SCHOTTKY EFFECT FOR SrO FILMS ON Mo

by Nergaard® for the case of films thick enough to
exhibit semiconducting properties.

The effect on the periodic deviations® from the
Schottky line resulting from a deposition of SrO on
molybdenum is illustrated in Fig. 1. There is a washing
out of the deviations for deposits as small as 1/60 mono-

SL. S. Nergaard, RCA Rev. 18, 464 (1952).
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layer, and at approximately 4+ monolayer there are no
deviations from the Schottky line greater than 1/100%.
Since the surface barrier is mirror image in the X region,
as suggested above, these data would indicate that with
the SrO film, electron reflections near the emitter sur-
face cannot be associated with the simple u coefficient®
found for clean metals.
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Search for the Hall Effect in a Superconductor. II. Theory

H. W. LEwIs
Bell Telephone Laboratories, Murray Hill, New Jersey
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Various theoretical explanations for the absence of a Hall effect in a superconductor are considered, and
none are found convincing. It is concluded that this property lies outside the existing body of theory, and
the general requirements it imposes on a future theory are adduced.

I. ORIENTATION

N a previous work! the early inconclusive result of
Kamerlingh Onnes, that the Hall coefficient of a
metal vanishes when it goes into the superconducting
state, was confirmed for a vanadium sample. (In fact,
it was shown that the Hall coefficient was reduced to
less than about 209, of its value in the normal state.
It would probably be more difficult to explain its re-
duction to a finite smaller value than to explain its
vanishing completely, so that, for the purposes of the
following, we will suppose that these experiments
demonstrate the disappearance of the Hall effect in the
superconducting state.) It is the purpose of this note to
discuss the theoretical implications, if any, of this fact.
To begin with, it is probably well to dispose of some
previous arguments that have been advanced, to the
effect that it is perfectly obvious that there ought to
be no Hall effect in a superconductor. These arguments
take several forms, and we discuss them in order.
First, it has been argued that, since a magnetic field
can hardly penetrate a superconductor, and, since a
magnetic field is essential to a Hall effect, such an effect
is precluded. In fact, a magnetic field penetrates a
superconductor to a known depth of about 10~% cm,
and within this penetration depth the current densities
can be quite large. This property of a superconductor is
fully taken into account in the earlier paper, in evalu-
ating the magnitude of effect to be expected.
The second argument is due to Pippard? and is as
follows: if there were a Hall effect in a superconductor
it would be possible, in a static magnetic field, to impose

1H. W. Lewis, Phys. Rev. 92, 1149 (1953).

2 Unpublished, but quoted in D. Schoenberg, Superconductivity
(Cambridge University Press, London, 1952), p. 49. I have had
the pleasure of an interesting conversation with Professor Pippard
on this question.

a resistive load on the Hall voltage, and so to draw
energy from the field. This would, however, cause the
collapse of the magnetic field, which is in contradiction
to the observed stability of the current-carrying state
in a superconductor. Consequently, there must be a
contact potential at the surface, which is just sufficient
to cancel the Hall voltage, and to render it unob-
servable.

The answer to this comes in two parts. (We must
grant, to begin with, that the gedanken-experiment
would go as described, though it has not been tried.
This is very probable.) In the first place, one must
consider the magnitudes involved in this gedanken-
experiment. A superconducting sphere of radius e, in
an applied magnetic field H, has an energy excess over a
nonsuperconducting sphere equal to 3H2%/8. The Hall
voltage! between the pole and equator would be
ORH?/32w, where R is the Hall coefficient, and, as
before, H is the applied field at infinity. If a resistive
load Z is now applied, the decay time 7" will be given
by T=1287%2Za?/27R*H?. Suppose a=1 cm, Z=~1 ohm
=10° emu, H=100 gauss, R=100X10"% emu (tin or
lead); then T'=5X10" sec. Thus, the field collapse of
which we have spoken above would take something
more than fifteen million years. The stability of the
super currents can hardly be considered to be estab-
lished over such periods of time. This time can, of
course, be somewhat reduced by a suitable choice of
different numbers from those used above, but cannot
be brought down to the experimental time, which is of
the order of weeks.

Thus, one is finally forced to make this argument a
matter of principle, and here the question is less clear.
If one accepts the idea that the field collapse will indeed
occur over such a long period of time, one accepts with
it the concept of a lower energy state of a supercon-
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ductor, in which the field is no longer excluded. Thus
the normal superconducting state, exhibiting the Meiss-
ner effect, must be regarded as metastable, rather than
absolutely stable. This concept is distasteful to some
physicists, but cannot be regarded as in any sense ex-
cluded by the information at hand. The answer to such
a question must probably ultimately come from a
satisfactory theory of the superconducting state.

The third argument we will discuss is given by
London® and is substantially as follows, if we confine
ourselves, for the moment, to the discussion of the
forces acting on the superelectrons, and ignore the
normal electrons.

Consider the Lorentz expression for the force per
unit volume acting on the former

F=P3[E+ (1/C)V8XH]7 (1)

where p, is the charge density of the superelectrons,
v, their velocity, ¢ the speed of light, and E and H the
electric and magnetic fields. This can be transformed,
by using the London equations

curl(Aj,) = curl (Ap,v,)= — (1/c)H, (2)
A(3/3t)(3)=E ©)

to eliminate the field strengths. A is a constant. Then (1)
can be written after suitable transformation

a
F= E(Apsis) +-div(AS), 4)

where S is a tensor defined by
Suv=jujv—%j25#m (5)

and which represents the kinetic stress tensor of the
supercurrents. Thus (4) tells us that the momentum
delivered to the supercurrents, per unit volume, and
per unit time, is divided between an increase of the
momentum density in the volume, and a transport of
stress across the boundary of the region considered,
AS,, representing the flow in the » direction of the u com-
ponent of momentum density. If we were to add the
stress tensor of the electromagnetic field we would find
an over-all conservation law of the form

aP/dt+div(T)=0, (6)

where we have derived above the expressions for the
contributions of the superelectrons to P and T. The
contributions due to the field have the standard form.
It is now argued that, in the stationary case, the first
term on the right side of (4) vanishes, as does E,
according to (3). Thus, the second term on the right
side of (1), representing the magnetic force on the
superelectrons, is converted completely into the kinetic
stress of the supercurrents, represented by S in (4).

3 F. London, Superfluids (John Wiley and Sons, Inc., New York,
1950), p. 70.
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We have thus an equilibrium situation, in which the
magnetic forces are balanced by the inertial forces,
without an electric field, hence without a Hall effect.
At the surface of the material, where S changes dis-
continuously, becoming zero outside the metal, there
must be surface forces which finally take up the trans-
ferred momentum, and which are responsible for the
fact that even a superconducting wire can be used in an
electric motor. This, then, is a coherent picture, in
which the Hall effect has no place.

To study it more carefully, we must go back to the
London equations (2) and (3), and to their basis. Here
one can adopt one of two points of view ; one can postu-
late the equations in the form given, or one can try to
justify them, or at least make them plausible, by study-
ing the motion of a frictionless electronic fluid in an
electromagnetic field. London has done this in the book
previously referred to.> The motion of each electron,
under the force represented by (1), will be deter-
mined by

m(dv,/dt)=e(E+ (1/c)v, X H), (7

where m and e are the mass and charge of the electron.
Further, the acceleration can be transformed into

av,

at ot

AA av,
=+ (v, -V)vs=—é—+—%v (vi)—v,Xcurlv,, (8)
4

so that (7) can be written

A e e
—+iv(vsH)——E=v,X [curlvs—l——H]. 9)
ot m me

If we now take the curl of both sides, call the expression
in the square bracket Q, and use one .of Maxwell’s
equations, it is easy to see that we have

0Q

—=curl (v, X Q). (10)
ot

Consequently, if Q is initially zero everywhere, it will
remain zero at all times. It is thus consistent to postu-
late, in addition to the equations of motion, the equation

(11)

It is obvious that this is identical with London’s first
equation (2), if we identify A with m/ep,. This is in fact
the right order of magnitude for A, if we take for p,
about one electron per atom.

Thus, one is led to London’s equation (2), with a
meaning for the constant A. Now combine this with (9),
to obtain

Q=0

v,/ dt= (e/m)E—%v (v?), (12)

which is, apart from the last term, identical with (3),
and with the same value of A. London now argues that,
although (12) is probably a more consistent expression
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of the equations for a superconductor than is (3), the
gradient term is always small, and (3) is simpler. We
will argue that the extra term radically alters the con-
clusion drawn above about the absence of the Hall
effect.

Indeed, if one goes through the argument contained
between Egs. (1) and (6), but using (12) instead of (3),
one finds that it goes exactly as before, except that the
tensor S is replaced by a new tensor §’, lacking the last
term in (5), and therefore given by

(13)

Also, it is no longer the case that E=0 in a stationary
state, but, from (12)

sz, = .7#] ve

m e .
=—V(v,)=—V(A%,%, (14)
2e 2m

since mv,=eAj,, with the value adopted for A in this
picture.* _

There are therefore two points in which the conclu-
sions differ from those drawn by London on the basis
of (2) and (3). First, the expression for the kinetic
stress tensor is changed from (5) to (13), thus elimi-
nating the Bernouilli pressure term. Thus, since the
normal components of § must be zero at the surface,
the discontinuity in stress across the surface no longer
exists, and the same is true of the surface forces which
appear in the original picture. Secondly, the electric
field is no longer zero, but is given by (14), and con-
stitutes the Hall field. The usefulness of the super-
conducting wire in an electric motor is still guaranteed,
but the forces communicating with the surface are
electric forces operating on the metallic lattice. This is
the more usual situation.

To spell out this point, consider the following par-
ticularly simple stationary situation. A free plane
surface of a superconducting body has a magnetic
field H, parallel to the body just outside it, and currents
7 inside. Call the interior normal the z direction, the
magnetic field direction vy, and the current direction x,
supposing them to be mutually perpendicular. Then,
according to Egs. (2) or (11), combined with Ampere’s

law, for the stationary case,
curlH= (47 /¢)3, (15)

we can find that the magnetic field as well as the current
decrease exponentially going into the material as

j=joexp[—z/)],

16
H=H, exp[—2z/)], (16)

where the penetration depth X is given by
A2=Ac?/4mr=mc?/4mweps. a7

4 Substantially this conclusion was reached by F. Bopp, Z.
Physik 107, 623 (1937), in a discussion of the derivation of
London’s equations from the acceleration theory.
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With this distribution of field and current we note that
(vs-V)v,=0, so that there are no so-called “inertial
forces.” This is true in both representations of the
London equations. Indeed, the “inertial forces” in the
version given by Egs. (2) through (5) can be regarded
as arising in breaking up this relation into

(Vs V) Ve=21V (vi?)— v, X curly,,

(18)

and then ignoring the first term on the right-hand side,
as negligible. In fact, in the case here presented, it is
equal and opposite to the last term, which is usually
kept, and the electric field given by (14) is easily seen
to be equal to the usual Hall field. Since the net force
on the electrons is now zero, it is clear that the magnetic
force has been turned into electric forces that act on
the metallic lattice.

In conclusion, then, we may say that there are
available two forms of London’s equations, (2) and (3),
and (11) and (12), respectively. We may denote them
by I and II. They differ by terms which are usually
negligible, but which are of utmost interest here. I is the
set originally proposed by London, and leads to the
prediction that the Hall effect is absent. IT is the set
that appears naturally from a study of the dynamics of
a frictionless electronic fluid, and leads to a normal
Hall effect. IT is probably, according to London, a
somewhat more consistent expression of the electro-
dynamics of a superconductor, if we believe that
frictionless motion of electrons is in any way involved.
It is probably also worth noting that the equations IT
constitute, to second order, a relativistically covariant
set, whereas the equations I do not. At the very least,
it appears that from this type of argument one cannot
predict whether or not a superconductor ought to
exhibit a Hall effect.

Note added in proof —Professor Bardeen has kindly
called to my attention an article by J. Lindhard [Phil.
Mag. 44, 916 (1953)] in which it is argued that the
London equations do not represent a limiting case of a
frictionless electronic fluid. This argument depends
upon the zero-point velocity of the electrons in a metal,
and must be regarded as rendering still more mysterious
the origin of the London equations.

In all the above we have ignored the role of the
“normal” electrons in the superconductor. The next
sections will be devoted to a study of their influence.

II. THE TWO-FLUID MODEL

We want here to set out briefly those characteristics
of the “two-fluid” model® which will be essential to the
subsequent discussion. The model has been developed
in much greater specificity than we need for our pur-
poses. Indeed, for these off-equilibrium situations the
specific forms of the model that are currently in vogue
cannot be considered well established.

5 Gorterand Casimir, Physik. Z. 35, 963 (1934); Z. tech. Phys.
15, 539 (1934); see also reference 2, pp. 194 ff.
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We consider the electrons to divide themselves into
two groups, with the relative populations of these
groups determined by a parameter f that can vary
between zero and unity, and which we call the “fraction
of normal electrons.” These two groups are supposed
to coexist in the same volume, and to be in thermal,
but not mechanical interaction. Thus they have, in
local equilibrium, the same temperature 7" and Gibbs
free energy density u (per unit mass) but not necessarily
the same pressures.®? It follows that in transport
equilibrium we have

Vou=pVuto.VT,

19
Vp:=psVuto,VT, ( )

where p, p, and o are the pressure, density, and transport
entropy per unit volume, and the subscripts refer to
normal and superconducting components. These equa-
tions determine the thermomechanical forces on the
two groups of electrons in terms of the gradients of the
macroscopic thermodynamic quantities. We will sup-
pose that the transport entropy of the superconducting
electrons is zero, i.e., o;=0.

If Egs. (19) were coupled with suppositions about
the kinetics of entropy transport in the electron fluid,
we would have a complete scheme for treating the
dynamical properties of the two fluid model. In the
case of liquid helium 11, where analogous considerations
apply, they lead to the phenomena of second sound,
fountain effect, anomalous heat conductivity, etc. All
these are associated with relative motions of the two
components, which bring the thermomechanical forces
into play.

In the case of superconductors, however, the friction
involved in the mass motion of the normal electrons
serves to destroy some of these effects. For example,
one might expect, in a superconductor, an anomalous
heat conductivity produced by the counterflow of the
two components, as in helium. However,® the resistance
to the motion of the normal electrons reduces this to an
unobservable fraction of the normal heat conductivity,
and it has never been observed. Similarly for the
“second sound” phenomenon in a superconductor.
Here the resistance can be expected to attenuate the
wave in much less than one wavelength, and it too
has never been observed. The same argument applies
to the absence of thermoeffects in a superconductor.
Clearly, if one is to observe the effects of (19) in a

6 Considerations of this sort have been discussed by V. L.
Ginzburg in his book Swuperconductivity (in Russian), Moscow
(1946), and in Uspekhi Fiz. Nauk 42, 169 (1950), and by P. M.
Marcus at the Schenectady Cryogenics Conference, October, 1952
(unpublished). Particularly the latter anticipates the argument to
be presented here.

7Dr. Herring has kindly pointed out to me that the formal
expression of the assumption of thermal but not mechanical
equilibrium is not immediately obvious in the presence of a
magnetic field. The form that we have chosen is consistent with
a treatment of the problem by the methods of irreversible thermo-
dynamics, and is, in fact, just analogous to the corresponding
treatments of the liquid helium problem.
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superconductor, one must do so without moving the
normal electrons.

The Hall effect situation is one in which currents are
carried by the superelectrons alone, so that only they
experience the magnetic forces. A complete discussion
of the behavior of the electrons in the skin must there-
fore take into account the details of the two-fluid model.
This is the subject of the next section.

III. THE HALL EFFECT IN THE TWO-FLUID MODEL

In the presence of electric and magnetic fields the
forces on both the normal and superconducting electrons
are given by combining (19) with the Lorentz force.
If we suppose that only the superelectrons are moving
(with a mean velocity »,), we have, for the forces on
the electrons (per unit volume)

Fn =paViet o,V T,
Fo=p: Vet (e/me)ps[ vs X H],

where we have introduced the electrochemical potential
te to include the electric forces. Equilibrium is deter-
mined by the absence of a net force on the super-
electrons, so that

Vet (e/mec)[vsX H]=0. 21)

We have now to consider the normal electrons. If there
is a net force on them, it will result in an internal
circulation of current, and therefore a dissipative effect.
Within this framework, the only way this can be
avoided is for the thermoelectric force, represented by
the term in the gradient of the temperature in (20) to
cancel the electrochemical force—so that we would have
a thermal gradient in the presence of a magnetic field.
This would amount to substituting an Ettingshausen
effect for the Hall effect, and is doubtless what would
happen if the metal were a thermal insulator. It is not
hard to see, however, that the actual thermal gradient
will be severely reduced by heat transport in the metal,
and, in fact, by a factor of approximately (RT/Er)?
which is of order 10-8. This can be estimated by writing
down the entropy flow balance in the steady-state con-
dition. Thus, the metal can be considered to be iso-
thermal, and a net force equal to p,Vu, must be sup-
posed to act on the normal electrons. Thus we have both
a dissipative normal current, and a Hall effect.
Deferring for a moment discussion of the fact that
the two-fluid model fails to account for the absence of
the Hall effect, let us consider first the magnitude of the
resistive dissipation predicted above. We can express it
in terms of the time constant for the decay of the dia-
magnetic state of the superconductor, which we have
already calculated in Sec. I. We have only to use for

(20)

8 This is not at all unfamiliar. In an ordinary metal that has
overlapping bands, so that there are two distinct groups of
electrons, there is an internal circulation when a current flows in
the presence of a magnetic field. The same applies to the holes
and electrons in a semiconductor.
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the impedance Z which loads the Hall voltage, some
estimate of the resistance of the skin layer to the flow
of normal currents. For an area of about 1 cm? a pene-
tration defth of about 10~° cm, and a resistivity of
about 107%Q cm, the impedance may be estimated to
be of the order of 10! ohm. This is more likely high
than low for a typical sample. Thus the decay time,
which was 5X10* sec with a loading of one ohm, is
reduced to a few hours at most. This is much too short,
so that we can be sure that loading of the Hall voltage
by the normal electrons does not occur on anything
like the scale suggested by the two fluid model.

It is to be emphasized that this conclusion is inde-
pendent of the possible existence of a contact potential
that may cancel the Hall voltage at the surface of the
specimen, and is a direct consequence of the systematic
application of the two-fluid model to the problem. We
can therefore only conclude that, if cancellation of the
magnetic forces on the superelectrons takes place in the
interior of the sample, then the forces responsible for
this cancellation (the Hall forces) cannot act also on
the normal electrons. This is a new feature of a super-
conductor, and is not contained in the existing phe-
nomenological theories.

It is not hard to see that the new phenomenological
theories® do not improve the situation, at least in their

9 Ginzburg and Landau, J. Exptl. Theoret. Phys. (U.S.S.R.)
20, No. 12 (1950). J. Bardeen, Phys. Rev. 94, 554 (1954).
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present form. What they provide for is a reluctance
(because of the uncertainty principle) of the electrons
to change their wave functions over distances shorter
than ~10~* cm, and this is not required by our con-
siderations.

IV. CONCLUSIONS

We have considered all possible explanations of the
absence of a Hall effect in a superconductor, which both
lie in the framework of existing theory, and are known
to the author. All have been found wanting. The simple
assumption of a contact potential that just cancels the
Hall voltage has been found to beg the question, since
we are still in trouble in the interior of the sample, as
discussed in Sec. III.

We therefore conclude that an explanation of the
absence of a Hall effect in a superconductor will require
an extension of present theory in a direction not easily
foreseen. It will require a long-range cooperative inter-
action among the electrons, that is not contained in
the present phenomenological theories, and which will
serve to transfer the magnetic forces on the super-
conducting electrons directly to the metallic lattice in
such a way that the noncurrent carrying electrons are
not affected. Whether the present beginnings of a
molecular theory of superconductivity contain the seeds
of such an interaction, we do not know.
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The theory of the magnetic susceptibility of graphite is pre-
sented in terms of a three-dimensional Wallace electron energy
band structure. The experimentally observed variation with
temperature is explained in a satisfactory manner, provided the
interplane resonance integral occurring in the band approximation
is given a value of about 0.5 ev. This is about five times larger
than the previously used estimate and implies that a two-dimen-
sional band approximation may be invalid in many cases. The in-
plane resonance integral is obtained by fitting the variation, with
electron concentration, of the electrical resistivity of a graphite-
bisulphate residue compound. In this way a value of 1.63 ev for
this integral is obtained. It might be noted that these values
enabled a better fit of the resistivity over the entire range of
bisulphatization than could be obtained by a two-dimensional
theory. On the other hand, the value thus obtained for the actual

I. INTRODUCTION

RAPHITE shows a very high diamagnetic sus-
ceptibility which is, in addition, extremely ani-
sotropic.! These properties have been explained by

* This paper is based on studies conducted for the U. S. Atomic

Energy Commission.
IN. Ganguli and K. S. Krishman, Proc. Roy. Soc. (London)
177, 168 (1940).

magnitude of the susceptibility is lower than that observed by a
factor of about 40. The (room temperature) variation of the
susceptibility of bromine graphite is then analyzed on the basis
of the above theory, using the indicated values of the constants.
In this way, a value is obtained for the percentage of the bromine
which is jonized. This is found to be weakly dependent on the
amount of bromine, varying between 18%, at 0.3 atomic percent
bromine to 13% at 0.8 atomic percent bromine. The experimental
value has been found to vary slightly around 18%,. This agreement
is very good and indicates that the theory is valid in explaining
relative variations of the susceptibility, even though there is
difficulty in predicting the absolute magnitude. The latter is the
only serious discrepancy found in the present work and has not
yet been explained.

Eatherly? and Smoluchowski® as due to the highly
anisotropic Brillouin zone structure of the conduction
band.* It was originally shown by Peierls,® and later

2 W3 P. Eatherly, see comments in discussion following refer-
ence 3.

3 R. Smoluchowski, Revs. Modern Phys. 25, 178 (1953).

4P. R. Wallace, Phys. Rev. 71, 622 (1947).

5 R. Peierls, Z. Physik 80, 763 (1933).



