions in the ab-
sorbing atoms or molecules of a gas at a much lower rate
than collisions occur between the molecules. As dis-
cussed in Sec. 2.2, the radiation then produces very
little change in the relative populations of the molecular
states. Under these conditions the fraction of the radia-
tion absorbed at the peak of an absorption line is inde-
pendent of the intensity of the radiation and is propor-
tional to

~ Q, [ p ~
f,) ~

' where Q. ~ p [P,) is the matrix
element of the electric or magnetic dipole moment
between the initial and 6nal states. For example, in
Fig. 3(a) microwave absorption lines are shown for the
transitions from state a to c and from b to d, when there
is no rf 6eld. The electric dipole matrix elements and
hence intensities of these lines are equal.

In the presence of the rf 6eld, the 7= 1 state has the
wave function

%.g= U T (/)+UpTy(t),

where T, (t) and T&(/) may be analyzed into Fourier
components as in Eq. (16). Similarly the 7=2 state
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B+1 D+1 A+2 D+1 B+3 B—1 D—1

Ao Co Ao Co Ao Ao Co
(49)

Now, making use of such identities as

B+0/A o= (B+2/A+2) (A+2/B+1) (B+1/A 0),

we obtain

has the wave function

4',d= U,T,(t)+ UdTd(t).

Figure 3(b) shows the "spectrum" corresponding to
those two complex states when cv is slightly greater than
co,~. Each horizontal line represents a Fourier component
of T, Tb, T„or T&, its frequency is indicated by the
vertical position of the line.

When the rf field is on, the probability of a J= 1 —+ 2

transition is still proportional to the square of the dipole
matrix element between the initial and final states,
although these are no longer stationary states. Thus
the absorption is proportional to

IH'bl s E-e'""'I+")I'

where E e'""I is the microwave field. In Fig. 3(b), we
see that components B+1~cand Dp are separated by the
same frequency as A p and, 'C 1, B 1 and D+1, etc. If the
microwave frequency is adjusted to resonate with this
frequency, absorption occurs which is proportional to

I (BblDO+ B 1Dyl)p—bd+ $A OC 1+B —1D+1+—A 2CO)p—

Other pairs of components which are separated by the
same frequency are disregarded here because their con-
tribution is small. The intensity of transition (2), which
occurs at a frequency p/22r greater, is given. by a similar
expression. For this set of levels pbd=p. „which may
be derived from the theory of the I-type doublets but
is also demonstrated by the fact that the two microwave
lines are observed to be equally intense when there is
no rf 6eld.

The condition that the two absorption lines (1) and
(2) be equally intense may be written

A+2C+1+B+1D0+A 0C—1+B—1D+1+A—2C0

=AplC+1+BpDp+A 1C 1+B 2Dpl+A 2Cp. (48)

Divide Eq. (46) by Dp and make use of the relations
between coeflicients in Eq. (15). Also set Ap Bp and-—
Cp=Dp. Then

B+1 D+1 B—1 D+1 A —2 A+2 D—1

+ +
Ao Co Ao Co Ao Ao Co

For the I-type doublets" in OCS, P,d=P,b/3 and
ol,d

——3ol,b. Equation (52) can then be written

5 (P.»' 4 (P.»'
vo=v b+ I I +

3 v (b2 l)p3v b (22I ) (53)

The measured quantities in our experiment were vp and
the "splitting, " y. By solving Eq. (45) for P,b as an
explicit function of 7, one obtains

y/22r
(54)

2v, y 64m'v~t, 2

(22r) 2(v.b
—v)' v.b v—

21+ +

Figure 4 is a plot of the measured values of vp against
p b/22r. The values of p b were obtained by measuring
the "splitting" with the aid of a microwave frequency
standard and then using Eq. (54). The theoretically
predicted curve for vp as a function of P,b is also shown
in Fig. 4.

If v, b is set equal to 12.78 Mc, Eq. (53) becomes

(P.b't ' (P.bl '
78+o 1311 —

I + 0 oo82l —
I (55)

&2 ) &2 )
4.3 Stark Effect Above Resonance

The formulas for the A and B coeKcients, which apply
in the resonance region, are given in Eqs. (41)—(44).
The C and D coefficients may be obtained from Eqs. (34)
by replacing abye and A by C; also 6 byd and Bby D.
FOr ezamPle, COrreSPOnding tO B 1/AP ———Pab/Olab+Ip
one obtains D 1/Cp —p——,d/ol, d+ol.

We will substitute the appropriate expressions for
the coefficients into (49) and solve for the frequency,
Ipp, at which transitions (1) and (2) are equally intense.
Iii Eq. (50) B+1/A p is approximately equal to one; but
the other coefficients are smaller, being of the order
Pab/OIab Or Pcd/OIcd

In Appendix 4.2a, it is shown that near resonance
Eq. (41) can be simplified to

B+1 Pab Pab &ab 00 (1 Pab $ 1 (Ppab OI)
=1+ +,+ I

-+ I+-
A p 2olab 8 plab2 pab &2 40Iab) 8 p, b'

(51)

where terms up to the second power of the 6eld strength
have been kept. Equation (50) is then solved, giving

5 p.b2 4P.bP.d P.bp 2P.b'p. d
~0=~.b+- + + + (52)

3 Ppab pled Ppab OIab OI b(paled Olab)
2

B+1 D+1 B+3 A+2 A+2 D+1 A+2 D—1
1— +

Ap Cp A+2 B+1 B+1 Cp B+1 Cp

D+1 A 2B1 B 1D+1 B1
=1— — — +

Co B—1 Ao Ao Co Ao Cp
(50)

In Sec. 3.2, it was mentioned that when co&cv ~ the
separation of the states appears to be less than in the
absence of the field; this can now be proved. Equation
(36) shows that i., is negative above resonance and it
follows from the definition of I. that the Ap and Bp
components are separated by less than co &. In addition,
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FIG. 4. Measured and calculated values of vp as a
function of the 6eld intensity.
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byEq. (34), A l and 8+I are seen tobecome small when
co))co,b, showing that Ao and Bo are the dominant corn-
ponents. This anomalous behavior has been experi-
mentally observed. Although the microwave absorption
lines in Fig. 3(a) move closer together if a constant
electric 6eld is turned on, they move apart if an rf 6eld
of about 16 megacycles is applied.

4.4 Discussion of Experimental Results
In Fig. 4, the theoretical and experimental results

are compared. The solid curve is a plot of Eq. (55)
while the circled points were obtained experimentally.
P,b was set equal to 12.78 Mc in Eq. (55) because this
is the value calculated from the frequencies of the
microwave lines" when it is assumed in accordance
with the theory of l-type doubling" that a),g=3co,b.

The theory and experiment are seen to agree within the
experimental uncertainty. The data seems to indicate
that v b ——12.76 Mc might be a better fit than v b ——12.78
Mc, but this difference is not experimentally significant
here.

The estimated maximum experimental error which is
indicated by the vertical lines on the 6gure increases
with the 6eld strength for several reasons. One is that
the components are separated by a greater frequency
when the field is stronger; the greater the separation
between the components the more likely it is that
spurious intensity differences will be introduced by
reQections in the waveguide or by variations of the
power output of the klystron with frequency. In addi-

tion the intensities of the components vary more rapidly
with rf frequency when the 6eld strength is small. A
given uncertainty in determining the intensities of the
components thus results in a smaller frequency uncer-
tainty for a weak rf field than for a strong one. Let R
be the minimum detectable fractional difference in
intensity of the two components. It follows from Kq.
(30) that

[~.b—~, )
= (R/2)q.

For a given E, the error in
~
~cb—

&uo
~

is thus proportional
to the "splitting, " y. For example, if the components
can be made equal to within 4 jo 2=0.04 and if the
"splitting" is one Mc, the uncertainty in ~0 is about
0.02 Mc. This is approximately the uncertainty is
measuring microwave frequencies when the line width
is of the order of —', Mc. If the line width could be
reduced, a weaker rf 6eld could be used, thus reducing
the "splitting" and increasing the resolution.

To summarize: resonant modulation provides a
method of measuring the energy difference between two
energy levels. The precision is approximately equal to
that with which the microwave absorption line can be
located. However, if it is possible to measure accurately
the voltage applied to the wave guide, the energy
separation between closely spaced levels can be obtained
by making frequency measurements in the rf rather
than the microwave region. In addition, under some
conditions data could be obtained by resonant modu-
lation which could not be obtained by other techniques.
For example, in Fig. 3(a), if there were no observable
microwave transition from b to d, or the relationship
between cu,b and +,q were not known, one could not
measure cv,b. Using resonant modulation, however, it is
possible to determine co,b by observing a single micro-
wave absorption line.

4.S Details of the Experimental Apparatus
and Proced. ure

Figure 5 is a schematic diagram of the experimental
arrangement used. The apparatus outside the dashed
area is a conventional Stark-modulation microwave
spectroscope. The apparatus inside the area was added
for this experiment. It consists simply of an oscillator,
a vacuum-tube voltmeter, and a circuit for tuning out
the capacitance of the wave guide.

The oscillator is a standard Hartley circuit using an
829 tube and having a number of plug-in coils so it can
oscillate in the 11—14 Mc region near v b and also the
35-45 Mc region near v,q.

The vacuum-tube voltmeter used was a General
Radio type 1800A which is claimed to be accurate for
frequencies much higher than any used in this experi-
ment.

The tuning circuit was used to increase the impedance
presented to the oscillator by the capacitance between
the wave guide and septum. This is about 1000 ppf
which represents a reactance of about 12 ohms at 13 Mc
and 4 ohms at 39 Mc. If 10 volts were maintained
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across the septum, rf currents of about 0.83 and 2.50
amperes would be drawn, requiring a sizable oscillator.
Instead, in the 13Mc region this wave-guide capacitance,
C, is resonated with a circuit consisting of an inductance
and a small variable capacitance in series. These are
I. and C' in Fig. 5.

The effective capacitance across the coil is the series
combination of C and C' which is about equal to C' if
C'((C. The product I.C' is adjusted to resonate with
the oscillator frequency, thus increasing the impedance
of the oscillator's load by a factor equal to the Q of the
resonant circuit.

The wave guide is about~1 meter long and is fed near
its center. Its eGective length of 0.5 meter is thus con-
siderably less than a quarter-wavelength even at 39 Mc
so the rf Geld strength is fairly uniform along its length.
The design of the septum, as shown in Fig. 5, is such
that the Geld is also quite uniform over the cross section
of the guide.

The 250 ppf condenser isolates the rf oscillator at low
frequencies and prevents the output coil of the oscillator
from short-circuiting the square-wave generator. Simi-
larly, the 30 ph inductance keeps the square-wave
generator from loading the circuit at 13 or 39 Mc. The
150 ohm resistor critically damps the resonant circuit
formed by this inductance and the wave-guide capaci-
tance.

The microwave frequency standard used has been
described before. "

'4 See for example: S. Geschwind, Ann. N. Y. Acad. Sci. 55,
731 (1952).

APPENDIX 3.1a. PROOF OF EQS. (10)

In Eq. (8) assume that if k and l are greater than
some integer j, AI, and 8& are suKciently small to be
neglected. Assuming j is odd and positive

Ag(; g)

(j—1)(o 1

La+ ~j
P.b P.b

L+ wj
P~b Pab

A+&; » ——8+(; ». (2a)

ACKNOWLEDGMENTS

The authors are very grateful for help from Mr.
George C. Dousmanis, who carried out the numerical
calculations reported here, and from Miss Carlotta
Belier who assisted with preparation of the manuscript.
We would also like to thank the many members of the
Columbia Radiation Laboratory who contributed to the
construction and maintenance of the experimental
apparatus.



720 S. H. AUTLER AND C. H. TOWNES

Now continue in the same manner

Substitute Eq. (2a) into (3a)

Crab 07

L.+ w(j —2)
P.b P.b

~+(i—2) — ~+ (i—3) ~+(i—~) ~ (3a)

~ab
L.+ w(j —2)

P.b P.b Gl

L.~(j—1)
P,b

Continuing this procedure, we can generalize to

8+(~- )

Crab jM
L,+

Pab Pab

=~+( -3) ~

A +(j—m—1) ~ab
L.+ W (j—m)

P.b P.b

L.W (j—m+1)
P, b Crab jGO

L,.+
P.b P.b

~+(~.—)

&+(j- -~) co 1
L,W(j—e)

P.b &Dab GO

I.,+ W (j—m+1)——
P.b P.b jG0

I-.w

where m is any positive even integer and.--e any positive
odd integer. Now let j—ms=i and j—m=k, and let
j—+~ while holding k and l constant. Then the above
approaches Eq. (10).

APPENDIX 3.1b. EVALUATION OF EQ. (11)
WHEN a=0

When o&=0 Eq. (11) becomes

Crab

This is equivalent to the quadratic equation

whose solution is

L,'+ L,+4=0,
ab

1
~ab ( ~ab $

L, = — &
/ /+4

2P, b (2P,b)

This is the same result which can be obtained by direct
diagonalization of the time-independent Schrodinger
equation.

ab

~ ~ ~

APPENDIX 3.1c. DERIVATION OF OTHER
SOLUTIONS OF EQ. (8)

Assume that L,' and Bb', Ab' satisfy Eq. (8)
and that they are related to another set of quantities
I gga ~ ~ gk ~ ~ a by

Since this continued fraction repeats indefinitely,
eliminating a finite number of terms does not change
its value, and the above equation can be written

b I
2

07ab GO

L,'=L, , B('——Ai (, —Ab'———Bi b. (12)
P.b

Since the primed quantities are assumed to satisfy (8)

kco

~k — ~k—1 ~k+1,

ab
L.'+ lba B(' —A (+g' —A—(+g'. ——

ab
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Now substitute the unprimed quantities to determine Now clear of fractions and make use of the relations
what equations they must obey.

coab (k 1)oo
La+ +

P.b P.b

M Mab

1

Mab
2

Mab M

(/ —1)o)
K,+ ~ 1—l ~1—l+1 ~1—l—1

Taking the complex conjugate of these equations, and
rewriting by letting l'=1 —k and 0'=1—/, we have:

ab-
~k' ~k'—1 ~k'+1)

Deriving Solutions of Eq. (9) from those of (8)

Rewrite (9),

Mab lM
Lb-

P.b P.b

Pab

~l—1 ~l+1

BQ So

~a 1 ~k+1

Bo Bo

Now assume Lb, Ai/Ao, Bb/Bo, satisfy this
equation and are related to the quantities L„Ab/A p

Bi/Ao . , by Eq (15).
Then substituting for Lb, ~ above, one obtains

EM 8 l ~ l+1 ~ l 1
L.+ +

Pb Pb Ao Ao Ao

k ~k+1 ~k1
L.+

Pgb Ao Ap Ap

which is (8) again. Thus we have proved that the new
set of quantities defined in Eq. (15) is a solution of (9)
if L, A b/A p

' ', Bp/A p
' ' satisfy (8).

APPENDIX 3.3a. SOLUTION OF EQ. (3V)
TO SECOND ORDER

Equation (37) can be written as

Mab l M

L.+ — Bi = —Ai -i—Ai+i
P b Pb

These equations have the same form as (8) so we have
shown that the primed quantities in (12) define a new
solution of (8), provided that the unprimed quantities
from which they are derived form a solution.

In a similar manner, it can be shown that from each
of these solutions can be derived an infinite number of
other solutions, of (8), which are given in Eq. (14).

~ ~ ~

M ba+Oi 2piab 467ab

neglecting terms which are small when (~,b
—o~)/o~, b((1.

We then have

Pab ppab & ~ah Oi —PabL' 1+ + L.=1+ +
2Mab - pab Mab+M 4(d ba

This quadratic equation has the solutions:

Poab Oi Pab Oiab

2Pab 4piab Pab

Pab ( (Oiab Oi) la- 1—
] 1+

2 2y Nab 0 Pgb
where

(~ab Op) 8piab
y=+ +

Pab poab+pi

After expanding the square root, this can be written:

Pab Oiab Oi 1 (&at PO)—
La= py+

4oab'- Pab y P.b' y

where p~ are our previous solutions for I.„as given by
Eq. (33). The upper signs are to be used when ~(oo.b

and the lower signs when M &~ M b.

Substitute for y in this equation:

Mab M

1 2 pg
P.b' P.b

L,=p~
4Mab Mab M

24+)'+
ab

Remembering that p satis6es Eq. (32) and substituting
for L(o~,b

—&o)/p bjp, one obtains Eq. (38). In this step
the terms (~,b

—co)/(oi b+o~) (P,bo/4&v, bo)p are neglected
for they are always of higher than second order.

The correction term in (38) should be omitted when
2p' —1 becomes negative, for then its contribution
becomes comparable to third-order terms which have
already been omitted.

APPENDIX 3.4a. AMPLITUDE COEFFICIENTS
NEAR RESONANCE

The other amplitude codFicients in the resonant
region are:

8 1 A+1

Bo L.+ (~.b+~)/p. b+
oiab oo Pab PabL+ + +

Pab 2pp 4&dab

P.b'

Poab+pi (boa b+-Oi)
L.+
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Using the approximation for p, b/(~, b+co) again leads to
Eq. (43). Similarly:

P,d

2 (cp,d —cu,b)J

~ab —O

SPob'

Ayp 8 2 1 ++1 ++1 pab Pab+ P
A p Bp L. 2—pp/P. b A p A p 2' 4pp'

A+p &+i P.b P.b' p2(~ b
—~)

+ +~I
Ap Ap 2u&.b 4f,bp& p b )

APPENDIX 4.2a. CALCULATION OF (8+jl/Ap TO
SECOND ORDER NEAR RESONANCE

We wish to employ Eq. (41) and obtain a more
explicit solution for B+~/Ap. First p b/E, b must be
calculated. Use Eq. (40) and expand the radical. Then,
f01 co ~~co,b

P,d p p P.bP.d

This simpli6es to:

X' 1 Pb Pd—+X -+-- +
8 2 4ppab 2 (Mcd —

Mgb)

P.b 5 P.b' 3 P.bP.d

2ppab ~cd ~ab 8 &ab 4 ~gb(~cd+&ah)

PPcd Cdab 4~ah 2Mab (~cd ~ab) 2~ab (~cd ~ab)

Mab —M Crab —
CO 03ab—Ed

2p b 2 ((dab+~}
Crab

—
GOOX=--

Sy taking the reciprocal of this equation, one obtains:
By ignoring the X' term temporarily, one obtains:

P b r &u, b
—(u ((V b

—rO) CO, b+ra
1 4P,d 3 P,b'

+
lcd PPab 4 PP ba(~cd ~gb)

8p p

&ab
Use this expression in Eq. (41) and also make use of
the fact that (2p' —1)/(p'+1) =xp very near resonance. To se~o~d order.
Then Eq. (50) follows.

Calculation of ~o to Second Order

Substitute Eqs. (50) and (51) into (49):

P.b P.b' P.d P-bP.d P.b'

1+ + + +
2~ab S~ab PPcd ~ab 2~ab(PPcd ~ab) 4~gb

pgbpcd &gb &p 1 Pat+ +
2PPab(~cd ~ab) Pab 2 ~gb

P.b' 1&p.d' 8P.bp, d(X')'=
'

+ '
+

ab cd ab ab +cd &ab

Now subtract (X')'/2 from X',

P.b 4P.d P.bb 2P.bP.dI=—
ab cd ab ~ab +ab (+cd ab2

from which Eq. (52) follows.


