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Considerations on Double Exchange

P. W. ANDERsoN, Bell Telephone Laboratories, * M'nrray Hill, Kern Jersey

AND

H. HASEGAwA, University of Tokyo, Tokyo, Japan
(Received June 21, 1955)

Zener has suggested a type of interaction between the spins of magnetic ions which he named "double
exchange. "This occurs indirectly by means of spin coupling to mobile electrons which travel from one ion
to the next. We have calculated this interaction for a pair of ions with general spin S and with general
transfer integral, b, and internal exchange integral J.

One result is that while the states of large total spin have both the highest and lowest energies, their
average energy is the same as for the states of low total spin. This should be applicable in the high-tem-
perature expansion of the susceptibility, and if it is, indicates that the high-temperature Curie-Weiss constant
8 should be zero, and T/x vs T a curved line. This is surprising in view of the fact that the manganites, in
which double exchange has been presumed to.be the interaction mechanism, obey a fairly good Curie-
Weiss law.

The results can be approximated rather well by a simple semiclassical model in which the spins of the ion
cores are treated classically. This model is capable of rather easy extension to the problem of the whole
crystal, but the resulting mathematical problem is not easily solved except in special circumstances, e.g. ,
periodic disturbances (spin waves).

I. INTRODUCTION

EWER' has proposed a mechanism of electron spin
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& interaction which he calls "double exchange. " He
suggested that this mechanism is responsible for ferro-
magnetism in the mixed-valency manganites of perov-
skite structure, such as (I.a,Ca&,) (Mn, "Mnr, 'v) Os. '
Zener points out that the extra electron on the Mn "
can travel back and forth between the two Mn ions,
and that its spin will couple with those of both ion
cores. This obviously leads to a spin coupling of some
kind, which he shows is probably ferromagnetic. As
Zener points out, if the transfer does not change the
electron's spin, and if exchange between it and the ion
is so large that it cannot be on an ion of the wrong spin,
then the electron can move if the ions are parallel, and
cannot move if they are not parallel. One expects there-
fore a parallel coupling of the order of magnitude of
the transfer integral which causes the electron's motion.

We have investigated this mechanism in greater
detail and with considerably more general assumptions
than reference 1. We were interested in seeing whether
it diGered in any observable aspects from ordinary
exchange. The result is indeed qualitatively diferent,
as we could have anticipated from the fact that there
is an extra degree of freedom, namely the motion of
the electron, to be considered.

The results can be understood rather easily on a
simple semiclassical model, which we shall give in the
main body of the paper. The rigorous calculation will

be given in an Appendix. Further, this simple model can

be extended far enough so that we can see some of the
characteristics of the problem which must be solved
for an entire solid, although Inathematical solution of
this problem is practically impossible.

One of the major diGerences from ordinary exchange
is that there are two levels for every spin arrangement
of the ion cores, one as high in energy as the other is low.
If exchange is small one of these corresponds to a spin-
up traveling electron, the other to spin-down; while if
exchange is large one is the symmetric, one the anti-
symmetric orbital state. Thus the average energy is not
a function of total spin, and the series calculation of
susceptibility' fails to give a second term, so that 8
vanishes in the high-temperature Curie-Weiss law. This
e6ect is not observed. '

S, S2

II. THE MODEL; CONSIDERATION OF THE
TRANSFER PROCESS

The model we use is shown in Fig. 1. We denote the
magnetic atoms by Mn and some neutral intermediary
atom by 0 (thinking of course of the case of the
manganites). It is assumed that the 0 atom has a closed
shell, the two magnetic atoms a number of d-electrons
appropriate to give them each a spin S as well as one
extra electron which may, of course, equally well be

*Part of this work was done while this author was a Fulbright
Lecturer at the University of Tokyo. I should like to express my
gratitude for the hospitality and support of the University and the
Fulbright Commission.' C. Zener, Phys. Rev. 82, 403 (1951).

'G. H. Jonker and J. H. Van Santen, Physica 16, 337, 599
&1950).

Mn, (+~~+) Mns(+++)

Fzo. j.. Model for double exchange.

' J. H. Van Vleck, J. Chem. Phys. 5, 320 (1937).
~ G. H. Jonker and J. H. Van Santen (private communication).
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TABLE I. Labeling of wave functions in double exchange.

A. Orbitals

Mobile fg-electron
Closed 0 shell
Fixed d-electrons

B. Con6gurations
I
II
III

MnI
dj,

d~' etc.

0 Mn2
d2

d'2' etc.

lf2

A d2

on one or the other. The wave functions and con-
figurations considered are labeled in Table I. We
assume from the first that there is a unique orbital d&

or d2 into which the extra electron wishes to go; our
results are valid under more general conditions' but
this will give the qualitative picture of the process
which we wish to convey. We then have a problem of
configuration interaction between the two degenerate
configurations I and II with the electron on the one
atom or the other. Zener assumed that the intra-atomic
exchange integral coupling the electron's spin to S,
i.e., J~, was in6nitely large, so that he excluded states
with S~,t,=S—-,'from his con6gurations; we shall not
make this assumption at first, although we believe this
to be the most probable case. However, for the sake of
simplicity we assume that the Mn atom core always
has spin S; thus its internal exchange integrals are
assumed infinitely large.

In order for there to be any coupling between the two
Mn atoms, the extra electron must be able to get from
one to the other. The transfer process must occur
through the intermediary of the 0 atom for our picture.
(Of course, there is nothing in our calculations requiring
this, but most cases to which it is reasonable to apply
these concepts do have a magnetically neutral atom
present. ) The transfer is most likely to occur in one of
two ways. The 6rst is that suggested by Zener: via the
exchange type integral

dwdt(~) A(&)&k.(2)As(2)

J*=S~s Q„VPddr

=S~gH~g,

(2)

where S is the overlap integral, V the averaged poten-
tial. This will then be of roughly the same magnitude

' These are either (a) the orbits are suKciently quenched that
S, S+~ and S—

~ are unique states, and any other orbital states
are of high energy, in which case our treatment in Appendix II
is obviously valid; or else (b) J is large compared to the transfer
integral and states S and S+ ~~ are adequately quenched. We then
ignore all S-~ states.

which is however negligibly small (since the Mn atoms
do not overlap) unless the p and d wave functions used
are not orthogonal, in which case it is equal to

as the ordinary p —d exchange integral for nonorthogo-
nal wave functions. J~ has simply the effect of moving
the electron from atom 1 to atom 2, i.e., configuration I
to II, without change of spin, as can be seen by Serber's
method' (see Appendix I). If orthogonal wave functions
are used we must as usual go to higher order configura-
tion interactions to find a mechanism, but when we do
can rely somewhat more on our results. The configura-
tion which must be introduced is that in which a single

p electron has been transferred from the 0 to the
"other" Mn, i.e., con6guration III. This is connected
to the initial configuration I by the ordinary transfer
integral Hrs of '(2); then this same transfer integral
can connect it with II, since I and II are symmetrical
relative to III. The details of this process are worked
out also in Appendix I, where we prove that this too
is a simple transfer, the electron ending on the second
ion with the same spin direction from which it started
on the first. Both processes give transfer integrals of
the rough order of magnitude 0.1 v, while J, the intra-
atomic exchange integral, is of order 1 v.

III. SEMICLASSICAL CALCULATION OF DOUBLE
EXCHANGE

The preceding section showed that the primary
transfer mechanisms which may occur in double ex-
change are both of a type which tend simply to transfer
a single electron without change of spin from atom 1 to
atom 2. We now proceed to calculate the energies of the
states which follow from configurations I and II when
we take into account this transfer integral (which for
simplicity we shall call simply b) and also the fact that
the electron's spin is coupled to the spin of the ion on
which it 6nds itself by an intra-atomic exchange
integral J. In the case of ions with less than half-filled
shells, J tends to make the spins parallel; for more than
half-filled shells, and if the odd electron falls into the d
shell and not into an s function, we have an "effective"
exchange integral J which is in6nite and causes anti-
parallelism. However, for the present problem the sign
of J itself is irrelevant.

Our procedure from here on will be to treat the
problem semiclassically, that is, as if the two ions had
very large spins S so that one could assign them definite
directions in space and a definite angle relative to each
other. Two nearly trivial modifications of this procedure
lead to the exact answer as derived in Appendix II.

When the electron is on the 6rst atom, it has two
states, of energies

Ej=&JS,
lined up parallel and antiparallel to the spin St. On
atom 2 it also has these two states, but lined up in the
direction of Ss. We know, however, that the electron,
when transferred, goes only into the parallel state.
There are two possible ways of correcting for the
difference in direction: either to transform the energies

s R. Serber, Phys. Rev. 45, 461 (1934).
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on atom (2) into a coordinate system parallel to Si, or
to transform the transfer matrix elements so that they
refer correctly to the different directions. The latter
procedure is somewhat simpler.

I et us label the two electronic spin functions referred
to the direction of Si by n and p, and those referred to
S2 by n', p'. The eigenstates on.atom 1 are din and dip.
These have the energies (if we make the first quantum-
mechanical modification of using correct exchange
energies)

E(din) = —JS,
E(d p) =J($+1),

for J ferromagnetic in sign. The eigenstates on (2) are

d2n'. E=—JS,
d2p'. E=+J(S+1),

while the transfer matrix elements are

(din
~

B
~
d&n) = b,

(dinl&ld2p) =o «c.

Pro. 2. Addition of spins in
double exchange.

What we must do is to express n and p in terms of n'

and P'. This transformation is well known,

n= cos(0/2)n'+sin(8/2)P',

P = —sin(0/2)n'+ cos (8/2)P',

where 8 is the angle between Si and S2.
We can now immediately write down the secular

equation:

lyo!

de —JS
dip

0
d2n' d2p'

b cos8/2 b sin8/2

d2p 0 J(S+1) bsin0/2 —b cos8/2
(7)

d2n' b cos8/2 bsin8/—2

d2P' .b sin0/2 b cos8/2 J(S+1),

I Si+S2( Si $0=—= cos0/2 ——,
25 2S 25

(9)

where this equation defines S&. Now in the semiclassical
case we cannot meaningfully distinguish between S&

and $0, the total spin including the odd electron (equal
to Si&-', ), so this is the complete answer in terms of
this theory, as noted in the last equality of (9).

In Appendix II, we shall show that the only modifica-
tion introduced by exact calculation is to replace (9) by
the result, equivalent to terms of order 1/S,

(cos8/2), t,
= (So+-',)/(2$+1). (10)

The secular equation reduces to

{(—',J—E)'—[J(S+-',)+b cos8/2]' —b sin'8/2}

X{(P—E)'—[J(S+~)—b cos8/2]' —b' sin'8/2} =0

which has the solutions

E= —,
'J&{[J($+-',)&b cos0/2]'+ b' sin'8/2} '

= iJ~[J2($ji)2+b2~2Jb($+i2) cos0/2]l. (g)

This is the complete solution except that we must
evaluate cos0/2. In the semiclassical case this can be
evaluated by noting that (see Fig. 2)

The result for the intermediate case J—6 is not of very
great interest. It will sufhce to discuss the two limiting
cases, (A) J))b, and (B) J«b.

A. J))b.—This is the case considered by Zener.
Here we can ignore the eigenvalues having a + sign
on the square root as having very high energies (i.e.,
ignore diP and d2P'). We then neglect b' sin'8/2 in the
square root and

E= JS&b cos0/2—
= —JSwb [(So+-,')/ (2$+1)].

In case J has antiferromagnetic sign the result is un-
changed except for a constant. So can take on every
value from 2 to 2$+~, so that cos8/2 runs from
1/(2S+1) to 1. For each of these values there is one
high-energy solution corresponding to each low-energy
solution. Physically, what happens is that the e6ective
transfer integral between the only two possible states
for the electron is reduced by the ratio (So-+ 2)/(2$+1),
and the eigenstates are essentially the symmetrical and
antisymmetrical combinations of the localized orbitals
with the electron's spin parallel to Si or S~, respectively.

B. J«b.—Here we again must neglect + values of
the square root, and, adding a negligible term inside



678 P. W. ANDERSON AND H. HASEGAWA

~(S+s) (So+s)
b—+

2 2S+1
J J= —b+—~—(So+s)
2 2

the square root to complete the square, we get

JE=—Pb+ J(S+-',)] cose/2
2

(12)

If we wish only the first two terms we note that
Q„E„(So) is independent of So, since the average
energy for all So is the same. Then up to terms in 1/T'

(S'(T)) =(S'( ))'
and we may write

x=C/T+ (terms in 1/T').

Again, for every value of So there are two states, one
high and one low. These correspond to spin up or down
for the traveling electron, relative to the total spin
St+ Ss. Again the sign of J is immaterial.

IV. DISCUSSION OF RESULTS

s =a&s

g being the g-factor and P the Bohr magneton. Thus y is
proportional to (S')A,/kT. We may then take the average
with a Boltzmann distribution

So(so+1)s Ea(so)lsr-
Sp, n

(S )Av— (
Qe—En(so)/AT

which at high temperatures may be expanded into

( E-(So) E-'(So)
PS,(S,+1)P

~

1—
Sp kT 2k'T' )

The results (8), (11), and (12) of the last section are
quite different from the usual form of exchange inter-
action. They are of interest not only because they refer
to a mechanism which may be occurring in certain sub-
stances but also because this is one of the simplest
problems of spin interaction in which orbital degeneracy
enters in an essential way. It is, in fact, only because of
the extra degree of freedom allowed by the electron's
Inotion that we can obtain anything other than an
Si Ss interaction in this simple case.

Two differences are apparent: first, the linear vari-
ation with total spin So in both (11) and (12), whereas

Si Ss varies quadratically; and second, the fact that
for every So there are two states, not one, which in both
(11) and (12) are symmetrically disposed about the
average energy.

The first difference does not seem to be very essential
physically. However, the second has at least a very
probable significance. The susceptibility of a para-
magnetic substance can always be written~

X= (P,')A,/3kT, (13)

where p is the magnetic moment, which for a system
with orbital quenching is

The corresponding expansion for ordinary exchange
gives

y„s;s„„C/T+Ce——/T'+ . C/(T —0), (1—7)

where 0 is a temperature of the order of magnitude of
the Curie temperature, i.e., such that ke is comparable
to the total interaction. Thus we suspect that a double-
exchange ferromagnet will have a 1/y —T plot as shown
in Fig. 3, as compared to a ferromagnet, and also to a
typical ferrimagnet.

Of course, all these conclusions are based on the
simplest case of only two ions with one electron
travelling between them. In the real solid there are a
very large number both of ions and of electrons, and
there are (2S+1)~ states for the ions and E for an
electron for every one of these. We can for the sake of
simplicity assume that the number of electrons is
relatively small and ignore their interactions, but even
the calculation of the states of a single electron plus the
ion system is very complex.

With the confidence gained from Sec. III in the semi-
classical treatment of the ions, however, we can at
least draw some qualitative conclusions in our two
cases A and H.

In case A, J&&b, the transfer integral between any

(S')A.=
E„(So) E„'(So)

+
so. 0 kT 2k'T'

7 J.H. Van Vleck, Theory of Electric and Magnetic Susceptibilities
(Oxford University Press, London, 1932), p. 40.

0 TC

TEMPERATURE IN K

FIG. 3. Qualitative susceptibility curves for ferrimagnet,
ferromagnet, and double exchange ferromagnet.
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two ions depends on cose/2 for the angle 8 between
their two spins. For a random, paramagnetic type of
spin arrangement we have then a problem of electron
motion in a random alloy, which has been the subject
of much attention but has not been solved in the way
needed here. This case of variable transfer integral is
also not the usual one. However, it is still to be expected
that for each arrangement there is created a band of
electronic states, as many above as below the average
arrangements. As the number of parallel pairs increases
the width of this band increases.

A set of states of the lattice of spins in case A which
are susceptible to exact treatment on this model con-
sists of the states derived from the all-parallel state by
a uniform twisting of the ion spins through an angle q
per atom layer (i.e., a "spin wave" of wave vector
2$y/u). Each of these states will produce a band of
electronic states the width of which is decreased relative
to the aligned state by a factor cosy/2 due to the re-
duced transfer integral. Thus our model obeys Herring's
theorem' that the energy of a spin wave is proportional
to k' for small k. The directions of the electron spins
will follow accurately those of the ions.

Case 8, J«b, is essentially that envisaged by Zener'
in his model of ferromagnetism in metals. In this case
the free electrons will travel some distance while main-
taining their spins without regard to the directions of
the ion core spins. Here the spin up and spin down
electrons will have opposite energies. Ferromagnetism,
if it occurs, will do so by the mutual polarization by the
ions of the free electrons, which in turn polarize the
ions, The fact that this is a two-stage process again
makes very reasonable the idea that x vs T at high
temperatures will not contain the 8 term. "

Thus in both cases A and 8 what little we can say
of the probable state of affairs tends to indicate that
the double exchange mechanism of spin interaction is
quite different qualitatively from ordinary exchange,
and in particular leads to a very different form (16)
for the high-temperature susceptibility, which cannot
be expected to extrapolate linearly to an intercept near
the Curie point. As mentioned in the abstract, this result
does not fit the experimental data on the manganites. 3
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APPENDIX I. TRANSFER PROCESSES

Throughout these appendices we shall use Serber's
method' " of treating configuration interactions. This

C. Herring and C. Kittel, Phys. Rev. 81, 869 (1951).' C. Zener, Phys. Rev. 81, 440 (1951).
"Unless the electron gas is degenerate. For a degenerate elec-

tron gas (kT((b) we can draw no conclusions for many reasons
(electron interactions, second-order effects); thus the present
considerations do not acct Zener's theory of ferromagnetism in
metals. ~

"P.W. Anderson, Phys. Rev. 79, 350 (1950).

method, based on Dirac's method for treating spin
interactions within con6gurations, gives us the following
rules for writing down the Hamiltonian matrix:

(1) Assign orbitals to the electrons in each con-
6guration in some fixed, convenient order. Two orbitals,
treated as if distinct, are to be assigned to electron
pairs which are in the same orbital.

(2) Matrix elements of the Hamiltonian within con-
figurations are to be computed as in Dirac's method,
multiplying ordinary integrals by unity and exchange
integrals by the spin permutation operator —8~2 of the
spins in the appropriate orbitals.

(3) Matrix elements connecting different configura-
tions are written down by exactly the same rules in the
sense that the choice between "direct" and "exchange-
type" integrals is made on the basis of the order
number. That is, if the two configurations are, say,
q (1)x(2) and q (1g (2) the integral J'x(1)HQ(1)dr is a
"direct" type, J'io(1)x(2)Hq(2)P(1)dr is "exchange"
and is to be multiplied by the permutation operator
—P~2 in the off-diagonal block.

(4) Where one configuration has a pair of electrons
in the same orbital, the other not, the transition matrix
elements leading to forbidden spin arrangements are
to be eliminated by appropriate projection operators,
while certain factors of v2 are to be multiplied into the
remaining off-diagonal blocks.

The numbering of wave functions which we shall use
is shown in the following table for the three con6gura-
tions of Table I. We leave out any electrons in the core
states d~' and d2' because these are irrelevant to the
transfer mechanism, and will appear only in the final
problem of Appendix II.

Configuration

I
II

III

d1

1

d2

The two transfer mechanisms we consider are, first,
the exchange-type integral:

f
di(1)p(2)Hds(2)p(1)dr;

These seem to be the only effects of suKciently low
order to be appreciable. We wish to show that each of
these effects connects only the following wave functions
in con6gurations I and II:
~(1)I ~(2)P(3)—~(3)P(2)j~

L~(1)P(3)—~(3)P(1)l~(2), (A1)

and similarly for the P's.

and second, the second-order effect of configuration III
on configurations I and II, which will be proportional to

I H~ I
'/(Air —&i)
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J*O23P12013, (A2)

In the transfer "block" of the Hamiltonian con-
necting I and II, according to rule 3 J~ will be multiplied
by P12, the permutation operator connecting 1 and 2.
It must also be multiplied by appropriate projection
operators in order to "communicate" with configura-
tions I and II, according to rule 4.

Transfer operator =

1—Pss t'nIPs —IssPI i
2 E, v2 )

&1&2 3 1&2&3 20'3 1&2&3
2%2

= —l( I)l
(~sPs ~sPs)

where 013 and 023 are the projection operators elimi-

nating triplet states for the pairs 13 or 23. First, since
023, 013, and P12 are all scalars, we know that indeed

(A2) can only connect 5,=+Is with +I and —-,'with
—-'„so that our requirement is satisfied since (A1) are
the only pair of wave functions of I and II with the
right S,'s to be connected together. To get the correct
numerical factor, we apply (A2) to

3
—

CY3 1 CX2

so that again the factor multiplying the simple transfer
integral is just unity.

APPENDIX II. QUANTUM CALCULATION OF
DOUBLE EXCHANGE

With the assumptions stated in the text we can write
down the following Hamiltonian matrix for our problem.
We take the odd electron's spin as s, the spins of the
ion cores as SI and Ss. b is the transfer integral, either
J* for nonorthogonal wave functions or

i H„d i
'/

(EIII—Zi) if we consider the transfer to go through
configuration III.

( (~A—~sPI)~si
J*O»P»O

v2

( (&ps &sPI)ass)=J*OssPIsi
v2

I' —2JSI s

II - bl

bl

—2JSs s,

(A4)

JQ
=—+ss(III&sPs —Iis&IPs)

0!1 Q2 3
—0!3

JQ
K2

Thus we have the expected result, that the eGect of J*
is just to replace an up spin in d1 by an up spin in d2

and vice versa.
The problem for iH&vis/(Xiii —Ei) is only slightly

more complicated. In the perturbation procedure we go
once from I to III, requiring an operator 023 and a
factor V2, do nothing in III and go down to II with
K2 Ois. Thus

Transfer operator = —2
i H~ i

'OssOls/(+III +I) ~ (A3)

Again we note that the scalarity of 023 and 0» proves
that we have a simple transfer operator, and calculate
its magnitude:

0! 3
—

CX3 1 CL2

023013

3
—(X3 1 0,'2

=023

1 is the unit operator. As in the text, we can diagonalize
the blocks I—I and II—II by choice of the appropriate
representation, but only of a different one in each block:
namely, in I we combine

SI+s= SI', SI'+ S,= Ss, (AS)

and use the representation in which Sp, Mg„and
SI'——5&—', are diagonal. Then —2J(s SI)= —JS or
J(5+1) for SI' ——5+-', or S——,'. Similarly, we can
diagonalize II but only by setting S2'=S&—,'diagonal,
in which case S1' is not.

One of two possible ways to proceed is to use the
correct coordinates to diagonalize each diagonal block
and transform bl to connect the blocks properly. This
is easily done by replacing 1 by the unitary matrix
which effects the transformation between the two repre-
sentations. This matrix can be obtained by the use of
Racah's methods. ""In the notation of reference 13,
the matrix element connecting the wave function for a
particular value of S1' with that for a value of S2' is

's G. Racah, Phys. Rev. 62, 438 (1943).
13Biedenharn, Blatt, and Rose, Revs. Modern Phys. 24, 249

(1952).

(SI, sSs(Ss ), SoiSIs(SI'), Ss, Ss)
= [(25I'+1)(25s'+ 1)]~W(SISSsSs,' SI'Ss ),

which can be easily evaluated by the tables in reference
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'i3, using S1——S2=S; s=-,'. The resulting Hamiltonian matrix is

Sr' —S+-,' Ss'= S+-', S —S—

Sr'= S+-', —JS
So+-',

( 1)r—2sp

2S+1

(S+1) 2-$~

&2S+1)

S—-'
2 J(S+1)

So+2 (So+2 ) ' h

S,'=S+-,' (—1) -"
2S+1 (2S+1)

irS+-', i ' -'*

(2S+1)
So+2

( ])r—2Sp

2S+1
(A6)

t So+-,' i ' '

&2S+1)

So+2
( 1)1—2Sp

2S+1
J(S+1)

This is identical with the Hamiltonian for the simple model, Eq. (7), if we set cos9/2= (So+2)/(2S+1) as in
Eq. (10).
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Effect of Pressure on the Electrical Resistance of Metals
at Liquid Helium Temperatures
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The effect of pressures up to 5000 kg/cmp on the electrical resistance of polycrystalline copper, silver,
gold, and platinum and on single crystals of arsenic, antimony, and bismuth has been measured at liquid
helium temperatures. The pressures were generated by a piston and cylinder arrangement using solid
hydrogen as the pressure transmitting medium.

INTRODUCTION
' 'T is generally accepted that the electron-lattice inter-
' - action in a metal at low temperatures is an impor-
tant factor in determining whether the metal will have
a superconducting phase. An obvious method of seek. ing
information about this interaction is to investigate how
the electrical conductivity of metals at low tempera-
tures is influenced when the lattice spacings are changed
by application of pressure. In the case of nonsuper-
conductors, such measurements should be of intrinsic
interest in the theory of metallic conduction, since at
liquid helium temperatures the contribution to resist-
ance from thermal scattering is small and the change
with pressure from this cause may be expected to be
negligible.

EXPERIMENTAL

A major technical problem to be faced is the method
of applying hydrostatic pressure to the metallic speci-
men. Since even helium solidifies at quite. low pressure
in this temperature region, one is compelled to use a
solid for transmission of the pressure, and if the stress
transmitted to the specimen is to approximate a hydro-
static pressure, then a transmitting medium which will
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FIG. 1. Electrical resistance of copper vs pressure at 4.2'K.
' J.S. Dugdale and F.E. Simon, Proc. Roy. Soc. (London) A218,

291 (1953).

not support any appreciable shear stress is required.
Presumably, helium would be the most satisfactory
substance from this standpoint, and it might be practi-
cable to use helium in a bomb type of apparatus similar
to that which has been used in studying the thermo-
dynamic properties of helium under pressure. ' However,
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