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When a plane polarized electromagnetic wave passes through a
semiconductor and a static magnetic field is applied along the
direction of propagation, there occurs a rotation of the plane of
polarization and the transmitted radiation is found to be ellipti-
cally polarized. This effect is due to the influence of the free charge
carriers in the semiconductor and has been analyzed using the
Drude-Zener model. For small losses, weak magnetic fields, and
small values of wr (assuming the relaxation time = to be energy
independent) the angle of rotation of the plane of polarization can
be expressed to a first order of approximation by the simple
formula:

_ 0=}(us/e)}owB/V/E),
where p is the Hall mobility, o is the dc conductivity, B is the
magnetic field, ¢ is the thickness of sample traversed, K’ is the

dielectric constant of the material at the frequency employed in
the experiments, and ¢ and yo are the dielectric constant and the

permeability of free space respectively. For spherical energy sur-
faces, the degree of ellipticity, which is a second-order effect, can
be expressed by the relation &= (uo/eo)[o0(uB)(wr)/v/K'Jt
where w/2x is the frequency and 7 is the relaxation time. Thus,
for small losses the ellipticity is proportional to the latter quantity.
For the case of low frequencies, the effect can be explained by the
introduction of a Hall-effect type field into Maxwell’s equations.
In general, the angle of rotation and the ellipticity may depend on
the direction of the applied magnetic field because of the non-
spherical nature of the energy surfaces.

Room-temperature measurements of the angle of rotation at
microwave frequencies on both #- and p-type samples of ger-
manium gave values of 3780 cm?/volt-sec and 3300 cm?/volt-sec
for the electron and hole mobilities respectively. The method
should be applicable to the determination of mobilities in powdered
samples without using electrodes, if the field inside the powdered
particles is determined by a Clausius-Mosotti type approximation.

I INTRODUCTION

HE rotation of the plane of polarization of a
plane polarized electromagnetic wave of optical
frequencies passing through a substance under the
influence of a static magnetic field along the direction
of propagation is known as the Faraday effect and has
been extensively investigated, both experimentally and
theoretically.! The effect can be explained by consider-
ing the influence of the magnetic field on the equations
of motion of the bound electrons which gives rise to
different velocities of propagation for the right- and left-
handed circularly polarized components of the plane
polarized wave. The effect has also been observed in
ferromagnetic materials at microwave frequencies.? In
this case the mechanism is the influence of the precession
of the electron spin. Ferromagnetic materials with low
loss (ferrites) have found use in microwave circuits.?
When a plane-polarized electromagnetic wave passes
through a semiconductor and a static magnetic field is
applied along the direction of propagation, the plane of
polarization is found to rotate and the transmitted
radiation becomes elliptically polarized. In this case the
effect is caused by the free charge carriers and the
mechanism is similar to that producing the Hall effect.
Faraday rotation in artificial dielectrics has been pre-
dicted by Wicher? from an analysis in terms of the
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Hall field. Using large magnetic fields (~16 kilo-
oersted) the Faraday rotation in germanium has been
investigated at microwave frequencies by Suhl and
Pearson.® Their work was done at low temperatures
(77°K) where the collision frequency of the free charge
carriers is small compared to the signal frequency.
Estimates of the effective masses of these carriers could
be computed from their measurements.

The present work is concerned with the investigation
of the Faraday effect in semiconductors at room tem-
perature (where the collision frequency is greater than
the signal frequency) with relatively small magnetic
fields, in order to establish what information can be
gained from such a simple experiment. The angle of
rotation of the plane of polarization of microwaves
traversing thin (ce 4 mm) samples of #- and p-type
germanium inserted in a circular guide (TE, mode)
has been measured. For magnetic fields of 1400 gauss
the angle of rotation was about 3 degrees. A simple
analysis in terms of a dielectric medium having a con-
centration of free charge carriers characterized by a
mobility and an isotropic effective mass (Drude-Zener
model) shows, that the angle of rotation depends on the
dc conductivity and the mobility of the charge carriers,
as well as on the static dielectric constant, the magnetic
field and the sample thickness. Using known values for
the static dielectric constant and the dc conductivity,
the mobility of the charge carriers can be calculated
from our experiments. The relaxation time or the
effective mass of the charge carriers does not affect the
angle of rotation to a first order of approximation. A
knowledge of an accurate value of the relaxation time
is, therefore, unnecessary in order to calculate the
mobility to great accuracy. If the approximation of

5 H. Suhl and G. L. Pearson, Phys. Rev. 92, 858 (1953).
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FARADAY EFFECT IN Ge

low losses is made, the above analysis predicts a degree
of ellipticity of the transmitted radiation which de-
pends linearly on the relaxation time. Both effects are
complicated by the anisotropy of the effective masses
of the charge carriers, especially when the applied
magnetic field is large.

II. ANALYSIS OF THE MECHANISM BY THE
DRUDE-ZENER THEORY®7

The Faraday effect in semiconductors can be readily
analyzed in terms of the classical Drude-Zener model.
The equations of motion of the electrons or holes under
the influence of the static magnetic field and the micro-
wave electromagnetic field are identical in this analysis
to those of importance in the classical theory of cyclo-
tron resonance in semiconductors, as developed, for
instance, in the publications of Dresselhaus, Kip, and
Kittel® and Lax, Zeiger, and Dexter.?

The effect will first be analyzed for a model of simple
spherical energy surfaces. Consider the propagation of
plane electromagnetic waves in a medium of dielectric
constant e, (real) containing N free charge carriers per
unit volume, each with a charge ¢, a single effective
mass m, and a relaxation time 7'° subjected to a static
magnetic field B, in the direction of propagation. The
charge carriers obey the following equation of motion:

av m

m—+=v=g(E+vXB),

at T

where v is the drift velocity of the charge carriers.
If the motion of the charge carriers, as well as that

of the electromagnetic field is confined to the (xy)

plane (the static magnetic field being applied in the 3

direction) we have, assuming isotropic scattering:

¢y

m
mby+—vyo=qE,FiqB,, (2)
T
where
U, = 0,17y, @)
E,=E,+iE,.

For steady-state solutions under harmonic electric
fields the total current density including contributions
from these charge carriers and the displacement cur-
rent is

; [ , N@/w(mwtqB,)
totald | €st

/1) (oo qu)Z] *
(N qzm/ T)E:i:

" (m/ )+ (mo==qB.)”

. 8 Some the the equations derived in this section are in essence
identical to those obtained independently by Suhl and Pearson.”
The authors are very grateful to Dr. Pearson for submitting to
them a copy of his paper delivered before the meeting of the
American Physical Society at Rochester, New York, June, 1953.
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where w is the angular frequency of the impressed radia-
tion. Thus, corresponding to the two values E; and E_
for the electric field, there are two values for the effective
dielectric constant and conductivity respectively:

oo/w(wr=uB.)
14 (wr-£uB.)?

’
€4 T €t —

©®)

(4]
O ="
14+ (wruB.)?

where o9=Ng?r/m is the dc conductivity and p=gqr/m
is the mobility. The fields E; and E_ are solutions of
Maxwell’s equations in a nonmagnetic medium and for
plane wave solutions propagating in the -z direction,
we have

(6)

Here uois the permeability of free space and &y =a, -+,
are the complex propagation constants corresponding to
right- and left-handed circularly polarized {light re-
spectively. The difference between these propagation
constants results in the production of elliptically po-
larized waves from plane polarized waves with the
major axis of the ellipse rotated with respect to the
original plane of polarization. It can be seen that for
either a reversal of the direction of the magnetic field
or a reversal of the sign of the carriers, the two propaga-
tion vectors are interchanged.

The angle of rotation § and the degree of ellipticity &
of the transmitted radiation can be expressed in terms
of the real and imaginary parts of the propagation
constants.!! For small thicknesses ¢,

kyl=po(e /w0 w).

=3 (e——as)l, @)

é’=%(ﬁ+—ﬁ_)l. (8)

Hence, the angle of rotation and the degree of ellipticity
are very nearly proportional to the sample thickness ¢
(for small #) and the phenomenon can, therefore, be
described as a type of “Faraday effect.”

It is shown in treatises on electromagnetic theory'?

that ,
1 ’ "9 1
T (e

€0 Eilz
1e) e 2\ } 3
() o
2 €0 ei""
where e, =0, /w.

From these two equations the angle of rotation and
the ellipticity can be calculated using Egs. (7) and (8)
and values of ¢,/ and ¢, from Eq. (5). Although the
mobility and the relaxation time appear explicitly in

and

and

—Br=w(eono)?

u See for instance: K. Forsterling, Lehrbuch der Optik (S.
Hirzel, Leipzig, 1928), p. 4.

12 See for instance: A. von Hippel, Dielectrics and Waves (John
Wiley and Sons, Inc., New York, 1954), p. 28.
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Eq. (5) it is possible to show that to a first approxima-
tion, the angle of rotation is independent of the relaxa-
tion time and hence a value for the mobility can be
obtained from a measurement of the angle of rotation
without an accurate knowledge of the relaxation time.
As a first approximation, we assume that the con-
ductivity is independent of the frequency so that

e/ =0o/w.
Expressing the dielectric constant in the form
e’ = €' — (Ae),
oo/w(wruB,)
1+ (oruB.)”

where

(Ae)x=

we can write Eq. (9) as

{(E” _(Ae)*)[H( /—(a e)i)T

e (Aeu]. (11)

If we neglect terms involving (Ae),2?, obvious reduc-
tions give
2

W Ko

a—2—a+2=—2—x[(Ae)+— (Ae)-], (12)

where
oo/
X=X Est) )]-H————.
WeEs
( g0 )
Now
a_— o (e 2—ay?)/20m (13)

with . .

Oy =w (%EOFO) i[I(st,'q - (A 6) AvX]F:
where

K'=¢€i'/en, (Ae)n=07/c0,

and

(To/w ta
=[1+( ) ] 1.
532,
For weak magnetic fields and small values of wr (uB,

and wr<K1), we obtain for the angle of rotation, using
Egs. (5), (7), (12), and (13)

, X (#0) oouB.t
202\ e/ [9K'—x(Ae)n]?
For most semiconductors, even at microwave fre-
quencies, (Ae)a can be neglected and we then obtain

(14)

X [ ko\*owB.t
W2\em/ /K.

At microwave frequencies for most semiconductors

(15)
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1 so that, as a rough estimate

po\ ¥ oopB.t
0~0.44 )
“V/Izst

For the case of small losses (oo/w<¢),

1 /po\ ? oopB.t
2( eo) VK"’
where K’ is the dielectric constant of the material at
the frequency employed. In general, values of sufficient
accuracy for the angle of rotation can be obtained from
Eq. (15). If greater accuracy is desired a rough estimate
of the relaxation time 7 (i.e., (Ae)y) is sufficient to
obtain very accurate values for the mobility from meas-
urements of the angle of rotation 6, using Eq. (14).
The degree of ellipticity is a second-order effect and
cannot be readily approximated in the general case.
For oo/w<X¢, however, we can approximately set

[see Eq. (10)]
o e
o VK vE!]
Again letting /K,'=4/K_'=+/K’ in the denominator
we have for the degree of ellipticity

1/ uo 3
“)
4\ ¢/ /K’

which with the aid of Eq. (5) reduces to (if w7 and
P ( )%Uo(ﬂB )(wT)
€0 \/KI g

Hence, for small losses the ellipticity depends linearly
on the relaxation time.

If ¢'> ¢ it is still possible to determine the relaxation
time from a measurement of the ellipticity if the
mobility has been previously determined from a meas-
urement of the angle of rotation. It can also be shown
that the angle of rotation reverses when the sign of the
charge carriers or the direction of the magnetic field is
reversed.

The whole derivation is based on the assumption that
7 is energy independent. For more complicated cases
where the relaxation time is a sensitive function of the
velocity, the appropriate averages must be calculated
in a manner similar to that proposed by Goldey and
Brown'® and Herring.!*

Because of the small values of the quantities uB, and
w7 employed here, the cyclotron resonance condition
wr=uB, cannot be expected to lead to any sharp
maxima in the rotation vs B curve discussed by Suhl
and Pearson.’ The derivation also assumes the existence

18 J, M. Goldey and S. C. Brown, Phys. Rev. 98, 1761 (1955).
14 C, Herring, Bell Syst. Tech. J. 34, 237 (1955).
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18)

(o4 —0)t, (19)
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of only one effective carrier mass while in germanium
the effective mass is anisotropic and more complex
models of the energy surfaces apply in this case. For
ellipsoidal energy surfaces, the Faraday rotation was
discussed by Suhl and Pearson’” and the equations de-
veloped by Lax and Roth!® can also be applied to this
problem.

In this case, the conductivity tensor in the coordinate
system of each of the ellipsoids (in #-type germanium,
8 ellipsoids in the [111] direction) must be transformed
to a coordinate system defined by the applied magnetic
field and the transformed tensors for each of the
ellipsoids added and divided by the number of ellipsoids,
to obtain the conductivity tensor relevant to this
problem. From this tensor a complex effective con-
ductivity [ (vess)+ | can be calculated, which determines
the propagation constants for right-handed and left-
handed circularly polarized waves by the equation

ki?=pow?esy — ipow (Toet) +-

The real part of [ (sess)+ | then corresponds to the con-
ductivities oy and the imaginary part to the products
w(Ae)y which were derived for the case of spherical
energy surfaces in Eq. (5). It is, therefore, simple to
determine the angle of rotation of the plane of polariza-
tion and ellipticity of the transmitted radiation if the
appropriate values of (oe). have been calculated for
the case under consideration.

In general, the equations for the Faraday rotation
and the ellipticity for ellipsoidal energy surfaces are
much more complicated than for spherical energy sur-
faces and are dependent on the direction of the applied
magnetic field. It can be shown however, that in n-type
germanium for small magnetic fields applied in the
[100] or [110] directions, and small values of w7,
the relation for the Faraday rotation derived for spheri-
cal energy surfaces [see Eq. (14)] applies to a first
order of approximation also to ellipsoidal energy sur-
faces, if the mobility p is interpreted as the Hall mobility
(assuming energy independent relaxation times 7).

In n-type germanium, where there are 8 ellipsoidal
energy surfaces in the [111] directions, the effective
complex conductivity for a magnetic field applied in
the [1007] direction parallel to the direction of propaga-
tion of the electromagnetic wave is given by the
relation!®

(oet) s=0 4 t+1w(Ae) 4
gB

z""[ 1“(2;1??:) mz[(l/T)—f-iw]]/

ma+2ms ¢*B?
()
3my L (1 0) i
15 Benjamin Lax and Laura M. Roth, Phys. Rev. 98, 5, 549
(1955).

16 The above approximations are valid in our experiments,
where uB220.06 and wr=20.07 (see Sec. V).

(21)
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where m; and m, are the longitudinal and transverse
components of the mass tensor. It is easy to show that
this equation leads to the correct values for o, and
(Ae), given by Eq. (5), if my=ms.

For small values of the magnetic field, so that the
second term in the denominator of Eq. (21) may be
neglected, and small values of wr

(89— @9-=2 M)E]B

2mi+ma/ me

(22)

leading to an expression for the angle of rotation
equivalent to that given by Eq. (14), if

’}'ﬂ1‘|—27}’l2 qr
o (2

2m1+mae/ me

(23)

But, for energy independent relaxation times, the ratio
of the Hall mobility ugz to the drift mobility u is given
by the relation'

nH_3M1(M1+27nz)
:— @matma)t
Hence,
3ma(mi+2ms) gr(2mi+ms) 3 mi+2mq g
- (2m1+m2)? . s

As far as the anisotropy of the effective masses is con-
cerned, the electron mobility in germanium obtained
from measurements of the Faraday rotation with small
magnetic fields in the [100] direction and low fre-
quencies or relaxation times (small values of w7) is,
therefore, the Hall mobility.

In the case of #-type germanium, the complex effec-
tive conductivity (cers), was also calculated for mag-
netic fields applied in the [110] direction (the direction
in which the field was applied in our experiments) and,
to the order of approximation discussed above, Eq. (14)
was found to be valid in this case also.

For the case of holes in germanium the energy sur-
faces were, as a first approximation, assumed to be
spherical, although they should be more accurately
represented by warped spheres.®

MH

3mams 2’”’]/1+’WL2 me

III. CONNECTION WITH THE HALL EFFECT AND
MAXWELL’S EQUATIONS

Making the assumption that the definition of the
Hall field for the dc case

EH=RBX J=,UBXE,

where R is the Hall constant and p=Roo (u being the
Hall mobility) is also valid for sinusoidally varying
currents at low frequencies, the results of the Drude-
Zener analysis, described in the previous section can,
for the case of low frequencies, also be obtained by
adding Hall-type fields to Maxwell’s equations as
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follows:

oH
VX (E+Egx)= —ﬂo‘gt—,

oEx
VXH=0E+¢ [——i————]
at ot

For plane wave solutions of angular frequency w, with
the static magnetic field applied along the direction of
propagation, the above equations lead to the following
propagation constants for right- and left-handed cir-
cularly polarized light:

po2 w?e'[ 1+ (uB)?* | FwouB—iwag
+ = Mo )

14 (uB)?

which are identical with the results derived from the
Drude-Zener model at low frequencies (wr<KuB).

The fact that the Hall field must not be added to the
first term on the right-hand side of the second equation
is because, in analogy with the dc case, the total cur-
rent contains a displacement current, but no conduction
current contribution from the Hall field.

By adding Hall-effect terms to Maxwell’s equations
Wicher* has predicted a Faraday rotation for artificial
dielectrics. It can, however, be shown that if the di-
electric constant is independent of B any current en-
tirely in phase with E produces no rotation. If

(24)

J=a—/(a real),
a¢
and
~RBXJ,
then

oH
VX(E+Ep)= —'#o;

0Ey
VXH= (a+eo)(——l——~—

Assuming solutions identical to those giving Eq. (24)
k2=k 2=wluoe

and no Faraday rotation can be expected. The rotation
predicted by Wicher* for artificial dielectrics would not
occur if a Hall field term had been added to the left-
hand side of the first of Maxwell’s equations.

1IV. EQUIPMENT AND MEASURING TECHNIQUES

A block diagram of the equipment appears in Fig. 1.
The signal generator was a Klystron 723 4B tube and
it was isolated from the rest of the circuit by two
variable attenuators and one rotating attenuator, the
latter modulating the power at 10 cycles per second so
that a high-impedance 10-cycle amplifier (Electro-
Mechanical Research Company) could be used in con-
junction with the crystal detector. The wave guide was
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of the standard rectangular X band variety and transmit-
ted. the standard TE;, mode except for the section con-
taining the sample. This consisted of two lengths of
cylindrical hollow brass pipe which fitted together
inside a brass sleeve thus permitting the rotation of
one of the circular guides relative to the other. With
no sample in the guide the power in the rotating guide
varied as cos?, where 6 is the angle between the prin-
cipal planes of the two guides. With the sample inserted
and no magnetic field applied this same cos?9 variation
was observed except that there was a slightly larger
minimum. In all cases the power ratio of maximum to
minimum was 10* or more. The reflections from the
junctions of the rectangular and circular guides should
have no effect on the measured angle of rotation if they
are isotropic. The cos?f variation mentioned above in-
dicates this to be the case. A solenoid slipped over the
circular guide supplied the longitudinal magnetic field.
The angle of rotation of the second guide relative to the
first was measured by reflecting light from an attached
mirror.

The sample was inserted in the nonrotating guide.
It was found that the result did not depend on whether
the sample made electrical contact (as determined by
an ohm-meter) with the guide or not, although the
spacing was not made more than about 0.5 mm. This
is probably explained by the fact that the size of spacing
and thickness of the sample (about 4.5 mm) makes
propagation around the center impossible. The result
was found to be unvaried when the sample was ro-
tated about an axis along the direction of propagation
illustrating the cubic nature of the single crystals used.
An arbitrary zero ellipticity and rotation both inde-
pendent of the magnetic field were introduced by
inserting into the rotating guide a rectangular post of
lucite inclined at an arbitrary angle relative to the
original direction of polarization. This changed the
original angle of the minimum by about 2.0° but the

10 cycle

VOIW
Attenuator.

(o) — Experimental Set-up.

Crystal Det
Meter. Sample

Chamber.

Rectongular Guide.

(b)-Detail Drawing of Sample Chamber.

Fi6. 1. Measuring equipment.
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measured rotation caused by the field about this. new
minimum remained the same. These angles are of the
order of 3.5°. When the attenuators isolating the
oscillator were varied it was found that the rotation
caused by the magnetic field was independent of the
power delivered by the oscillator over a range of 10? in
power. The angle was determined by taking about 6
points around the minimum and drawing a symmetric
curve. The angle was found to reverse when the
magnetic field was reversed. The measured angle was
reproducible to within about 4 percent. The germanium
utilized had a skin depth of about 3 mm so that with
samples about 4.5 mm thick all problems of multiple
transmission due to internal reflections and standing
waves should be eliminated.

The analysis above has been made for a plane wave
while the waves used in the experiment were propagat-
ing in the TE, mode in the cylindrical guide. This
problem is covered by Suhl and Walker,!” but to apply
their solution to the present case of lossy materials
would involve complex trial and error solutions of
Bessel functions of complex arguments. We here present
a semiquantitative analysis. While the guide mode
differs from a plane wave by having (a) a longitudinal
component of the magnetic field, (b) H not constant
in a transverse plane, (c) E not constant in a transverse
plane, it was felt that only the absence of a uniform
electric field in the transverse plane would cause any
important difference between the two solutions.

A diagram of the electric field is given in Fig. 2.18
From this figure, it appears that the actual field con-
figuration in the guide differs from that of a plane
polarized wave by the decrease of the field vector in
the plane of polarization. The former does not lead to a
change of the angle of rotation as the wave passes
through the sample, but only to a change in the ampli-
tude or intensity of the field component parallel to the
major axis of the ellipse. Although a field component at
right angles to the plane of polarization will lead to a
change of the angle of rotation compared with the
plane polarized incident wave, it is easily seen from
symmetry considerations that the contributions of this

-
Eo

Fi16. 2. Field configura-
tion in circular guide (TEq
mode).

17H. Suhl and L. R. Walker, Phys. Rev. 86, 122 (1952).

18 N. Marcuvitz, Wave Guide Handbook (McGraw-Hill Book
Company, Inc., 1951), Vol. 10, Radiation Laboratory Series, p. 71.
This reference also contains an analytic expression for the field

(. 69).
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Electrons
(n-type)

Holes
{p-type)

F16. 3. Rotation of the
plane of polarization for 7
and p_type semiconductors.

Direction of Propagation into paper.
Direction of Maanetic Field into paper.

field component are equal and opposite at equal and
opposite distances from the center of the guide and will,
therefore, on the average, cancel out.

We may, therefore, conclude that the plane wave
solutions which we have used in our theoretical con-
siderations are good approximations in determining
the angle of rotation of the plane of polarization. The
degree of ellipticity of the transmitted radiation, how-
ever, will be influenced by deviations from the assump-
tion of strictly plane polarized incident waves.

V. RESULTS

Measurements were made on two single crystals of
germanium, which were made available to us through
the courtesy of the Philco Radio Corporation. The
crystals were large enough to fill the entire cross section
of the guide. One sample was #-type with a resistivity
of 16 ohm-cm and the other p-type with a resistivity of
19.8 ohm-cm. The magnetic field was applied in the
[110] direction. The observed sense of rotation was in
agreement with the theoretical arguments given above.
(Fig. 3.)

The experimental results for these two samples at
room temperature are shown in Table I.

The effective Hall mobility was calculated from Eq.
(14) using a value of 16 for the static dielectric constant
K,/ and a value of 1.3X10712 sec for the relaxation
time 7. An approximate value for the effective Hall
mobility can be obtained from Eq. (15) which does not
contain the relaxation time. From Eq. (15) we obtain
values of 3720 cm?/volt-sec and 3080 cm?/volt-sec for
the effective Hall mobilities of the »- and p-type
samples respectively. These values differ by only ce 2
percent from the more accurate values obtained from
Eq. (14), showing that the dependence of the Faraday
rotation on the relaxation time is not very large.

From the values for the effective Hall mobility
of these two samples, it is easy to derive the Hall
mobility of electrons and holes in germanium at room
temperature.

An elementary analysis gives the following relations
between the effective Hall mobilities (uets)n and (uets)p
of the #- and p-type samples, respectively, obtained from
our experiments, and the Hall mobilities u, and u; of
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TaABLE I. Faraday rotation and effective Hall mobilities of -
and p-type samples of germanium at room temperature. Thickness
of samples=4.6X10"% meters. Wavelength=23.434 cm. Magnetic
field B.=1430 gauss.

Dc conductivity Measured Effective Hall

oo angle mobility pett

Sample (ohm-meter)~1 ] cm?/volt-sec
n-type 6.25 —3°08/ -4/ 364070
H-type 5.05 +2°22'£4/ 304085

the electrons and holes:
Me bB (n,-/nh)z— 1
(ﬂeif nz_{ } )
bl B (ni/nh)hl- 1
1— (m/nh)ZBb }
14+ (ny/mi)?B |

Here 7y, is the hole concentration in the sample, b and
B are the Hall and drift mobility ratios respectively,
while #; is defined by the relation ng;=n2. (n, being
the electron concentration.)

The ratio #;/n can be obtained from the appropriate
roots of the equation

Pn or p— ﬂ,/nh(B‘l“l)
pi 14 (ni/m)B

where ps or » are the dc resistivities of our samples and
p: is the intrinsic resistivity of germanium, which was
taken to be 47 ohm-cm.?

For the drift mobility ratio a value of 2.1 was chosen!®
while the Hall mobility ratio was taken to be 1.18 in
agreement with the measurements of Morin® as well
as our own results.

The Hall mobility values of the electrons and holes
in germanium at room temperature thus obtained are
given in Table IT and are compared with those of
Morin.20

The errors in the mobility values as stated in Table II
apply only to the precision with which the angles of
rotation could be determined. The relatively good
agreement between our values and those of Morin is
surprising considering the rather rough nature of our
experiments and the many approximation inherent in
our theoretical considerations and must be considered
accidental.

Measurements of the ellipticity & of the transmitted
radiation in these samples gave values of the correct
order of magnitude, The latter were, however, too small
to permit an accurate determination of the relaxation
time, since the small elliptical component always
present in the incident radiation in the guide was of the
same order of magnitude as that produced by the
transmission through the sample. This background
ellipticity can be caused by imperfections in the circular

1 L. P. Hunter, Phys. Rev. 91, 579 (1953).
20 F, Morin, Phys. Rev. 93, 62 (1954).
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guide or nonuniformity of the sample. Furthermore,
the difference in the power received by the detector
between radiation along the major and minor axes of
the ellipse was too large to be measured accurately with
our equipment. To obtain a value of the relaxation time,
the tests will have to be carried out at lower tempera-
tures or with somewhat larger magnetic fields. In any
case, the anisotropy of the effective masses of the charge
carriers will have to be taken into account even for weak

‘magnetic fields, since the ellipticity is a second order

effect (see Sec. II). In addition, the fact that the
incident radiation in the guide is not strictly plane
parallel will have a far larger influence on the ellipticity
than on the angle of rotation and the applicability of
the equations developed in Sec. II to this problem
requires careful consideration (see Sec. IV).

VI. APPLICATION TO POWDERS

The measurements described in the previous sections
can also be applied to powders. This method has the
attractive feature that no electrodes need to be applied
to the specimen.

In order to apply the technique, it is necessary to find
the field existing within the powder particle in terms
of the average field in the wave guide. A procedure
which can be applied to specimens in which the dis-
placement current is large in comparison with the
conduction current has been worked out by Smith.2
He gives a formula for the average field within randomly
oriented particles of different shapes in terms of the
microscopic field which is averaged over both particles
and the space between them.

In the case of spheres, his formulas are the same as
those obtained by the Clausius-Mosotti procedure but
differ markedly when particles of other shapes such as
prolate spheroids are considered.

Some preliminary measurements have been made on
a germanium powder obtained by crushing in a mortar
and pestle some single crystal germanium’ of high
quality. The rotation observed was much less than that
obtained from the same amount of crystalline material.
The reason for this is that the maximum density ob-
tainable is only about 50 percent of the single crystal
value. Germanium has a high dielectric constant and
hence most of the field appears in the interstices be-
tween the particles rather than in the particles them-

TasrLe II. Hall mobilities of electrons and holes in
germanium at room temperature.

Hall mobility (cm2/volt-sec)

Hall effect
Faraday rotation measurements
measurements (Morin)
Electrons 378070 3900
Holes 3330485 3300

2 R. S. Smith, Thesis, University of Pennsylvania (1955). See
also Tech. Rept. 12, Contract N6-onr-24914, January 1, 1955.
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selves. The effect did appear to be of the right order of
magnitude, but no quantitative measurements were
attempted because of the unknown particle shape dis-
tribution of our crushed specimen.

Further work on powders is planned for the im-
mediate future.

VII. DISCUSSION

A measurement of the rotation of the plane of
polarization when a plane polarized electromagnetic
wave passes through a nonferromagnetic semiconductor
and a small magnetic field is applied along the direction
of propagation yields to a first order of approximation
values of the product oou/A/K,’ where oo is the dc
conductivity, u the Hall mobility of the free charge
carriers and K,/ the static dielectric constant of the
material [see Eq. (15)]. Hence, if the dc conductivity
and the static dielectric constant are known, the mo-
bility can be determined by this technique. Conversely,
K,/ can be obtained if the dc conductivity and the
Hall mobility of the sample are known. The method has
the advantage over dielectric measurements in that
measurements of the angle of rotation of the plane of
polarization are considerably easier than measurements
of standing wave ratios. Furthermore, the method
should be applicable to measurements on powdered
samples without electrodes. Since the angle of rotation
depends only in the second order of approximation on
the relaxation time through the factor ¢7/¢ and since
this is small for almost all semiconductors, even at
microwave frequencies,?? an accurate knowledge of the
relaxation time of the charge carriers is not essential in
order to obtain accurate values of the Hall mobility
for most semiconductors.

For weak magnetic fields (at least when these are
applied in the [100] or [110] directions) and small
values of wr, the equations governing the Faraday
rotation are, to a first approximation, the same for
ellipsoidal or spherical energy surfaces, and, by the
use of Eq. (14), measurements of the above quantity
will lead to a determination of the Hall mobility of the
charge carriers. In general, the angle of rotation may
depend on the direction of the applied magnetic field
because of the nonspherical nature of the energy
surfaces.

Although a measurement of the angle of rotation of
the plane of polarization cannot be expected to give
accurate information on the relaxation time, the re-
laxation time and also the effective masses of the charge
carriers can be obtained from a measurement of the
phase shift or the degree of ellipticity of the transmitted

?SR. Rau, Tech. Rept. 2, Contract AF 33(616)-78, January 15,
1955, ‘ '

AT ROOM TEMPERATURE 639
radiation, if the mobility of the charge carriers has
already been determined from a measurement of the
angle of rotation of the plane of polarization [see
Eq. (20)].2 The phase shift should be appreciable, and
could be measured accurately, if larger magnetic fields
are employed or if the experiments are carried out at
lower temperatures. Furthermore, if the phase shift is
investigated as a function of the magnetic field strength
B, the relaxation time could be obtained from measure-
ments of small differences in the phase shift which
should be detectable even at higher temperatures and
low frequencies (small values of wr). Since the phase
shift is a second order effect the anisotropy of the
effective masses must be taken into account and the
simple Eq. (20) is no longer valid (see Sec. IT). Hence,
the ellipticity is a function of the direction of the
applied magnetic field. In principle, then, the effective
masses of the charge carriers may be determined from
measurements of the Faraday rotation and the phase
shift as a function of the orientation of the applied
magnetic field, as was attempted in the experiments of
Suhl and Pearson.® While this method would be more
inaccurate than the cyclotron resonance technique, it
may be applicable to measurements at somewhat higher
temperatures than the latter and to substances in
which the cyclotron resonance method cannot be used.

For general applications, the theory has to be worked
out in detail in cases where the relaxation time is a
function of the electron energy and direction of motion,
but this difficulty would also be experienced in the
interpretation of dielectric measurements although the
mathematical formalism may be simpler in the latter
case.
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2 For materials of small conductivity and spherical energy
surfaces the phase shift depends linearly on the relaxation time.

2 The mobility obtained from the Faraday rotation can prob-
ably not be interpreted simply as the effective Hall mobility of
the charge carriers, even for weak magnetic fields, if the energy
dependence of the relaxation time is taken into account, although
such a interpretation seems correct as far as the anisotropy of the
effective magses is concerned. (See reference 14.)



