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Ferromagnetic and Antiferromagnetic Curie Temperatures*t

H. A. BROWN) AND J. M. LUTTINGER)
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(Received July 7, 1955)

The methods of calculating Curie temperatures used by Opechowski and Weiss are extended to higher
spin values. Using the former, Curie temperatures are found for the face-centered, body-centered, and
simple cubic and the hexagonal and quadratic layer lattices for spin —', to 3. Weiss' method is applied to the
body-centered and simple cubics for spin -', to 2 and to the quadratic layer lattice for spin —,

' and 1.Numerical
results show good agreement between the two methods for three-dimensional ferromagnetic lattices. How-
ever, the Opechowski method fails to locate the antiferromagnetic transition and predicts a transition for
the two-dimensional lattices while the Weiss method does not. A classical-spin approximation is investigated
and is found to give Curie temperatures within a few percent of the quantum-mechanical results for spin 1
or greater.

I. INTRODUCTION

'HE Heisenberg model of a ferromagnetic' provides
a means of calculating Curie temperatures which

has the advantage of involving only one parameter, the
exchange integral, while retaining some of the physical
properties of the system. The present work is concerned
with the extension of two previous calculations, both
based on the Heisenberg model, to the values of spin
greater than —,'. These two methods begin with the same
Hamiltonian and arrive at predictions of the Curie
temperatures by alternate routes; the one proceeding,
without further assumption, to find the high-tempera-
ture series expansion of the partition function, whereas
the other, by means of a physical approximation, treats
a simplified problem in semiclosed form. The agreement
of the results of the two methods would seem to
indicate that they are both reasonably close to the
exact solution.

The first method was suggested by Kramers' and
carried through by Opechowski' and is hereafter re-
ferred to as the K-0 method. We begin with the
Heisenberg Hamiltonian for a lattice of E atoms with
nearest-neighbor (n.n. ) exchange:

3C= —2J p S,"S;—gpHp p Ss, 0)
where S, is the spin operator for the ith atom, J the
exchange integral, apd Ho the external field. The first
sum is over all pairs of n.n. atoms and the second over
all atoms. The partition function,

Z= trace exp( —3C/kT), (2)

is evaluated by expanding the exponential and evalu-
ating traces of successively higher powers of (X/kT).
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The Curie temperature, which will manifest itself as a
singularity in the partition function or one of its
derivatives, is inferred from the behavior of the power
series expansions, which, for practical reasons, are
limited to four or five terms.

The second calculation was performed by Weiss4

using a technique due to Bethe' and modi6ed by
Peierls. ' The Bethe-Peierls-Weiss (B-P-W) method
replaces the Heisenberg Hamiltonian for the entire
crystal by the corresponding Hamiltonian for a cluster
formed by an atom and its n.ns. Using the simplifying
assumption that the interactions of the cluster with the
rest of the crystal can be replaced by an internal field,
HI, the cluster Hamiltonian is then

X I= —2JSp'g S,—gpHI'g S,—gpHp'Sp, (3)

where Sp is the spin of the central atom which has e
n.ns. with spins S, (i =1, e). Using BC.I instead of 3C,
the cluster partition function can be obtained as a
power series in the fields Hp and HI, but in closed form
with respect to the exchange energy. The Curie temper-
ature is located by the existence of a spontaneous
magnetization, the internal field being eliminated by a
consistency condition.

Both of the above methods have been somewhat
limited in their application. The K-0 method has been
carried to the fourth stage in the approximation (i.e.,
the traces of X" were found up to m=4) for the close-
packed hexagonal and face-centered cubic (f.c.c.) lat-
tices by Opechowski, ' and for the simple cubic (s.c.) by
Zehler, ' who also includes some numerical corrections to
Opechowski's work. The B-P-W method has been
applied to the ferromagnetic b.c.c. (body-centered
cubic), s.c., h.l. (hexagonal layer), and q.l. (quadratic
layer) lattices by Weiss and the antiferromagnetic case
has been treated by Li.' All this work is for spin —,

'
except for a calculation by Weiss using the b.c.c. lattice
with spin 1, and a calculation by Van Vleck, ' who

' P. R. Weiss, Phys. Rev. 74, 1493 (1948).
' H. Bethe, Proc. Roy. Soc. (London) A150, 552 (1935).' R. Peierls, Proc. Roy. Soc. (London) A154, 207 (1936).
r V. Zehler, Z. Naturforsch. Sa, 344 (1950).
P Y. Y. Li, Phys. Rev. 84, 721 (1951).' J. H. Van Vleck, J. Chem. Phys. 6, 105 (1938).
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carried the K-0 method to the second approximation
for arbitrary spin.

In the present work, the K-0 method will be carried
to the fourth approximation and the susceptibility
obtained as a function of the spin quantum number, S,
for the f.c.c., b.c.c., s.c., h. l. , and q.l. lattices (Part II).
Numerical solutions for the Curie temperatures are
found for S=—,

' to S=3. The B-P-W method will be
applied to the b.c.c., s.c., and q.l. (the method cannot
be applied, in the present form, to lattices in which
n.ns. to a given atom are n.ns. to each other) and
numerical solutions found for S= sr to S=2. (Part III.)
Finally, a classical-spin approximation is investigated
(Part IV) which allows the extension of the 8-P-W
method to higher spin without the need for machine
computation. A discussion of the numerical results is
given in Part V.

II. KRAMERS-OPECHO% SKI METHOD

Since the procedure is adequately explained by
Opechowski, we will give only a brief outline. By the
rules of statistical mechanics, the zero-field suscepti-
bility per atom is

kT f r)' lnZ) g'P' (r)' lnZq
x=

N 4 BHs' ) as=o NkT & W.ss ) s
with

where f= —rsn= one-half the number of n.ns. and 8'
means S(S+1),and

578208 158592
154848 57792

2= 55200 , 8= 29280
44832 33168
10272 10848

14112
8352

C= 6120
6768
3888

0
L2= 0.

2

0

The "column vectors" of numbers refer to the five
lattices considered, the convention being that from top
to bottom, the numbers refer to the f.c.c., b.c.c., s.c.,
h.l., and q.l. lattices, respectively.

Denoting by z„ the eth approximation to the sus-
ceptibility, we see that the zeroth approximation is
Weiss' law xs ——g'Ps8'/3kT, and the first approximation
is the Curie-Weiss law with kT, = (4/3) JfS(S+1'),
which is the molecular field theory result. "

The susceptibility of a ferromagnetic has a singu-
larity at the Curie temperature which will appear as a
root of the inverse susceptibility. We attempt to locate
this singularity by finding the roots of the successive
approximations, y„'=0, obtaining the numbers that
are found in Table I under the heading, "K-0 Method,
Q3E, roots. " For the second approximation, setting

=0 gives a quadratic equation of which the high-
temperature root is

Hp
Xp=

kT kT, 48'+1

48'+1l -'*

1— 1—
2fS' ) (12)

This gives us the expression

g'P'S (S+1) a„I=
3kT n=p f&

(5)

where t=kT/J, and the a„ar'e lattice and spin-de-
pendent coefficients which are related to the A„of
Opechowski' by

pd A„y

S(S+1)EdXssp s
(6)

The evaluation of the susceptibility is thus formally
reduced to the problem of evaluating the coeS.cients a„,
which can be shown to be equal to a sum of products
of numerical factors which depend on the number of
ways certain "graphs" can be drawn on the lattice, and
traces which depend only on the spin and can be found
directly as functions of S. Details of this calculation
will be published later. The results are:

(7)

(g)

(9)

ar ——(4/3) f8',
as=( / )f( f )8' 'f8'— —-
as ——(g/27) f8'{L2 (2f—1)s—2Ls —(6/5) ]84

—[3(2f—1)+Ls+ (6/5) $8'+ (6/5) }, (10)

a = (f8'/1215) tA8' B84+C8' 270)— —(11)

For S= 2, this reduces to the result found by Heisen-
berg, ' and for S=1 to that found by Nakano" who
duplicated the Heisenberg calculation for spin 1,

An alternate procedure for finding the singularity of
a function expressed as a power series is to find the
radius of convergence of the series. Thus, if f= P„cx",
the radius of convergence is x,=lime i/c„ for e-+eo.
This method, applied to P„a„/t" gives the series of
approximations kT,/J=a /a„ i which are listed in
Table I under "K-0 Method, QM, ratios. "

It is a weakness of the K-0 method that there is not
a unique criterion for defining the Curie temperature.
An inspection of the results of the two methods em-

ployed here shows that successive approximations
always seem to be converging to some definite T„
that the rapidity of convergence is such that the fourth
approximation is usually enough to locate the con-
vergence limit within several percent, and that the
limits of convergence of the two methods are the same
or nearly the same in all cases. There is therefore,
a Posteriori, justification of the series expansion method
and of the criteria used to define the Curie temperatures
for ferromagnetics.

For antiferromagnetics, the only change is in the

'0 J. H. Van Vleclc, J. Chem. Phys. 9, 85 (1941)."H. Nalrano, Progr. Theoret. Phys. (Japan) 9, 403 (1953).
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sign of J. It follows that

g'P'$(S+1) a
x= Z (—1)"—.

3kT n=o

Experimental observations show that x is finite at all
temperatures but has a cusp-like maximum at the
Curie temperature. Several attempts to locate this
maximum using the series expansions led to incon-
sistent results, the convergence limits being di6erent
for each criterion used. " It is believed that the anti-
ferromagnetic susceptibility may be composed of two
analytic functions, the Curie temperature being merely
the intersection of these two which is impossible to
locate since the series expansion in 1/T would give
information about the high-temperature function only.

III. BETHE-PEIERLS-W'EISS METHOD

The cluster approach of Bethe is applicable to both
ferromagnetics and antiferromagnetics. Using the
cluster Hamiltonian. (which is of the form of the
Zeeman eGect interaction with strong I;S coupling
included), Weiss' and Lis find the eigenvalues exactly
and evaluate the partition function as a power series in
the applied and internal fields. For spin 1 and greater
the diagonalization operation becomes very cumber-
some and we have resorted to a technique for obtaining
the trace directly as a power series in the fields. "This
method, which is equivalent to the use of second-order
perturbation theory for the eigenvalues of K.&, gives
the following result for the partition function to second
order in the fields (see Appendix A):
Z, i

——Psi Ps w(Si)e""(25+1/$(5+1))
X (5(5+1)+(1/24) (Xooo+Xio i)2

+ (1/24) p.o
—7~,)20 oo,/pS (S+1)}

+Ps bs'20(So) (1—4() o
—Xi)'So(So+1)/24P). (14)

The sum over S is from ~Si—So~ to 5]+So, the sum
over S~ from 0 to ISO, excluding the term S~=$0, S=0,
which is accounted for by the last sum in (14). The
symbols are defined as follows:

e=2f=number of n.ns. to a given atom,

So——spin of the central atom in the cluster,

Si——P, S,=resultant spin of the n.n. atoms,

&o=gPIIo/kT,

0 i ——gPHi/kT,

p= J/kT,
0 i=5(5+1)+ 5 i (Si+1)—So (So+1),
0'o= $(S+1)—Si(Si+1)+So(So+1),
6,'= the Kronecker delta,

'2 The methods used to de6ne the ferromagnetic Curie temper-
atures give the same results here except for the sign of T,. The
negative Curie temperatures are merely the asymptotes of the
x—T curve and are not, without additional assumptions, related
to the positive transition temperature."R. Karplus and J. Schwinger, Phys. Rev. 78, 1020 (1948),
Appendix 1.

and 20(Si) is the number of ways of forming a spin of
magnitude S~ from the e components S, and is com-
puted from the relation 20(Si) = s(Si)—v(Sr+1) where
s(M) is the coeKcient of X~ in the expansion of

(+Sp+XSp—i++So—2. . .+X—Sp) n

The magnetic moments of the central atom and one of
the n.n. atoms are, respectively,

and
pep= gP (& lnZ, i/a) o),

epi ——(gP/e) (8 1nZ, i/ciXi).

(15)

(16)

The internal field, HJ, is eliminated in principle by the
requirement that, for a ferromagnetic

Pl 0= 5$y)

and for an antiferromagnetic in zero external field,

(17)

C AF. epo = —pei (Ho ——0). (18)

These conditions are required at all temperatures. Just
below the Curie temperature, when IIJ is still small
(Xi«1), the partition function (14) allows us to obtain
the magnetic moments to linear terms in X~. The
"consistency" conditions (17) and (18) for zero external
field then require that the temperature-dependent
coeQicient of X~ shall vanish. This leads to a complicated
transcendental equation, the roots of which are found
by machine. The equation found is

P 2', AF (T ) ~

Psi Ps 20(Si) exp(P, ao) (2S+1/$(S+1))
X f 0 0 ('eo 1%0o) —(ea 1)«/ppS($+ 1))

+Zs 5so4(e+1)So(So+1)/p. =0, (19)

the upper sign referring to the ferromagnetic and the
lower to the antiferromagnetic case and the summation
intervals are as above. The roots, p, =J/kT„were
obtained for e= 8 (b.c.c.) and e= 6 (s.c.), for So———', to 2,
and for e=4 (q.l.), for So——-', and 1 no roots were found.
(The So———,

' values agree with those previously found
by Weiss and I i but a discrepancy exists between our
result and that of Weiss for b.c.c. with spin 1; the
values of p, found being 0.11465 and 0.1502, respec-
tively. )

The numerical values of kT./J are included in Table
I under "8-P-W Method, QM, Ferro" and ". . . Anti-
ferro. " A striking feature of the results for the b.c.c.
and s.c. lattices is that they agree so well with those
of the third K-0 approximation, especially for large
spin. (The two methods are not identical since some of
the terms which contribute to the third approximation
involve next-nearest neighbor interactions which are
not included in the cluster approach. )

It should be mentioned that although the present
approach to the B-P-W method yields an equation for
the Curie temperatures which is applicable to all spin
values and several lattices, it cannot be used to obtain
more information about the transition. This is because
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such things as the specific heat and the spontaneous
magnetization require the explicit elimination of the
internal 6eld. This means obtaining the partition
function to X&4 instead of X&' which, by the present
method, is out of the question.

where pi and pp are the azimuthal angles of Si and Hp
in the plane perpendicular to Sp.

For the purposes of locating the Curie temperature,
it is sufficient to evaluate Z, q to terms in A~' so that we
need only

IV. CLASSICAL-SPIN APPROXIMATION

The classical-spin approximation consists of replacing
the quantum-mechanical spin operators by classical
vectors fixed in length, but free to orient in any direc-
tion. LIn the equations following, the magnitude of the
spin is written as 5, but in numerical use, we replace
S' by S(S+1).j The classical partition function is an
integral over phase space defined by the solid angle
available to each spin vector. Thus,

Z=
~

exp( —K/kT)dr,

P=
~

dQ; exp(2pS' cos8)(1+XiScosP

+s (XiS)' cos'f}. (24)

The integrations are elementary and give

P= 4r(u+XiSu' cosi1+-,' (XiS)'Lu" cos'i1

+p (u —u") sin'g7} (2S)

from which we have to first order in Xo and second order
in X~,

Z.i= constu "{1+-'phpXiNS'2+-'pXiseS'L1+ (ip 1)2'j}—
where u= sinh2pS'/2pS' and

where, in the K-0 method,

N

dr=gdQ;,

(2o) 2=u'/u = coth2pS' 1/2PS-'
=Langevin function.

The zero-field magnetizations of a central and a n.n.
atom are

and dQ, is the element of solid angle in the direction S,.
Although the classical approximation gives nothing
that cannot be found by the quantum-mechanical K-0
calculation, it does serve as a useful check on some of
the quantum-mechanical results and the validity of the
approximation itself can be tested. The result for the sus-

ceptibility can be found from that quoted for the quan-
tum-mechanical method by dropping all but the highest
power of S in each a„. The values of kT,/J are listed
in Table I under the "K-0 Method, Class. , Roots"
and ". . . Ratios. "

The classical approximation is more useful when

applied to the B-P-W method. Using the cluster
Hamiltonian we have

es p ,'gPS——'l-iirpZ,

tiki ——-,'gpS9. iL1+ (ip —1)zpj.
The consistency conditions require

(26)

(27)

C AF

(n —1)Zp —isa, +1=0,
(I—1)Z'+me+1=O, (29)

which are the same if we note that Z(X) is an odd
function. The roots of the quadratics are

(3o)
and

(31)

6 (s.c.)
0.615

(22)P= dQ; exp(2pSp S;+lii S;).

the first of which implies p, = po or T,=O and corre-
sponds to the "anti-Curie point" found by Anderson'p

ci
J

exp al el
J

p exp p p
in the quantum-mechanical case. The other root gives
the following values:

where n 4 (q.l.) 8 (b.c.c.)
r 2lslsp/ur', 1.os 0.434.

To evaluate P, consider Sp to be the polar axis and
integrate over the directions of S,. If 8 and f are the
angles made by S; with Sp and Hi, respectively, we
obtain

P= dQ; exp(2pS' cos8+XiS cosf). (23) .

Assuming Ho and H~ to be parallel and letting g be the
angle between Sp and Hp, we have

cosp= cosil cos8+sinrl sing cos(pi &pp),

The values of k2',/J, which are listed in Table I, under
"B-P-W method, Class, Exact, " are seen to be, except
for the q.l. lattice, reasonably close to the quantum-
mechanical results for spin & 1. The existence of a
root for n=4 is interesting since the quantum-mechan-
ical calculation does not predict a transition (for S=—,

and 1) and the Ising model' (8-P-W method) does.
Before leaving the classical model we will mention

one more approximation which enables us to find the
cluster partition function more easily and more com-
pletely than above. As before, let Si——P S;.The element

'4 P. W. Anderson, Phys. Rev. SO, 922 (1NO).
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of volume in phase space can then be written as

d I', i
——dQpW (Sr)Sr'dSid Qr,

where W(Si) is the probability of forming a total spin
S~ which, for classical vectors, is the result of a random
walk and can be calculated without great difficulty
for small e, leading to the same partition function
already found. For large e, however, the "asymptotic"
limit of the random walk formula is's W(Si) = (q/gpr)'
Xexp( —q'Sip), where q= (3/2'')*'. It is now possible
to evaluate Z, i as a closed function of J/kT and
Hr/kT. The result is

Z, i
——4pr exp (u'+k') (n+XpSrr')

where

n=n(2uk) = sinh2uk/2uh, u= pS/q, k=) i/2q.

The Curie temperatures are given by the roots of
Z(2uh) Wk/(A —u) =0, (A =pe= (3e/2)') for small

k, namely, J/kT, = (3/4S')(1 —(1—4/u)'}, which is of
the same form as Heisenberg's result —as it should be,
since the random walk formula is Gaussian. This result
is exactly the same as found by the second approxi-
mation in the classical K-0 method or in the limit
S—+po of the quantum-mechanical K-0 method LEq.
(12)j. Numerical values of kT,/J are given in Table I
under "8-P-W Method, Class, Asymptotic. " The
classical 3-P-W method can be used to calculate other
properties of the transition. Further results will be
published later.

V. CONCLUSIONS

The mass of numerical data obtained allows certain
conclusions to be drawn regarding the two methods
employed. In brief, these conclusions are as follows:

The K-0 method, when applied to ferromagnetic
lattices, leads to sequences of approximations which are
rapidly convergent, especially for large f and S. The
limit of convergence can usually be located within a
few percent and is apparently unique. Moreover, the
convergence limits for the b.c.c. and s.c. lattices agree
satisfactorily with the results of the 8-P-W method.
Since the 8-P-W and K-0 methods begin with the
same Hamiltonian and arrive at solutions by different,
and somewhat complementary types of approxima-
tion, the validity of both approximations for three-
dimensional ferromagnetic lattices is evident from the
agreement of the results.

For the q.l. lattice, dissimilar results are found. The
3-P-W method predicts no transition for this lattice
(or for the h.l. lattice' ') except in the limit of classical
spin. (This is in agreement with the Bloch theory
according to which only three-dimensional lattices are
ferromagnetic. ) However, the K-0 method leads to
sequences of approximations that behave normally for
both the h.l. and q.l. lattices, implying that a transition
temperature exists.

"S.Chandrasekhar, Revs. Modern Phys. 15, 1 (1943).

For antiferromagnetics, the sequences of approxi-
mations obtained by the K-0 method do not have a
unique convergence limit and the limits found do not
agree with the results of the 3-P-W method. It is
suggested that the antiferromagnetic susceptibility
does not have a singularity at the Curie temperature
and that the Opechowski method is therefore inappli-
cable.

We wish to thank the Numerical Analysis Laboratory
at the University of Wisconsin for 6nding the solutions
of Eq. (19). One of us (H.A.B.) is indebted to the
Wisconsin Alumni Research Foundation and the Engi-
neering Research Institute at the University of Michi-
gan for financial assistance.

APPENDIX A

The derivation of the cluster partition function
[Eq. (14)j will now be considered. Following Karplus
and Schwinger, "we introduce the function

F(X)—ex(A+B&

where, if

A=2pSp Si
and

B=Xp Sp+ Xr Sr)
Z, i ——traceF (1).

The defining equation for Ii leads to the differential
equation (d/dX)F(X) = (A+B)F(X) and the boundary
condition F(0)= 1. A function G(X) defined by

F(X)= eXAG(X),

then satisfies the differential equation

(d/dX)G(X) = e XABex"G(X),

with the boundary condition, G(0)=1.This is equiva-
lent to the integral equation,

G(X)=1+ e x'B.x'AG(X')dX', -

which is our starting point. Choosing as a zeroth
approximation, G(X') = 1, a double iteration leads to

G(X)=1+ e X'"Bex'AdX'
Jo

pX ~X'
+ e x'ABex'A e x"ABex"A—dXI&dXI—

J,
and

F(1)—eAy e(i—x')ABex'Adx&

1 X'
~ e(i x'& "Be '

e "ABex«Adx«dx
J,
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Using the SpS&SM representation (in more usual Then, since traceP, Q,= s traceP Q, we can write fs in
notation, the ISJM scheme) with S=Sp+Sr, we have the form:

traceF(1) =Ps( w(5, )ge +or F(1),

which, for convenience, we write as

fs (1/24)LP o+&r)'go+ (Zo' —&r )gr+ (&o—&r)'g2]y

where

traceF (1)=+sr ze(Sr) traceF (1).

We have then

where
traceF (1)= fo+fr+ f,,

f o= tracee~=Z eZsr(SMie" ASM)

=Pe(25+1)e.,
where n= eigenvalues of

and

~l
gp

—— du trace(Se(' "l" Se""),
Jp

~l
gr —— du trace(Se(r l+ ~ T+ Te( "l Se" )

dp

1

go=, " du trace(Te(' "'~ Te"")
Jp

and
A =p(5(5+ 1) Sp(Sp+1) Sr(Sr+1)]

Since 5 and A commute, we have

and

1

fr=trace I e(' ~'~Be~'"dX'
~o

dX' Qs +sr(SM i
e(' I'~Be~'~

i
SM)

=0 since 8 is an odd function of M,

go —— du traceS'e""
dp

=Pe 5(S+1)(2S+1)e .

For gr, the identity, S T=Sp'- —Sro, leads to

gr
—— du trace2S Te"

Jp

fs= trace dXidXiig(1 —x') Aggg(x' —x")Aggx' A
=2+s(25+1)35o(So+1)—Sr(5,+1)]e .

~X'
= trace ~ dX'dX"Be('+x"—x') ABg(x' —x")A

&o ~o

Transforming variables by means of

X'—X"= u, X'+X"= e,

and performing the integration over e, we arrive at

p l

fs= du(1 u) trac—e(Be(' "'"Be"~)

Replacing 1—I by I leads to the integral

~1
fs= udu trace(Be(' "l Be ).

"o

Taking one-half of the sum of these two expressions
gives us

fs=-,' du trace(Be" "&"Be"").

In this representation, A is diagonal and 8 is the
s-component of a vector which, by writing T= Sp —Sr,
takes the form

8= ~s (Xp+Xr)S+-,' (Xp—Xr) T.

To obtain g~, we make use of several sum rules for
angular momentum matrices. ' Since A is diagonal,

trace Te(' "l~ Te""
=Zest Ze sr (SMi TiS'M')e(' "' ' (5'M'i TiSM)e"..

Using equation 13'1', 10'2b', and 10'2u of reference

21, this becomes

trace Te(' "l~ Te"~

=Z.((F(5)Q(5—1)/5) """-"-""""'
+ ((25+1)a'/5(5+1))e""'"" "
+ (p(Sy 1)Q(5)/(5+ 1))ep[(s+()(8+2l pl+suo(s+()—

where

5=Sp(Sp+ 1)+Sr(Sr+ 1), (t = So(So+1) Sr (Si+1),

and
F(5)= (S—So+Sr) (5+So+Sr+1)

Q(S) = (S+Sp—Sr) (—5+So+Sr+1).

After performing this integration and combining
terms we have

gs ——Qe e ((25+1)a'/5(5+1)+F(5)Q(5 1)/pS'—
-F(5+1)Q(5)/p(5+In

I E. U. Condon and G. Shortley, Theory of Atomic Spectra
(Cambridge University Press, London, 1935), Chap. III.
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Finally, adding go, g1, and g2 gives, after some
rearrangement,

fs (1——/24)ge e {(25+1)/5(5+1)LXo(5(5+1)+a)
+~.(5(5+1)- )~+(~.-~.nP(5)Q(5-1)/»

-P(5+»Q(5)/p(5+1)».
By taking out the term 5=0(So——5,) from the sum
(if it occurs), and using the identities

P (S)Q (S—1)/S' —P (S+1)Q (5)/(5+ 1)
= (25+1)oooi/5(5+1) for 5&0
=45o (So+1), for S={)

and
n=5(5+ 1)—&= as —25o(so+1),

This result can also be derived by standard pertur-
bation theory methods, considering 8 as the pertur-
bation. The eigenvalues of K,~ are then

, I(nf~l ')I'
Z, i ——n+(n IBfn)+Q

to second order in 8,

Z.i
——Qsiw(si)g. e

=&site(Si)g. e" 1+(n fa fn)

, I(n I~in') I'
+-'(nl& In)'+2- '

where oo and oi, are as defined in Eq. (14), we can with p =pe p~. Again employing the properties of
write the cluster partition function as given there if we angular momentum matrices we arrive, after a similar
multiply through by the constant e'& 0(80+'&. amount of manipulation, at the result found above.
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Nuclear Magnetic Resonance in Semiconductors. I. Exchange Broadening
in InSb and GaSb
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Nuclear magnetic resonances have been observed for the more abundant nuclear species in the semi-
conductors InSb and GaSb. Broad lines have been observed and explained by a nuclear spin exchange
mechanism where the interaction between the nuclei is of the form E;;=3;;I;-I;.The exchange coupling
involves the hyperfine interaction between nuclear spins and electron spins. Therefore it is very sensitive to
the electron energy states in both valence and conduction bands. It is particularly sensitive to the energy
surfaces far from the Fermi level and provides information about the band structure of these normally
inaccessible regions.

l. INTRODUCTION

'

UNCLEAR

magnetic resonance has proved to be a
valuable means for studying metals and insu-

lators. ' Resonance width, shape, multiplet structure,
intensity, frequency and relaxation times all depend
upon the environment or lattice in which the nucleus
is situated. Study of the resonances therefore yields
information about the nuclear environment. Investi-
gation of nuclear magnetic resonances in semiconductors
is being undertaken with the double purpose of studying
the materials themselves and of using the delicate
control that can be exercised over various properties of
semiconductors to contribute to the theory of nuclear
magnetic resonance. Intensive research in the past
several years has produced materials of extremely high
purity with consequent advances in the understanding
of their properties. Impurities can be introduced in
known concentration and the resultant changes in
electronic structure have been investigated by other

' H. S. Gutowsiry, Ann. Rev. Phys. Chem. 5, 333 (1953).

means in previous studies. In this way one can control
and vary the concentration of conduction electrons and
paramagnetic impurities, a situation which makes
nuclear resonance investigations exceedingly attractive.
The electronic structures, intermediate in many re-
spects between those of metals and insulators, should
allow a variety of interactions between the nuclei and
their lattice.

The nuclear magnetic resonances of dielectric sub-
stances have been extensively investigated and the lines
observed are usually broadened by internuclear dipole-
dipole interactions. Van Vleck' has shown that dipole-
dipole broadening is a fundamental property of a
crystal lattice and the effects are observed in metals as
well as insulators. From Van Vleck's theory one can
obtain lattice parameters in favorable instances. Pound'
and Bloembergen' have shown quadrupole interactions

~ J. H. Van Vleck, Phys. Rev. 74, 1168 (1948).' R. V. Pound, Phys. Rev. 79, 685 (1950).
4 N. Bloembergen, nuclear Maguelic Relaaaliou (Martinus

Nijhoff, The Hague, 1948).


