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Sharp absorption lines have been observed in p- and n-type
silicon whose absolute and relative positions lead to their interpre-
tation as optical transitions between bound states of trapped holes
or electrons that are approximately hydrogenic in character.
These lines have a finite breadth of the order of 0.001 electron-volt
at liquid helium temperatures. This breadth is determined by the
zero-point vibrations of the lattice. At higher temperatures, the
squared breadth increases in proportion to the mean squared
amplitude of oscillation of those lattice modes that contribute
significantly to the broadening. The theory indicates that the
modes of importance have wavelengths of the order of the Bohr
radius of the trapped carrier state. These are rather long wave-

length acoustic modes whose energy bc' corresponds to 80'K.
Thus the squared broadening is expected to increase by a factor of.

two from helium to nitrogen temperatures —and this increase is
confirmed experimentally. This confirms the hypothesis that the
broadening is due to the interaction of the trapped electron with
the acoustic lattice vibrations. The form of the electron-lattice
interaction is taken to be that of the Bardeen-Shockley deforma-
tion potential, and its strength is determined from the experi-
mental mobility. Thus the theory contains no adjustable parame-
ters. In absolute magnitude, the theoretical line breadth turns out
to be several times too large. Possible reasons for the discrepancy
are discussed.

1. INTRODUCTION quate. (3) Acoustical modes will be more important for
broadening at all temperatures below the Debye tern-
perature. The spread in frequencies in these modes
prohibits the use of the Huang-Rhys analysis.

A generalization of the Huang-Rhys method to the
case of modes with an arbitrary frequency distribution
was therefore developed. ' The relationship between this
generalized procedure, the Huang-Rhys method and the
more recent modihcation introduced by O' Rourke' will
be discussed in Sec. 2. In this section, we shall attempt
to summarize the physical assumptions made in carrying
out the calculation.

The chief approximation made in the course of our
calculation has been that we have dealt with the
broadening of impurity levels of a hydrogenic type. A
hydrogenic energy level scheme will not be quite right
unless one has a single nondegenerate band whose band
edge is at k=0, so that a simple eBective mass theory is
valid. It is now clear from cyclotron resonance experi-
ments' that the valence band of both silicon and
germanium is degenerate, and the conduction bands
have minima at points other than k=0. At the time the
calculations reported here were made, however, this
information was not available, and the simplest possible
assumptions were made. It seems worth while to report
these calculations in their original form because they
illustrate the essential mechanism for broadening with-

out leading to undue complications of a purely computa-
tional nature.

The results will be compared with experiments on
boron-doped silicon (see Figs. 1 and 2) because the most
reliable and complete experimental information is avail-

ARLY work on the broadening of absorption or
~ luminescence lines is based on a classical or semi-

classical application of the Franck4."ondon principle.
Williams and Hebb' have made a quantum mechanical
treatment of luminescence in thallium activated potas-
sium chloride using a single con6gurational coordinate.
Huang and Rhys' in treating F-center absorption made
the erst quantum mechanical treatment of a many-
coordinate problem. Their technique is limited, how-

ever, by the requirement that all the normal coordinates
have the same frequency.

The present problem —broadening of impurity levels
in homopolar semiconductors —cannot be treated by
any of the previously available methods: (1) The
criterion previously developed for the validity of the
semiclassical Franck-Condon principle will be shown to
be violated Lsee Eq. (5.37)$. (2) The orbits of impurity
trapped electrons are so large that interaction takes
place with many ( 10') atoms' and a Williams-type
treatment based on a single real coordinate is inade-

*A summary of the results contained here was reported to the
American Physical Society in March, 1953 )Phys. Rev. 91, 208
(1953)g.

t Supported by the Department oi the Navy (Office of Naval
Research) and the Department of the Air Force (Office of Scien-
tific Research). Publication of this document, for any purpose, by
the United States Government, is authorized.

$ Present address: Bell Telephone Laboratories, Murray Hill,
New Jersey, on leave of absence from Syracuse University.

'For references to earlier work and a critical analysis of the
Franck-Condon principle see M. Lax, J. Chem. Phys. 20, 1752
(1952) hereafter referred to as I. See also reference 14.' F. E. Williams and M. H. Hebb, Phys. Rev. 84, 1181 (1951).

'K. Huang and A. Rhys, Proc. Roy. Soc. (London) A204, 406
(1950).

The number of atoms in a Bohr sphere is (47ra'/3) (2Ne) —50
atoms where no=2.5X10"primitive cells per cm', 2=number o
atoms per primitive cell, and a, the Bohr radius of the impurit
state is shown in Eq. (1.2) to be about 13.5 A for p-type silico
doped with boron.

0 ' R. C. O' Rourke, Phys. Rev. 91, 265 (1953).
f Dresselhaus, Kip, and Kittel 92, 827 (1953); Lax, Zeiger,
y Dexter, and Rosenblum, Phys. Rev. 93, 1418 (1954);R. N. Dexter
n and B. Lax, Phys. Rev. 96, 223 (1954); Dexter, Lax, Kip, and

Dresselhaus, Phys. Rev. 96, 222 (1954).
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Fn. 3. The theoretical ratio, R(T), of.the squared broadening at
the temperature T to its zero-point value, is plotted as a function
of the dimensionless variable T/D. The characteristic temperature
6=2hv/(koa) —94'K in silicon, where v is the velocity of sound,
a is the Bohr radius in the crystal and k0 is Boltzmann's constant.

1) The velocity of sound varies with orientation in silicon. The
longitudinal velocity in the (1,0,0) direction is taken as repre-
sentative.

'0 More precise estimates of the broadening ratio given by Eqs.
(5.22), (5.25) and Fig. 3 agree closely with (1.4).

"N. Pearhnan and P. H. Keesom, Phys. Rev. 88, 398 (1952).

The modes of importance in the broadening ran ac-
cording to (1.1) be assigned to a characteristic tempera-
ture d according to

kent Aco=hwr Av(2/a), (1.3)

where k0 is Boltzmann's constant, and e is the velocity
of sound. For Silicon, we may use' v= ((.»/p)' 0.83
&&10' cm/sec. This leads to a characteristic temperature

94'K. The ratio R(T) of the mean squared broaden-
ing at temperature T to the zero-point broadening can
then be approximated roughly" by the corresponding
ratio of mean-squared oscillations of a harmonic oscil-
lator of frequency ro=kp5/h:

R(T) coth(hro/2ksT) = coth(h/2T). (1.4)

Thus, a noticeable increase in broadening should occur
at a temperature 7=4. In fact, R(A) is roughly 2, so
that a 40 percent increase in the line width should be
observed from absolute zero to 90'K. This is in good
agreement with the actual increase in width between
helium and nitrogen temperatures. The observed in-
crease at low temperatures is strong evidence for the
importance of long wavelength acoustic modes in the
broadening; these temperatures are much smaller than
the Debye temperature" 0~658'K.

The good qualitative agreement between the experi-
mental and theoretical temperature dependence of the
broadening lends support to our proposed mechanism of
broadening by the acoustical modes through the electron
lattice interaction. A more stringent test would be a

comparison between the predicted zero-point broaden-
ing and the experimental broadening at liquid helium
temperatures. Our detailed theory, to be presented
later, shows that the rms width of the line at O'K can be
written in the form [see Kq. (5.15)]:

((he —hv)')-'* (h/3a'vpa4)-'*Et

2.3X10—'Ey,
(1.5)

where p 2.33 g/cm' is the (x-ray) density of silicon,
~=0.83X10' is the sound velocity, and a~13.5X10 '
cm is the Bohr radius.

The deformation potential constant" E~ measures the
strength of the electron-lattice interaction and was
chosen to be 15 ev to fit the experimental mobility at
300'K (see Sec. 4). Thus, the predicted rms width is
about 3.6 millivolts, whereas the experimental full width
at half-power is about 1 millivolt. (Experimental widths
of donor states have a similar value. ) For a Gaussian
line shape, the full width at half-power is (8 ln2) l 2.35
times bigger than the rms width. This would increase
the predicted width to about 8.4 mv. However, an
investigation of the theoretical line shape shows that the
line shape is far from Gaussian due to the presence of
"motional narrowing. "When this is taken into account
roughly, [see Kq. (6.2)] the predicted line width be-
comes 3.0 mv or about three times the experimental
width.

The discxepancy between theory and experiment is
suKciently small, considering the difficulties of making
an absolute calculation, that the proposed broadening
mechanism seems quite reasonable. It nevertheless may
be of some interest to examine the possible reasons for
the discrepancy. Perhaps the first assumption to be
re-examined is the use of the Born-Oppenheimer" ap-
proximation. We have assumed that the electronic wave
function and energy adjusts to the instantaneous posi-
tions of the nuclei. If the nuclei move too fast, this will
not be the case: the energy levels will be less sensitive to
the nuclear motion and a smaller broadening will result.
We know, therefore, that our predicted broadening is an
overestimate.

Usually the validity of the Born-Oppenheimer ap-
proximation is guaranteed by the large mass ratio": in a
molecule the electrostatic restoring forces that act on an
electron and on a nucleus are comparable in size. The
frequencies of oscillation of the electron and nucleus will
then be proportional to the inverse square root of the
respective masses. However, in a semiconductor, the
impurity center electron is not responsible for the
cohesion of the lattice and there is no necessary relation
between the forces acting on this electron and the nuclei.
The nuclear vibrations are determined by the usual
cohesive forces which are practically independent of the
presence of the impurity electron. The electron, on the

's J. Bardeen and W. Shockley, Phys. Rev. 80, "l2 (1950).
'3 M. Born and J.R. Oppenheimer, Ann. Physik 84, 457 (1927);

M. Born and K. Huang, Dyriamics of Crysta/ Lattices (Oxford
University Press, Oxford, 1954).
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r, = (6s'eo)*'—1.14X10' cm ' (1 6)

obtained by converting one cell of the reciprocal lattice
space to a sphere of equal volume with radius r, ,
(where ms

——2.5X10"primitive cells per cm'). The im-
portant vibrational frequencies will then be less than
(0.13)X10" cycles per second, so that the electron
(whose frequency is 0.7X10")will traverse its orbit 6ve
times before the important normal coordinates traverse
theirs once. From this, we may conclude that the Born-
Oppenheimer approximation will yield a broadening
that is of the right order of magnitude.

The major source of error that remains is the use of a
one-band picture that neglects the degeneracy of the
valence bands at the center of the Brillouin zone. (A
further, related assumption is that the band energy near
k =0 is approximately quadratic in k for energies of the
order of keT.) This error could be remedied by recalcu-
lating V, using (3.1) with a more accurate wave-
function P, (r) for the impurity state. Such a change is
not likely to reduce the theoretical answer by a factor as
large as three. It seems much more likely that an error
of a factor of three can be produced by attempting to
determine the constant E~ using the standard one-band
formula for the mobility Eq. (4.6). These points will be
discussed further in Secs. 4 and 6.

other hand, is subject to forces weaker than usual be-
cause it moves in a large orbit, subject primarily to the
electrostatic attraction of the center reduced by the
dielectric constant. The validity of the Born-Oppen-
heimer approximation must therefore be reexamined in
detail for the case of boron doped silicon:

The root mean square velocity of a hole trapped in the
ground state is (2E,/ms)' 1 9X. 10' cm/sec where the
experimental ionization energy is E,=0.046~0.001 ev,
and the eRective mass mj, is chosen to be nsI, ——0.45m
Lsee Eq. (1.2), ff7. This may be compared with the
velocity of sound in the material e 0.83X10' cm/sec. '
The rms velocity of a typical nucleus is of the order of
(k9/3fs;)'* 10' cm/sec, where 0 is the Debye tempera-
ture" 650'K and the mass of a silicon atom is M~; ——4.65
Xj.0—"

grams. Thus the electron moves considerably
faster than the nuclei and will surely adjust somewhat to
their motion.

However, the full validity of the Born-Oppenheimer
approximation presumably requires the electron to
traverse its orbit several times during one vibration of a
nucleus. Thus, we should compare the frequencies of the
two motions. The frequency of the electronic motion is
of the order E,/k —7X10" cycles per second. The
nuclear motion has a spectrum of frequencies whose
maximum is of the order k8/fs 10"cycles per second. If
the broadening were predominantly produced by such
high frequencies, the Born-Oppenheimer approximation
would fail. However, as we remarked in Eq. (1.1) the
phonons of importance have a propagation constant
r&2/u 1.48X 10 cm '. This result is only 0.13 of the
maximum r.

e t'E,)' 8s'v
a(v) =

I I I ~&.I
sG(v)

e t E& 3c
where

2

G(v)=As Q„Xs *(x)X. (x)dx

(2.1)

X8(Es E — kv—) (2 2)

is the normalized absorption spectrum (15.2). Here
X (x) is the mth vibrational state when the electron is
in state a and Xs„(x) is the eth vibrational state when
the electron is in state b, where x is an abbreviation for
the 1023 nuclear coordinates or normal coordinates of the
lattice, and m, n are abbreviations for the quantum
numbers associated with the 10" corresponding har-
rnonic oscillators.

In the Born-Oppenheimer approximation, the eRec-
tive Hamiltonian for nuclear vibration depends on the
electronic state and will~be denoted H, or Hb for the
ground or excited electronic states, respectively. Thus
the eigenfunctions X, (x) and Xb (x) belong to two
diRerent Hamiltonians and are not orthogonal with re-
spect to each other. As a consequence (2.2) permits
multi-phonon transitions in which the individual normal
modes of oscillation change their quantum numbers by
zero or plus or minus one.

The difhculty in evaluating (2.2) lies in performing
the sum over those anal states e that satisfy the
conservation of energy requirement. Huang and Rhys'
were able to perform this sum by special devices that are
applicable only when all the modes have the same fre-
quency (e.g. , an idealized optical branch). In I, we
showed that the sum over 6nal states could be per-
formed by closure techniques after the energy conserva-
tion delta function was replaced by an integral repre-
sentation and energy eigenvalues are replaced by the
appropriate Hamiltonians H and H~. Regardless of the
nature of the vibration spectrum, we found

G(v) =k-')I exp( —i2rrvt)dtG(t),

where
G(t) = vLae p(xiH t/ks) exp( —iH, t/k)7

(2 3)

(2.4)

still contains the average to be performed over initial
states. The Boltzrnann averaging symbol av acting on
any operator 0 is an abbreviation for:

av(O) = traceI 0 exp( —H,/kT) 7/
traceLexp( —H,/kT)7, (2.5)

' See reference I for terminology and notation. For further dis-
cussion of (2.1) with reference to absolute absorption cross sections
and broadening, see M. lax, "The inRuence of lattice vibrations
on electronic transitions in solids" in ProceeChngs of the November
1954 OER Conference on Photocondnctiaity (John Wiley and Sons,
Inc. , New York, to be published).

2. MATHEMATICAL FORMULATION

If the Condon approximation is made, '4 the cross
section for absorption of light by an impurity center can
be written:
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so that (2.4) has been expressed in an invariant way in
terms of the many-body Hamiltonians H, and H&.

A reduction of this many-body problem to a set of
one-body problems can be performed if the normal
coordinates q; associated with H and H~ are the same,
i.e., if H and H~ can be decomposed into terms de-
pending on the same normal coordinates with no
cross terms:

H.=Z H-t(qt, P ),
»=2 Hs (qJ,Pt)

(2.6)

In this case, the complete average (2.4) can be factored
into a product of averages each pertaining to an
individual normal mode:

G(t)=II G (t), (2 7)

G;(t) =a vtexp(i Hst/A) exp( —iH„t/A) j. (2.8)

This factorization was an essential simplification ac-
complished in I. The resulting averages (2.8) for
individual harmonic oscillators are easy to perform by a
wide variety of methods. An early derivation" was
based on methods similar to Huang and Rhys. In I,
ordered operator methods were used because of their
elegance and simplicity. O' Rourke' pointed out the
usefulness of Dirac density matrix methods, and in-
cluded a quadratic term in the energy difference.
Quadratic differences in Hs —H, were not discussed in I
because in general they will cause a mixing of the normal
coordinates destroying the separability exhibited in
(2.7). For the special case considered by O' Rourke' in
which the quadratic energy difference contains only
diagonal terms we can write:

DE(q;) =Hs; H„=1q tA,—q;+X. 'B,qg. (2.9)

Equations I(7.7), (7.10), and (8.6) then yield:

To obtain G(t) from (2.11) one need only sum over j in
the exponent. The resulting exponent then agrees (if
B,=O) with the previous calculation for a linear energy
shift I(8.12). The effect of the quadratic energy differ-
ence is to add a term in the exponent linear in t. Such a
linear term merely shifts the origin of v in (2.3), thus
yielding the same frequency spectrum displaced by a
constant amount. "The amount of the shift in energy
units according to (2.3) and (2.11) is

A(hv) =E ' Q;(B,h/Mco;) (n+-', ) (2.13)
'~ M. Lax, Naval Research Laboratory Report 3973, June 17,

1952 (unpublished).' If off-diagonal quadratic terms had been included, the shape
of the spectrum would have changed as well. Further discussion of
this point is given by Lax.'4

G, (t)=avexpl l i AE(q, (s))ds/It (2.10)
Jo

= exp(1V 'C'Li(sin&a, .t—~ t) —(2n, +1)
)& (1—cos~,t)]+iÃ—'(BJ/M~;) (nt+-', )t), (2.11)

with
C„'=A /(2hM~ ). (2.12)

or
~(hv) =avL1V ' Q; B,q,'j, (2.14)

i.e., the amount of the energy shift may be obtained by
replacing the quadratic part of the energy difference by
its thermal average value. The change of this shift with
temperature was used by O' Rourke (following a sug-
gestion of Huang and Rhys) to explain the shift in the
F-center absorption peak with temperature. ' The con-
stants B; were not calculated, but P B;/E was chosen
to give agreement with the experimental shift'~ (neg-
lecting the fact that part of the shift may be ascribed
simply to expansion of the lattice with increasing
temperature) .

The calculation made in (2.10) is easily extended to
cubic and higher terms in the energy difference. How-
ever, a term of order X 'q,' will yield no contribution of
order X ', and thus will not contribute to the result.
Does this mean that anharmonic terms have no inQuence
on the absorption spectrums Surely a cubic term x' in
the displacement of an impurity atom or a neighboring
atom will affect the spectrum. Vet when x' is expressed
in terms of normal modes the terms are of order
1q &q,q, qq that would be omitted in (2.9). This suggests
that it may not be permissible to neglect cross terms
among the quadratic terms. The diagonal quadratic
terms will undoubtedly continue to yield an energy shift
(2.14), but the cross terms will cause a mixing of modes.
This mixing of modes may not change the peak or the
width of the absorption spectrum appreciably, but it
may scramble up or destroy fine structure that would
otherwise be present.

In our calculation, we shall take account only of linear
terms because there is no easy way to make a reliable
estimate of the higher-order terms. The linear terms will

be estimated from the electron-lattice interaction using
the deformation potential approximation. ""The elec-
tron-lattice interaction is weak in silicon and germanium—as shown by the high mobility. Thus the quadratic
terms should be small. (As corroborating experimental
evidence we note that the absorption line does not shift
with temperature over a range in which appreciable
broadening is observed. ) We assume, therefore, that the
influence of the quadratic terms on the first few mo-
ments of the spectrum are small —though they may have
a significant effect on the higher moments, i.e., on
details of the shape. We shall therefore use our calcula-
tion only to estimate the first few moments of the
spectrum and not to make a detailed evaluation of the
line shape.

3. EFFECTIVE VIBRATIONAL HAMILTONIANS

Let us suppose that the change in electronic potential
associated with an arbitrary (small) displacement of the
nuclei is V(r, ).The dots represent the dependence of

' Further discussion of the F-center problem is given by Lax."' An analysis of the validity of the deformation potential ap-
proximation is being made by R. Rosenberg as part of a thesis at
Syracuse University on absorption of light by free carriers.
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4 b*(r) V(r, ")4.(r)dr (3.1)

However, neither the potential V nor the wave functions
are known accurately unless a detailed knowledge of the
band structure is available. Ke shall show nevertheless
that an evaluation of (3.1) can be made without such
information (for the nondegenerate case).

A wave function such as f,(r) can be expanded" "in
terms of Bloch orbitals P(k,r) or Wannier orbitals
~(»—Q)

k.(r) =2 b.(k)4(k, ) =2'(Q) (r—Q) (32)

If there is no degeneracy between bands, and if the trap
states are sufficiently spread out, it is sufhcient to
expand in terms of Bloch waves or Wannier orbtals of
one band"" the conduction band for electrons, i or the
valence band for holes. (Actually the valence band in
silicon contains three bands degenerate at k=0, one of
which is split oR by spin-orbit interaction. ' ' Since a
detailed analysis of the impurity states is not yet avail-
able' under such circumstances, we shall be content
here to do the calculation as if only one band were
present. Part of the error in such a procedure will be
cancelled by using an eRective mass determined from
the ionization energy of boron impurities. )

Although we do not have detailed information con-
cerning the Wannier orbitals in (3.2), we know that
e, (Q) is a hydrogenic function of its discrete argument
Q. We may regard b, (k) as the same wave function in
the momentum representation:

b.(k)=X—&Q c.(Q) exp( —ik Q). (3.3)

If (3.2) and a corresponding equation for fb(r) are
inserted into (3.1) we find:

Vb. =ebb bb*(k')b. (k)Vb b (34)
In principle, (3.4) constitutes the evaluation of (3.1)
since the matrix elements VI, J, are the usual matrix
elements of the theory of electrical conductivity. In-

'~ G. H. Wannier, Phys. Rev. 52, 191 (1937)."J.C. Slater, Phys. Rev. 76, 1592 (1949); G. F. Koster and J.
C. Slater, Phys. Rev. 95, 1167 (1954)."H. M. James, Phys. Rev. 76, 1602, 1611 (1949).

E. N. Adams, Phys. Rev. 85, 41 (1952), J. Chem. Phys. 21,
2013 (1953).

~ P. Feuer, Phys. Rev. 88, 92 (1952).

this potential on the displacements of the nuclei, or the
normal coordinates of the latter's motion. To our
present accuracy, the dependence of V on these dis-
placements is linear. If the trapped electronic wave
function in a ground or excited state is f,(r) or pb(r) for
the case of a perfect lattice, the change in energy due to
the lattice vibration is V„or Vt, ~ correct to terms linear
in the displacements. And a typical matrix element
important in thermal transition problems is V~„where

Vb, =Lfb(r) V(r. . .)P (r)$

Vb =Q, V(r, .)Xb,(r), (3 7)
where

xb, (r) =Pq cb*(Q) expI ir Q5c, (Q) (3.8.)

Here 7- is used as a summation index, replacing hk.
From (4.4), it can be seen to have the significance of a
phonon propagation vector. The coefficients c(Q) are
normalized in the discrete sense:

EqI&.(Q) I'=1. (3 9)

Thus, X„(r)is the discretized mean value of expI ir Qj
in the hydrogenic ground state. Since the ground state
c,(Q) varies slowly as Q moves from one lattice point
to another, we may replace the sum (3.8) by the corre-
sponding normalized integral:

Ã„(r)= t exp(ir r) (s.as) ' exp( 2r/a)d—r

=L1+(s«)'] '. (3.10)

For the first excited state, the 2p hydrogenic state, we
have

f
1Vbb(r)= ' exp(ir. r)(32ma') 'Lrcos(r, e)7'exp( —r/a)dr

=I 1+(ar)'$ L1—(ar)' —4(ar)Ps(cos(r, e))g,

when we have chosen a state with /= 1, m=0 with our s
axis in the direction of the polarization vector e of the
light quantum. This is the state that will absorb light
polarized in the s-direction.

'4 Strictly speaking, one should use a generalization of the
deformation potential to include scattering by transverse modes.
See, however, reference 26. For degenerate bands one should also
include the effect of interband transitions.

~ J. Bardeen, Phys. Rev. 52, 688 (1937).

serting (3.3) into (3.4), we obtain a form

V .=Z e *(Q')e.(Q) V (3 5)

expressed directly in terms of the hydrogenic functions
c(Q), with

Vq q ——1V ' P Vb. b exp(ik'Q' —ikQ). (3.6)

The momentum wave functions b(k) fall off rapidly
for k larger than a reciprocal Bohr radius. Furthermore,
this reciprocal Bohr radius is small compared to the size
of the Brillouin zone —compare (2.3) and (2.4). Thus
the dominant contribution to Vb, in (3.4) comes from
V» with sufficiently small k and k' that the deformation
potential" is likely to be a good approximation. ' In
the latter approximation Vb b is proportional to (k' —k).
To effect a simplification of (3.5) and (3.6), however, all
we need is that Vb b be a function only ofk' —k, a result
that remains valid even in a self-consistent theory
of the electron-lattice interaction. " If we write VJ, J,

= V(hk, ) where 6k= k' —k and the dots are as usual
the displacement or normal coordinates, then (3.5)
becomes:
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4. DEFORMATION POTENTIAL APPROXIMATION

A comparison of (3.7) and (3.10) shows that the
evaluation of V„requires an accurate knowledge of
V(r, ~ ) only for r & (2/a), i.e., we are concerned with
phonons of suKciently long wavelength compared to the
lattice spacing [compare (1.1) and (1.6)] that the de-
formation potential approximation should be adequate. "
We shall in this paper neglect entirely the contribution
of the optical modes and assume that for acoustical
modes the two particles in the primitive cell of the
diamond structure move in unison. (An analysis of the
errors involved in the deformation potential approxima-
tion is in progress. ")Thus we can simplify our notation
by proceeding as if we were dealing with a lattice
containing one atom per cell whose mass M is twice that
of a silicon atom 3fs;. An arbitrary deformation 8R(r, )
can then be expressed in terms of the complex normal
coordinates q (r) by

8R(r;) =N-'P, P e.(~)q.(~)e'~'~ (4.1)

where e, (~) are the unit polarization vectors, and for

sufficiently small r we may adopt the convention that
es(~) =~/r is the longitudinal mode. The deformation
potential is then given by"

V(r ) =Ei divbR(r) =iEiN '* Q, rqs(~)e'~' (4.2)

and the standard matrix element is given by

An estimate of E~ for holes in silicon can be obtained
from (4.6). Using tr~~500 cm'/volt-sec' at 300'K, a
velocity of sound v 0.83&&10s cm/sec, an effective
mass m~ 0.45m, and 3I=2Mg;, we find that Ei 15 ev.
Our estimate is based on a high-temperature mobility
because the broadening mechanism automatically se-
lects lattice scattering in preference to impurity or
dislocation scattering: The trapped hole will only be
scattered by vibrations or imperfections in its immediate
vicinity. Imperfections sufIiciently close to the impurity
atom to be of importance will very likely shift the entire
line by more than its width in a somewhat random way
and thus will not appear with any appreciable intensity
in the observed absorption spectrum.

Thus, it is necessary to determine separately the
effect of lattice scattering, which is partially accom-
plished by using a room temperature mobility. However,
the experimental mobility'8 p, „~2.4&10 T "disagrees
with the T " power predicted by the deformation
theory. If, for example, we were to 6t our constant E& at
100'K instead of 300'K, we would find E~ 10 ev. This
leads to a reduction of a factor of 2 in the width and
leads to much better agreement with experiment. We
shall prefer, however, for the sake of conservatism to
use the room temperature Q.t, and regard the factor of 2
as an uncertainty in the predicted broadening because
of the absence of an adequate mobility theory.

5. CHARACTERISTIC FUNCTION AND THE MOMENTS

V(~&, ) =[4(~',r), V(r, )|t (~r)j
~iE,N ~Akqs(Dk),

which depends on the approximation

[4'(&'~r) ~e' V(& r) 3—3s~~

(43)

(4 4) where
Vss —V. =N '*Q A(r)q(r), (5.1)

Combining (3.7) and (4.3), the difference between the
two Hamiltonians H ~ H, (aside from—a constant term)
is given by

whose validity follows from the smallness of Ak.
Since only longitudinal modes are involved hereafter,

we shall drop the subscript 3 on qs. Furthermore, q(r)
can be written

q(~) = [@/2~~(~)3'*[~(~)—~+(~)j (4 5)

where a(~) and a+(~) are conventional destruction and
creation operators for phonons of propagation constant
~ with matrix elements [n(~)]& and [n(~)+1jr re-
spectively.

The matrix elements (4.3) and (4.5) lead to the
customary formula for the mobility, "

Sz ) ' ek4rtoMv, '
(4 6)

9 ) Ers(k&)'*(nt*)'"

for the case of spherical energy surfaces. "
"See reference I2, Kq, (A30). The neglect of the transverse

contribution is not serious here, as pointed out by Bardeen and
Shockley. The contribution of transverse modes can be included
roughly, providing we understand that E12 now represents the sum
of the squares of three deformation constants. Since 812 will later
be chosen by comparison with experiment, transverse contribu-
tions are automatically included. We shall, therefore, use the

A (r) =sErrN(r); N(r) =Nbs(r) N(r). (5.—2)

The characteristic function G(t) can now be obtained
from (2.11) or (18.12) providing we merely replace Ats

by ~A(r) ~' since the normal coordinates q(r) are com-
plex (see Appendix 1).

G(t) =exp[s2~~, t+f(t)], (5.3)

f(t) =(~C(r) ~'[i sinro, t
—(2n, +1)(1—cos~, t))), (5.4)

C(r) I
=E sos(N(r) (s/(2A~ce s) (5.5)

The average, ( ) taken in (5.4) is defined as in (I5.21) to
be an average over the modes r, i.e., E ' times the sum

original deformation potential thereby avoiding complicated
notation. The most serious error made by this procedure is that we
do not explicitly take account of interband transitions."For ellipsoidal surfaces centered at k=0 with eRective masses
m&, m&, m3, Eq. (4.6) is still valid providing m is defined by:

(m*)'~s=3(mrm&ma)&/(m& '+m" '+m& ')

For an eight-ellipsoid picture such as prevails in germanium, e

(4.6) must be reduced by the presence of interellipsoid transitions.
The latter effect can be shown to be small in germanium however. '8

ss M. B. Prince, Phys. Rev. 93, 1204 (1954).
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of the contribution of the X diferent modes 7. The
energy hvo constitutes the thermal activation energy, '
and will be defined more precisely in (5.40).

The moments of a distribution function can be ob-
tained directly from the derivatives of the corresponding
characteristic function at the origin, see I (4.2), I (8.14).
Explicit formulas for the moments are identical to
I (8.16)

hv= hvpa(i C(r) i'hp~, ),

((hv —hP)') = ( ~
C(r)

~
'(2n, +1)(Api, )'&,

((hv —h.-) &= +(~ C(r) ~'(h, )P&

(5 6)

(5.7)

(5 8)

((hv hP)'—)=3
~
((hv —hp)-')

~

'

+(IC( ) I'(2n.+1)(h~.)'& (5 9)

The upper signs refer to absorption, the lower to emis-
sion. The first moment or mean absorption energy hP

will be discussed later in this section.
The second moment (5.7) is a measure of the breadth

of the absorption line in the transition a~b. The
breadths of the individual levels may be obtained by
using X„orXee in place of N(r) in (5.5). The squared
breadth associated with the transition, however, may
differ from the sum of breadths of the individual levels
through a cross or correlation term:

av(Vee —Va,)'
=avV„'+avVee' 2av(V U—ee). (5.10)

The significance of (5.10) may be visualized as follows:
during a lattice displacement the energy of level a
changes by an amount V . Thus, avV ' is the mean-
squared excursion of width of state a. Similar remarks
apply to state b. However, the width of an absorption
line is determined by V» —V„, the shift of line 6
relative to a, so that (5.10) automatically takes account
any correlation in the shifts of the two lines.

We shall now calculate the broadening of the ground
hydrogen-like state, by inserting (3.10) and (5.5)
into (5.7):

AEg' x
((hv —hP)') ..= (1+2n,), (5.11)

3A,a I (1+x')'
where

The ratio of the broadening in the 2p state to that in the
1s state is given by

(Vee') (x(1+4x') '[1—4x' —8xPp(cos(x, e))]'&
(5.16)

(V.') (x(1+x') 4)

(x(1+4x')—P[1+(24/5) x'+ 16x4])

(x(1+x')—
4)

(VeeP& =89/(5600) 0.016,
(V-')

(5.17)

(5.18)

where the step from (5.15) to (5.16) involved an average
over the orientation of the light polarization vector e
relative to the propagation direction.

We may conclude from (5.18) that the broadening of
the 2p state is only one-eighth that of the ground state.
The physical reason for this is that the Bohr radius of a
2p state is twice that of a 1s state and the number of
phonons with sufficiently large wavelength to produce
broadening is correspondingly reduced. The broadening
of the 3p and 4p states will be even less. The entire
width of the 1s—2p, 1s—3p and 1s—4p transitions can
therefore be ascribed to the ground state. (There is, of
course, also broadening of the is-continuum transition,
but this can only be observed as a rounding of the edge).

The ratio of the second moment at temperature T to
its zero-point value is given by

R(T) =1+24 ' x'(1+x') 4[exp(xk/T) —1] 'dx (5.19)

for the ground state. At sufficiently high temperatures,
the second moment becomes linear in T:

R(T) - (3-/4)(T/~), (5.20)

so that
h

[((hv —hv)') ..]l
~ ~

Ei
E4Mvax'3

—2.3X10 4E —3.6X10 ' ev. (5.15)

X QC7p X 287max—I 7y
I — 1 (5.12) whereas at low temperatures it approaches its zero-

point value as T4:

and

(L ]&= (3lx') (5.13) R(T) —+ 1+(8v-4/5) (T/&)4.
T—+0

(5.21)

with
n, = [exp (xA/T) —1],

6= (2@v/hpa) 94'K.

(5.14) An approximate expression for R(T) may be obtained
by replacing the distribution of modes by a single
effective frequency. In this case

"o
x'(1+x')—'dx= (1/12); [5/(Mva)] 10 4, (5.4)

The zero-point broadening, obtained by setting n =0 in
(5.11) may be calculated readily by noting that

R(T) =coth(2@pi, /hpT), (5.22)

where the best choice for the eGective frequency, '
using Eq. I (5.22) and I (5.23), is

Aa, = (8/3pr) hpb, . (5.24)
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The Einstein approximation (5.22) approaches unity
exponentially at low temperatures in contrast to the
power law behavior of (5.21) which follows from the
more accurate Debye treatment.

The integral (5.19) can be carried out exactly using
contour integration methods with the result:

R(T) = (1/s) [(3/8)+ (3/4)BP(s)
—(3/4)sV" (s) —(1/4)sV'"(s)3 (5 25)

where

low temperatures (T«A)

R4(T)—+1+1440|(5) (T/d) ', (5.32)

(5.33)

whereas at intermediate temperatures T 6, or higher,
a suKciently accurate expression can be obtained by a
mean value estimate of (5.31):

where 1(5)=1.0369, and at sufficiently high tempera-
tures (T))h)

R4(T) +3vr—T/(86)

s= 6/(2~T) (5.26) R4(T) coth[82/(3s. T)]. (5.34)

and
00

P(s) =d/ds lnI'(1+s); P'(s) = Q . (5.27)
v-i (s+v)'

The third moment according to (5.8) is independent
of temperature and can be written in the form:

Ej25' 6 I" x4

((hv —hv)')~a dS
Ma' x' "0 (1+x')4

37K E] A

16 Ma'x'
(5.29)

The contribution of the second term in (5.9) to the
fourth moment can be written

where

2E Vi'v

(I C(r) I'(» +1)(&~ )'&=— «(T) (5 3o)
Ma'x'

x' )xA q
R4(T) 6 coth

I
Idx

(1+x')4 (2TJ
(5.31)

reduces to unity at absolute zero. In fact at suQiciently

~9H. T. Davis, Tables of the Higher Mathematical Iiuections
(Principia Press, Bloomington, 1933), Vols. I and II.

The digamma, trigamma, tetragamma, and pentagamma
functions P(s), f'(s), P"(s) and f'"(s) are tabulated by
Davis."

A comparison of the "exact" broadening (5.26) and
the "Einstein" broadening versus temperature is shown
ln Flg. 3.

Equations (5.19)—(5.21) describing the change in
broadening with temperature apply to trapped electrons
as well as holes. However, it must be remembered that
the temperature 6 in (5.13) varies inversely with the
Bohr radius a; 6,/Aq ——aq/a, =m, /mq where the last
equality applies if both states are hydrogenlike.

The ratio of the zero-point broadening for electrons to
that for holes according to (5.15) and (4.6) is given by:

((hv Ilv) )g (Egtltg ) t'mg t
* jig

I
=I —

I

— (528)
((hv —hv)')~ r~ I E~nz~'J Em~) p,

((hv —hv)')
73(T)=

[((hv —hv)') $l

3s Ms,2t' lt=—(*)'
I I [R(T)3 '*.

2 Ei (Mv, a)

((hv —hv)4)
y4(T) = —3

[((hv —hv)')$'

(Mv.'i ' & R4(T)

( Eg i Ms, a [R(T)$'

y3(0) 1.8; y4(0) 8.9.

(5.35)

(5.36)

(5.37)

From (5.37) we see that the skewness and kurtosis are
quite appreciable near absolute zero. However, they
decrease at higher temperatures. Since y3(T) semi-
classical=0, and y4(T) semiclassical=0, we see that the
semiclassical approximation is not valid at low or even
moderate temperatures.

It may be of interest to note that

(IC(r) I')=EPa/(8M& 'x') (5.38)

EP/590 0.38, (5.39)

where E& has been set equal to 15 ev in (5.39). The
smallness of this parameter indicates the feasibility of
expanding exp[f(t)] in powers of f(t) in (5.3), i.e., of
expressing the results in terms of zero-phonon, one-
phonon, two-phonon contributions, etc. (The parameter
(I C(r) I') corresponds to the S of Huang and Rhys and
indicates the average number of phonons to be ex-
pected in a transition. ) This point will be discussed
again in Sec. 6.

In I, we showed that because of the interaction be-
tween the electron and the lattice, the lattice relaxes to
a new set of equilibrium positions one for state a, and
one for state b. These positions are the minima of the
parabolas that give the con6gurational energy of the
system (see Fig. 1 of I).The energy difference between
these minima denoted hvo, corresponds to the thermal
activation energy between the states u and b. We

A dimensionless description of the shape of the absorp-
tion curve can be obtained from the skewness and
kurtosis:
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follows from (5.6). Thus the absorption energy hP, will
shift from the constrained lattice value. An estimate of
this shift may be obtained by noting that

&oa

3s. (3.6 mv)'
1.9 mv.

8 81mv
(5.43)

Thus a total shift of 3.8 mv could occur. Since our
theoretical breadth is too large by a factor three, the
shift is more likely about 1.3 mv. This shift cannot, of
course, be observed directly because it is temperature
independent. It could affect slightly, a comparison
between theoretical and experimental estimates of im-

purity level energies.

6. COMPARISON WITH EXPERIMENT

There are two qualitative experimental results that
bear emphasis and explanation: Only a finite number
(three) of transitions has been observed, and the width
of the absorption line is approximately the same in each
case. The second result we have already explained by
noting that the broadening in the three transitions
is—2p, is—3p, is—4p is primarily the broadening of
the is level. The 2p —3p —4p levels have a much smaller
broadening because their Bohr radii are larger, and the
number of lattice modes with suKciently long wave-
length to produce broadening is correspondingly reduced.

It has been previously suggested that only a finite
number of excited states exist because the wave func-
tions associated with different impurity centers will
eventually begin to overlap. "This is a limiting factor
only at very high impurity concentrations, however.
The crystal for which the measurements in Figs. 1 and 2
were taken (referred to as Si 155 in reference 7) is a
fairly pure specimen having about 5&(10"free holes at
room temperature. Thus the separation between boron
centers is of the order of 1000 A. This is enough larger

~ K. S. Shifrin, J. Tech. Physics (U.S.S.R.) 14, 43 (1944).

showed in (I 6.7) that

h s
——Es—Z,+(L(A, )'—(A ) j/(2MN, )), (5.40)

where E~—E, is the electronic energy difference with
the nuclei constrained to the perfect lattice positions.
The constants A; and A;~ are the linear interaction
constants appropriate to state a or b respectively Lsee
(5.2)$. For our purposes we have shown that the inter-
action in the 2p state is negligible compared to that in
the 1s state, so that we may set A =0, A; =A. For
the present case, then„

(5.41)
and

F.W. at H.P.= (8 ln2) L((hv —hP)')$1

(2.35)(3.6) 8.4 mv
(6 1) '

at absolute zero (or liquid helium temperatures).
However, the line shape at absolute zero may be

expected to be far from Gaussian as an examination of
the kurtosis (5.36) shows. A large kurtosis implies a
large fourth moment for the same second moment —so
that more of the strength of the line is in the wings—
with a correspondingly narrower, more peaked center.
This "motional narrowing" of the line is a quantum
mechanical effect that would not have appeared in a
semiclassical treatment and results from the weakness
of the electron-lattice interaction in silicon. A rough
estimate of the importance of the line shape on the
width may be obtained by comparing with the case of
exchange narrowing in paramagnetic resonance treated
by Anderson and Weiss."Their estimate of the F.W. at
H.P. 2cov'/&o, can be rewritten in the form

F.W. at H.P. (2 /y4)&L((hv —hP)' ))'*

~(0.84) (3.6)~3.0 mv
(6.2)

by using the fourth moment to estimate co,. Because of
~' P. W. Anderson and P. R. Weiss, Revs. Modern Phys. 2S, 269

(1953).

than the first Bohr radius 13.5 A that the centers may be
regarded as independent.

A more elementary explanation can be given for the
fact that only a finite number of transitions is observed—
namely that such transitions would not be resolved
since (a) they are close together in energy: they must all
occur between 0.043 ev and 0.046 ev; see Fig. 2; (b) they
should have widths of the order of 0.001 ev equal to
those for the is—2p, is—3P, or is—4p transition; (c)
they should have low intensities.

Another striking experimental result is the appreci-
able increase in width (about 40 percent) between liquid
helium and liquid nitrogen temperatures. This is evi-
dence that the phonons of importance have low energies
Puo~ks(80). Our analysis agrees with this by showing
that the phonons of importance have wavelengths about
equal to x times a Bohr radius. These phonons have a
characteristic temperature of 6= 2AP/kea 94'K in
silicon, see (5.14). The squared broadening ratio is
plotted Persgs T/6 in Fig. 3. At T=h, the squared
broadening ratio is slightly over 2 in qualitative agree-
ment with the experimental 40 percent increase.

Although the qualitative agreement with experiment
suggests that our picture of the broadening as due to
interaction with long wavelength acoustic modes is
correct, our absolute estimate of the line width is
slightly too large. The experimental full width at half
power (F.W. at H.P.) is about one millivolt. The rms
width LEq. (5.15)j is about 3.6 millivolts. To convert
from the rms width to the full width at half power, we
need to know the shape of the line. For a Gaussian
shape the
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the large kurtosis, an appreciable narrowing results, and
the estimated width of 3 millivolts is only about three
times too large.

One of the possible reasons that the theoretical answer
is too large is that the calculation was made using the
Born-Oppenheimer approximation which inevitably
overestimates somewhat the sensitivity of the electronic
energy to the nuclear coordinates. This point was dis-
cussed in detail in Sec. 1.Another reason for error in our
calculation of the electronic energies was the use of a
simplified one band picture rather than the use of a
degenerate band picture for the valence band in silicon.
This error should be partly cancelled by using an
eGective mass determined from the experimental binding
energy. Another approximation was the use of the
deformation potential which neglects any contribution
of transverse modes to the scattering matrix elements.
This should be partly cancelled by the use of the
experimental mobility and the deformation potential
theory in the determination of the electron-lattice
constant. Perhaps the worst error is that constant E» is
estimated neglecting the possibility of hole scatterings
between the degenerate bands and quartic terms in the
energy-momentum relationship. Because of this neglect,
we have probably overestimated Ei and hence over-
estimated our theoretical width. (If we had used the
100'K mobility to determine E1, the predicted broaden-
ing would have been reduced by a factor of 3' 2.35).

As a concluding remark, we would like to explain why
we used the Anderson-Weiss narrowing estimate (6.2)
rather than working directly from the line shape which
is presumably known from (2.3) and (5.3). Because of
the smallness of the parameter Ei in silicon (~C(r) ~')
~(Er/24)'~0. 4 and it becomes legitimate to expand
(5.3) in powers of f(t). The term of order Lf(t)g" then
corresponds to an e-phonon process. The zeroth-order
term in this expansion corresponds to a delta function,
i.e., an infinitely sharp line at the electronic energy
diGerence. The one- and two-phonon processes, etc.,
yield a continuous background. Because the integrated
intensity is independent of Ei, a large Ei (the semi-
classical limit) would throw most of the intensity into
the many phonon processes with a corresponding reduc-
tion in the intensity of the center (zero-phonon) line. It
is then more legitimate to approximate the line shape by
a continuous curve. For small E1, as is the case in silicon,
a fair fraction of the total intensity resides in the center
line and no simple description of the line shape can be
given. Of course, an infinitely sharp center line could
never be observed because of lack of perfect resolution
in the detection instruments. The fact that our line

width increases from helium to nitrogen temperatures,
however, shows that the observed broadening cannot be
entirely instrumental.

One possible theoretical explanation is that it is not
possible to neglect the terms in the energy diGerence of
second order in the nuclear displacements even when
such terms are small. For such terms imply that the
normal coordinates of the lattice are diGerent in the
ground and excited electronic states. There is then,
strictly speaking, no such thing as a zero-phonon
process. The presence of a small second-order term could
then conceivably result in a continuous line shape
without appreciably aGecting the first few moments of
the spectral distribution. Thus, we have assumed that
our calculated values of the first few moments are more
reliable than our calculated line shape and have used
them to make a crude estimate of the line width.

where we ignore the term r =0 since A (0) =0, and in any
case, one term will make no diGerence after the limit
X~~ is taken. Since AE is a Hermitian operator and
g(—r) =Kg+(r) we must have also A( —r) =+A*(r).
If we introduce these relations into (A1) and define

then

A (r) = LA i(r)+iA2(r)7/V2r

V( ) = La(r)+i&2( )j/v2,
(A2)

&E(rl) =P,&Oui(r) gi(r)+A 2(r)q2(r)]. (A3)

Since the two modes qi(r) and q2(r) have the same
frequency or(r), any sum of the form

f Q A '(r)h(or(7))
v)0, n 1,2

= P LAP(r)+A2'(r))h(or(r)) (A4)
r&0

2
can be rewritten using the evenness of or(r) and

~
A (r)

~

in the form

(A5)

where h(or) is an arbitrary function of or. The function
f(t) defined by (5.3) and (2.11) is a sum of this form.
Thus, we may apply the formulas of reference 1 based on
the real sum P A;q; by replacing A by ~A(r) ~'.

APPENDIX: INTRODUCTION OF REAL COORDINATES

The complex linear energy difference (5.1) can be
rewritten in the symmetrized form:

»(C) =& 'Z.&OLA(r)C(.)+A(—r)V(—.)3, (A1)


