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lattice expansion. The smaller lattice contraction may In this connection, it should be emphasized that red
be caused by aggregation, perhaps in the form of BaO crystals are grown at about 900'C, while blue
colloids. The fact that there is any contraction at all crystals are colored at about 1100'C.
points to one of two possibilities:

(1) Ii' centers in equilibrium with other defects; or
(2) less lattice strain associated with the centers

responsible for the red absorption, as might be the case
for defects intermediate in size between single oxygen
vacancies and colloids.
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Cyclotron resonance line shapes for holes have been calculated in the classical limit. The magnetic 6eld
was taken in the (001) direction. Because the cyclotron resonance frequency depends on the component of
k parallel to the magnetic field (k&), the line is shifted and broadened as compared to the simple theory
with kII=O. The shift of the maximum is about 3%, and the broadening (which is asymmetric) is about
40% for Ge, if a&r is taken as 7.5.

HE shape of cyclotron resonance absorption lines
for Ge has been calculated treating the holes as

classical particles. Quantum effectsi become important
at low temperatures and will be considered in a separate
publication. It is easily shown that for a constant mag-
netic field H, the component of the quasi-momentum
in the direction of EE (kN) is a constant of the motion.
Thus for 12r in the (001) direction (the only case con-
sidered here), k, is a constant. The equations of motion
for k, and k„are then given by

k~= BBC/Bkv

Io„=—f)X/elk„,
(1)

where for holes

eH
30 (gk2~t'+2k2+Q2(k 2k 2+k 2k 2+k 2k 2)jf) (2)

The plus and minus refer to the light and heavy holes,
respectively. The constants 2, 8, C are those reported
by Dresselhaus, Kip, and KitteP as A, 8, C. One sees
from Eq. (1) that k and k„are canonically conjugate
variables. The equations of motion for k, and k„will
depend parametrically on k„-, and there will of course be
a thermal distribution of k,.

In order to estimate the eGect of the thermal dis-
tribution of k, a transport theory with a constant re-
laxation time 7- was used. The theory is essentially that
of Van Vleck and Weisskopf. ' The formalism of the

' J. M. Luttinger and W. Kohn, Phys. Rev. 97, 869 (1955).
2 Dresselhaus, Kip, and Kittel, Phys. Rev. 98, 368 (1955).
3 J. H. Van Vleck and V. F. Weisskopf, Revs. Modern Phys.

17i 227 (1945).

theory is similar to that used by Karplus and Schwinger. 4

The calculations were performed starting with the
following expression for the absorbed power per unit
volume p.

tP=& (( *(t))&*(t)}~ (3)

where E, refers to an electric rf field in the L100j direc-
tion. E is the number of holes per unit volume and
v, (t) is the velocity of a hole in the x direction. The
brackets ( ) indicate an averaging over the time of
collision and an averaging over the Boltzmann dis-
tribution. The braces refer to an average over time.
Since k and k„are canonically conjugate a new set of
canonical coordinates P and Q, where X=8, can be
found. This leads to a considerable simplification. In
terms of these new variables the averaging procedure
gives

r+" r" + (tt. (22,P) (2
(P=-'Xe2E2T dk, ' dl'pP Q . (4)

J I o " "1+~2(co+coort)2

p is the Boltzmann factor

where

p=

( Pc
exp] — I' /—

E ee)

pCO p2X/4210 pc
dk, dJ' dQ exp( I' I, ——

J „ eH i'
' R. Karplus and J. Schwinger, Phys. Rev. 73, 1020 (1948).
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FIG. 1. Cyclotron resonance line shape for holes in Ge.

and if t) is defined as t)=P/k, ', Eq. (3) becomes (after
an integration over k,)

3'.'rc ." +- ~'IC„ls
6'= d- "o(.) Z

4'(tip) &„p ~=~ 1+r'(co+tsioo)s

where

~(qo) = &r)g '~o '(q),

and go is the smallest value of K for k,= 1.
The C„and cop(t)) can in principle be determined ex-

actly by integration of the equations of motion for k,
and k„. In fact, the results may be expressed as elliptic
integrals of the third kind. These exact solutions turn
out to be quite impractical for computation, and we
have only used them for checking purposes. The re-

and P= 1/J'sT. Pp is determined by the minimum value
of 3'. for a given k, . co is the frequency of the rf field and
coo——pop(k„P) is the frequency of the periodic motion
of k, and 7s„ for a given P and 0,. The s (e,P) are
the Fourier coefficients of a Fourier expansion of
tt, (P,Q) in terms of e'""«. It is easily shown that
w, = —(c/eH)k„. Thus, if k„ is expressed as a Fourier
series

+to
sicupsi

suits reported here were obtained by means of an
analog computer, which integrated the equations of
motion of k and k„directly. The values of 2, B, and
C taken were those reported by Dresselhaus et al.'
The final integration over p was performed numerically.
A variational method was also used to determine the
values of C„and a&0. There is good agreement between
the results of the variational method and the results
given by the computer.

In order to determine the values of A, B, and C,
Dresselhaus, Kip, and Kittep also used classical
methods; however, they used the approximation that
k~=0.' The results of calculations using k~=0, and
of our theory may be seen in Fig. 1 (where we have
taken io=1.5&&10 in. rad/sec and ior=7.5). The cor-
rected curve may be seen to have its maximum shifted
by about 3% from that of the k&= 0 curve. ' In addition
an asymmetrical broadening of about 40% occurs. It
should be mentioned that Zeiger" has reported similar
calculations. He has, however, treated the asphericity
of the energy surface as a perturbation on the main
spherical term, and in addition limited himself to the
neighborhood of resonance. His results seem to be in
substantial agreement with those reported here.

With the above method it is possible to redetermine
the constants ci, B, and 0 more accurately. The change
in their values will be not more than a few percent, and,
at present, many other experimental and theoretical
uncertainties overwhelm this correction.

It is also possible to calculate the effect of extra
resonances due to higher harmonics. From Fig. 1 it can
be seen that the third harmonic contribution is quite
small for II in the [001j direction. The fifth harmonic
was found to be much smaller. Further calculations are
being made for H in the I 111$direction, and for Si.
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5 These authors mention an attempt to correct for the klI=O
assumption Lace discussion following their Eqs. (79) and (80)].
No indication of their method is given, and, especially for Si, their
corrections seem somewhat high to us.

The larger the cow., the less the maximum is shifted.
r H. J. Zeiger, Phys. Rev. 98, 1560(A) (1955). Also private

communication.' In Si the effects discussed here will certainly be larger because
of the greater asphericity of the energy surface.


