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The high-energy nuclear photoeffect has been calculated according to the “deuteron model” of Levinger.
In this model, the photoprocess occurs when a neutron and a proton which are scattering one another inside
the nucleus absorb the energy of the incident photon and escape from the nuclear potential well into the
laboratory. The nuclear photoeffect cross section is then obtained by averaging the cross section for the
above process over all possible neutron-proton pairs in the nucleus, assuming a nucleon momentum dis-
tribution. The electric dipole and quadrupole interactions of the radiation field with the neutron and
proton are included, and the magnetic terms are neglected. The averaging over all neutron-proton pairs is
performed by means of a random flight formulation of the problem. The analytical work involved may
conveniently be done using either a zero-temperature Fermi ground-state nucleon momentum distribution
or a Gaussian distribution. Numerical results for the energy and angle distributions of photoneutrons and
photoprotons are presented in the case of the Gaussian distribution, for four photon energies between 50

and 125 Mev.

I. INTRODUCTION

EVINGER’S! deuteron model for the high-energy -

nuclear photoeffect has been sufficiently successful

in interpreting experimental data to warrant further
calculations. This model assumes as a photon absorp-
tion process, the photodissociation of a neutron and a
proton within the nucleus which interact through a
short range potential and are scattering one another.?
The neutron and proton absorb the photon energy and
may then escape from the nucleus. The nuclear photo-
effect cross section is obtained by averaging the cross
section for the photodissociation of the quasi-deuteron
over all possible neutron-proton pairs in the nucleus.
Corrections may be made to this result for the scattering
of the prospective photoparticle by other nucleons in
the nucleus and consideration given to the effects of the
Coulomb and centrifugal barriers at the nuclear surface.
Levinger! shows that the cross section for the photo-
dissociation of the quasi-deuteron can be related to the
cross section for the bound deuteron, and makes use of
the deuteron photoeffect cross sections calculated by
Schiff? and by Marshall and Guth.* We calculate instead
the photodissociation’ cross section of a neutron and
proton which are scattering one another and confined
to a volume v which is later taken to be the volume of
the nucleus under consideration. For initial and final
state wave functions, triplet #-p scattering wave func-
tions are fabricated to provide agreement with the
phenomenological low-energy 7-p interaction. Only the
electric dipole and electric quadrupole contributions are
calculated. The magnetic terms are neglected because
they are expected to be small, and furthermore their
neglect does not distort the angular dependence of the

* Supported in part by the Office of Scientific Research, Air
Research and Development Command.

1J. S. Levinger, Phys. Rev. 84, 43 (1951).

2In Levinger’s terminology, such a neutron and proton are
referred to as a “‘quasi-deuteron.”

3 L. I. Schiff, Phys. Rev. 78, 733 (1950).

4J. F. Marshall and E. Guth, Phys. Rev, 78, 738 (1950).
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cross section in that there is no interference with the
electric terms.

Deuteron-model calculations in the past:> have
handled the averaging over all quasi-deuterons in a
manner which does not yield an analytical result. This
average is dependent on the nuclear ground-state
neutron and proton momentum distributions. Levinger
assumes Fermi distributions with a temperature of 8
Mev, and Weil and McDaniel® use zero-temperature
Fermi distributions.

The averaging is handled here by interpreting the
kinematics as a random-flight problem involving the
sum of four momentum vectors. It is necessary to choose
ground-state nucleon momentum distributions that will
submit to the repeated integrations which arise in the
random-flight theory. The zero-temperature Fermi dis-
tribution and the Gaussian are satisfactory in this re-
spect, and the averaging is performed for both. The
analyses of other types of nuclear experiments like the
“pickup” process® and the nuclear scattering of 320-
Mev protons” suggest that the Fermi distribution does
not give as good agreement with experiment as do
smoother distributions. The distribution proportionals
to (p*4a?)~2, where p is the nucleon momentum and a?
corresponds to 18 Mev, is found to give reasonable
agreement with the “pickup’’ process experiments,? but
does not give as good agreement with the proton scatter-
ing experiments’ as does a Gaussian distribution with
a 1/evalue of 16 Mev. In view of this, numerical evalua-
tion of the photoeffect calculation presented below has
been done only in the case of the Gaussian momentum
distribution.

Corrections for the collisions of the photoparticles
with other nucleons inside the nucleus have not been
included here. This effect mainly influences the low-

5J. W. Weil and B. C. McDaniel, Phys. Rev. 92, 391 (1953).

¢ G. F. Chew and M. L. Goldberger, Phys. Rev. 77, 470 (1950).
7 Cladis; Hess, and Moyer, Phys. Rev. 87, 425 (1952).

8 This is the ‘“Chew-Goldberger” distribution. See reference 6,
9 H. York, Phys. Rev. 75, 1467(A) (1949),
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energy photoparticles as the mean free path of a nucleon
in nuclear matter is shorter for low-energy nucleons.!

In Sec. IV, account is taken of the reflections of
photoneutrons from the edge of the nucleus where we
expect a rapid change in nuclear potential and also a
centrifugal barrier corresponding to the angular mo-
mentum of the photoneutron. In the case of photo-
protons, the effect of the Coulomb barrier in reducing
the penetration probability is also considered.

Tables of the numerical work are presented for
photon energies of 50, 75, 100, and 125 Mev. These
tables are not corrected for nuclear surface barrier
penetrability, as it is necessary to specify a particular
nucleus in calculating the penetrability. Directions for
using the tables for a particular nucleus are presented
in Sec. V.

II. QUASI-DEUTERON PHOTODISSOCIATION
CROSS SECTION

The neutron and proton comprising the quasi-
deuteron are assumed to interact through a short-
range static potential of the kind usually assumed in
explanations of the deuteron ground state and the low-
energy n-p scattering. By virtue of this interaction, the
neutron and proton can recoil against one another and
absorb the energy of the photon. A direct calculation
shows that without the #-p interaction, the cross sec-
tion for the photon absorption is zero.

This calculation is very similar to the deuteron photo-
effect calculations where one calculates the transition
probability per unit time per unit incident photon flux
from the deuteron ground state to a final state where
the neutron and proton are nearly free, but still inter-
act through the n-p potential. Just as in the deuteron
photoeffect calculation, we obtain:

cos?d], (1)
U
where

dn? 12\ ME;E,'
0d=—(—)——lh!2, _
3 \#c #?

7 /e \ Mky(E,)?
oq=—(—)—-—llzl2;
60\1c/) e

6 is the angle of the photoparticle with respect to the
direction of the incident photon, ¢4 and ¢, are respec-
tively the total electric dipole and electric quadrupole
cross sections, M is the nucleon mass, k; is the final
nucleon momentum, E,’ is the photon energy seen in
the center-of-mass system, and

2

I= f R*(r)r¥y.(r)dr,
’ 3)
I,= f Ro*(r)r'y;(r)dr.

10 Weil and McDaniel® show how collisions affect the photo-
particle energy spectra.

In these expressions for Iy and I, Ri(r) is the radial
part of the p state contribution to the final state wave
function and Ry (r) is the same for the d state. These
final state radial functions are normalized to have
the asymptotic form R;(r) — cosd; ji(ksr)—sind; ni(k,r),
where the §; are the phase shifts.!! In calculating the
R(r), we shall use the Serber force? which yields an
interaction only for even values of /. This gives us the
result that R;(r)=7,(k,) for odd I. In calculating I,
the 7 factor in the integrand makes the details of Ry (r)
unimportant near r=0. Because of this, we use the
asymptotic form?®

Ry(r) — cosda jo(ksr)—sindy na(ksr).

The phase shift 6, is calculated by the Born approxi-
mation.!

For the initial state wave function ¢; we use the
I=0 part of the n-p wave function in the triplet »-p
potential. Neglect of the singlet interaction is not felt
to be serious and considerably simplifies the calculation.
Rather than start with the #-p potential where in
general it is impossible to solve the wave equation, we
make a choice for ¥, which correctly gives the low-
energy n-p scattering and in the limit of a negative
value for the relative energy, becomes the deuteron
bound-state solution for the Hulthén potential. This
wave function is:

Yi(r)=(4/r)u(r)
sin (k7 +3o)

U; (1’) = T— e Fhr,
S1Noy

where

From the “effective range’ theories of Bethe'® and
Schwinger,'® we use

ks cotde=—1/a,+1rok 2.

The effective range is 7o, and a, is the triplet scattering
length. The parameter 8 is given by!7:18

3 16 7o\ ?
2]
27’0;

9 ag
Following Levinger, we choose the normalization factor
A so that ¢; is the s wave part of a plane wave ¥,
which is normalized so that it yields one #-p pair in a
volume v which is later taken to be the volume of the

u 1, I, Schiff, Quantum Mechanics (McGraw-Hill Book Com-
pany, Inc, New York, 1949), Chap. V, Sec. 19.

12§ M. Blatt and V. F. Welsskopf Theoretical Nuclear Physics
(John Wiley and Sons, Inc., New York, 1952), p. 179.

13 This approximation is used in references 3 and 4.

14 Reference 11, p. 165.

15 H, A. Bethe, Phys. Rev. 76, 38 (1949).

16 T, Schwinger, Phys. Rev. 72, 742(A) (1947).

17 A justification for using this formula for 8 is presented in the
dissertation by the author, copies of which may be obtained from
University Microfilms, 313 N. 1st St. Ann Arbor, Michigan.
(Cat. No. 11171) (unpublished).

18 Recent experiment shows 7o;=

1.7X1078 cm, ¢,=35.39X10™18
cm. (See reference 12, p. 71.)
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F1c. 1. The vector
composition of the
photoparticle  mo-
mentum Q.

nucleus under consideration. This gives the result
A=v"%ging,.

The results of calculation of I; and I, by Eq. (3) are
lengthy algebraic expressions and are not included
here.”® The cross sections ¢4 and o, follow directly
through Eq. (2).

III. AVERAGING PROCESS

The averaging over-all quasi-deuterons is compli-
cated by the dependence of the quasi-deuteron photo-
dissociation cross section on the relative momentum of
the neutron and proton, and on the photon energy that
appears in the quasi-deuteron center of mass. This
photon energy is given by a Doppler shift from the
energy of the incident radiation and is dependent on
the motion of the quasi-deuteron center of mass in the
nucleus. The averaging is performed by interpreting
the situation as a random flight problem involving four
vectors. The momentum vector Q of a photoparticle
in the laboratory is given by

Q=P+3(p.tp,)+37k. 4)

The vector (p.+p,) in Eq. (4) or Fig. 1, is the mo-
mentum of the center of mass of the quasi-deuteron,
where p, is the neutron momentum and p, is the proton
momentum. One-half of this must be added to P, the
momentum of the photoneutron or photoproton taken
in the center-of-mass frame. In addition, each photo-
particle receives a contribution i%#k. We are interested
in obtaining a distribution function which gives the
probability W (Q)dQ that Q lies in the range dQ.dQ,dQ.
=d(Q about Q.

The center-of-mass frame for the quasi-deuteron
photodissociation will be taken as the quasi-deuteron
center of mass. This means that the effect of the photon
momentum in establishing the frame of reference is
being neglected.

The random flight formulation consists in treating
the momentum vectors in Eq. (4) as random variables.
Chandrasekhar? gives the solution to random flight
problems in a form convenient for our use. The calcula-
tion has been carried out in two steps. Let us take

19 See reference 17, pp. 37-38.

2 Equation (4) is not quite correct for relativistic particle
energies (i.e., for photon energies that are a sizable fraction of the
nucleon rest energy). The approximation made in using Eq. (4)
is consistent with others made in this work. A detailed develop-

ment is presented in reference 17, in the Appendix, Sec. B.
2 S. Chandrasekhar, Revs. Modern Phys. 15, 8 (1943).

Q=0Q’'—37%k, where Q’"=P+3(p.+0p,). We first calcu-
late W’ (Q’) according to the random flight formalism,
and then calculate W (Q) by a reapplication of the same
formalism. W'(Q’) is given by

Wl 7 1 h 4 7 d 5
@)=, [ exp(=io-@)a'(as,  (50)
where :

@)= [ [ [ explio- o+t ) Trr(Ertna, P)

X 71(q4) 75(q,)dPdqdqy,,

with ¢,=%p, and q,=%p,. Similarly, W(Q) is ob-
tained from W’(Q’):

(Sb)

w = ! L
©=— f exp(—ie-Q)A(e)ds,  (6a)

Ale)= f expio- pe) e (pr)dpe
X f explie- Q)W (Q))dQ’, (6b)

where we have introduced p;=3%k.

Knowledge of W (Q) gives us not only the angular
distribution of photoparticles but the energy distribu-
tion as well. Let us take ® and & as the polar angles
for the vector Q. Then dQ is given by dQ=(0%dQdQ,
where d2=sin@d®d0 is the element of solid angle in
Q space. Further, since the energy of the photoparticle
above the bottom of the nuclear well is given nonrela-
tivistically by E,=Q?/(2M), we have

W(Q)dQ=W(Q)(2M*E,) dE.dQ. (7

The cross section o(0,8,E,) per unit solid angle per
unit energy of the photoparticle is then

0(0,2,E.)=W(Q) 2M°E.)*. 8)

If the depth of the nuclear potential well is V, the
energy of the photoparticles in the laboratory is given
by Ep=E,—V. After the cross section ¢(0,9,E,) is
evaluated according to Eq. (8), the photoparticle
energy scale must be shifted by an amount V which
may be chosen from the analysis by Adair®® of the
results of neutron scattering experiments or on some
other basis.

In calculating W'(Q’) according to Eq. (5), we
require the probability density 7p(E.,q.,4q,,P), given
the values of E,, q., and q,, that P will lie in the range
dP about P. The quasi-deuteron photodissociation
cross section calculated in the previous section accord-
ing to (1) and (2), may be written

np( l Pr»—P»p l , B,/ 0p)

2 Robert K. Adair, Phys. Rev. 94, 737 (1954). A well depth of
40 Mev is suggested by this analysis.
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where 0p is the angle of the photoparticle in the quasi-
deuteron center-of-mass system and E,’ is the photon
energy in the center-of-mass system. The cross section
is dependent on the magnitude of (p,— p,) and not on
the direction since only the /=0 partial wave is included
in the initial state wave function (moderate nucleon
momenta). On multiplying o., by a delta function
normalized to unity, which expresses conservation of
energy in the photoprocess, we obtain 7p.

7p=00(| P| —Po)/Pe. 9

Py is the magnitude of the photoparticle momentum
in the center of mass and is given by energy conserva-
tion between E,’ and the initial relative energy between
the neutron and proton. If we use the nonrelativistic

Doppler formula to express E,’ in terms of E, and
introduce

r=q,—qyp,

10
R= 4ntqp, ( )

we find

Po= [ME7(1—% cosBR)-l— | r|2]%. (11)

Since ¢,, depends on r through |r|, and on R through
the Doppler formula, it is seen that

TP= TP([ I'I )R)E'YxoP)'

This suggests that the integrations indicated in (5)
over q, and ¢, would be more easily performed if a
transformation were made to the variables r and R as
is Eq. (10). To do this, 7,(q+)75(q,)dq.dq, must be
replaced by 7,(r)7z(R)drdR. If 7, and 7, are of simple
analytic form, this latter transformation is readily
performed. 7, and 7, are closely related to the ground-
state nucleon momentum distributions. The cross sec-
tion o, may be expressed as a series of Legendre poly-
nomials of order from zero to five in the angles of P.
The integration indicated in Eq. (5b) over these angles
is readily carried out,® as is also the integration over P.
The integration over the angles of R is complicated by
the dependence of Py on 0z as in Eq. (11) and the de-
pendence of ¢,, on E,’ which is also a function of 6.
A series expansion is made in powers of (R cosfg) of
onp and 7,(pPo) where the quadratic and higher terms
are neglected.* Integration over 6z then proceeds
according to the same method used in the case of the
angles of P. Integration over the angles of r and p is
done by using the results quoted in footnote 23.

2 This integration, and many others to be done, make use of
‘/ ) exp (ik - 1) Pn(cos0,)dQr= 47" Py (COSO%) jn (B7).
Of occasional use also is
J, inten)in(Bo)do= 5 @—B)+ (— 1) o (atp)]

2 A justification for this approximation is given in reference
17, Appendix D.

F1c. 2. Geometrical
re},ation between © and
e,

Tk

The resulting expression for W’(Q’) has yet to be
integrated over 7, R, and p, but first, specific forms for
the ground state nucleon momentum distributions
must be assumed. The integrations over R and p may
be done by using the zero-temperature Fermi dis-
tribution and the Gaussian distribution. The result for
W’(Q’) is expressible in a series of Legendre poly-
nomials. The coefficients in the case of the Gaussian
distribution contain Gauss functions and Bessel func-
tions of half-odd-integer order with an imaginary
argument; in the case of the Fermi distribution, the
coefficients are lengthy algebraic expressions. The
integration over 7 is not done exactly, but is conveni-
ently approximated numerically.

W'(Q’) may be written

W (Q) =é)Bn([ ODPu(cos®).  (12)

Next, W(Q) must be obtained according to Eq. (6).

For 74(px) in Eq. (6b), we use 8(prs)d (Pry)d (pr.—3%k),
and readily obtain:

W(Q>=éo Bu(| Q— 1K) Pa(cos®”),  (13)

where
| Q—37nk| =Q[1+ (32k/Q)*—2(3%k/Q) cos®, (14)
and L
cosB” cos®— (3%k/Q) 15)

[0+ (37k/ Q) —2(1k/Q) cos® T

Figure 2 shows the geometrical relation between these
quantities. Equation (13) states that to calculate W(Q)
for a given laboratory angle ® and laboratory mo-
mentum Q with an associated energy E.,, we must
calculate cos®” and | Q—37k| according to Egs. (14)
and (15) and substitute them into Eq. (13). The cross
section o (®,E,) is then given by multiplying this result
by (2M3E,)?* as in Eq. (8). Numerical results in Table I
are discussed in Sec. V.

IV. COULOMB AND CENTRIFUGAL BARRIER
PENETRABILITIES

We assume that if a prospective photoparticle does
not get through the Coulomb and centrifugal barriers
on its first encounter, it does not get a second chance
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Fic. 3. Path of a
photoparticle whose
origin is at the point
A in the nuclear
fluid.

but is likely to collide with other nucleons with the
result that the nucleus as a whole is excited. Further,
we neglect refraction of the photoparticles in crossing
the change in nuclear potential. This means that we
neglect distortion of the photoparticle angular dis-
tribution developed in the last section, but expect that
the energy spectrum will be modified.

The nuclear model considered is a sphere of uniformly
distributed nuclear fluid which gives rise to a square
potential well. In Fig. 3, we show such a nucleus and the
path of a photoparticle whose origin is at the point 4.
This photoparticle has an angular momentum Mup.
From the standpoint of quantum mechanics, its square
is given by (Mup)*=1(l41)%#?, where I is an integer.
For 100-Mev photoparticles in a carbon nucleus, the
largest value of / that occurs is about 8. For photo-
particles with energies E, measured above the bottom
of the nuclear well, the yield of photoparticles which
escape from the nucleus is given by;

lmax

I(Ey)= 3 PiTy(E.),

=0

(16)

where P, is the probability of occurrence of /, and 7';(E.,)
is the probability of escape from the nucleus of photo-
particles with energy E, and angular momentum quan-
tum number /. The upper limit on the summation,
Imax, s the maximum value of / that occurs with given
E, and nuclear radius R.

The probability T;(E.) may be calculated using?

T(E.)=4S1KR/[A¢+ (Si+KR)],

where K is the wave number of the particle inside the
nucleus associated with the energy E., and (A;+1S)) is
the logarithmic derivative of the wave function of the
photoparticle evaluated at the nuclear surface. A; and
S; are given in terms of the regular and irregular
Coulomb wave function F; and G;. The asymptotic
expressions for F; and G, are respectively the real and
imaginary parts of?®

1 exp{—i[ kr—n In(2kr)—Ilr/24n:]}
Xg(—l—in, I+1—in, —2ikr),
of « (ot 1)3(34‘”i

g(angyz)=1%z T 21 LI

where

25 Reference 12, p. 360.
26 Reference 11, p. 116.

and
m=argl (I+1-+in).

The parameter 7 is defined by Ze?/hv, where v is the
velocity of the particle outside the nucleus and % is the
associated wave number. Three terms of the above
series for g(—I—in, I4+1—in, —2ikr) are sufficient for
our use as the expansion parameter z= — 2¢kr evaluated
at the nuclear radius R is large for the values of %
encountered. Numerical substitutions in the resulting
expression for 7'; may be compared with the results
obtained using the tables of Coulomb wave functions
of Bloch ef al.?” In a particular case which provides a
severe test of our formula for 7', it is found that our
results are a few percent high?® for /=0 and /=1.
Since several values of [ occur in the sum in Eq. (16),
the sum may be approximated by an integral over p,
where (Mwp)?=1(l+1)%2 is used. Equation (16) becomes

1) [ POTGED, (17)

where T (p,Ey) is Ti(E,) in which I(l41) has been re-
placed by (Mwp/#%)%. The function P(p)dp is the proba-
bility that p lies between p and p-+dp.

Since the nucleons comprising the nucleus are as-
sumed to be distributed uniformly within a sphere of
radius R, we see that P(p)= (3/R®)p(R2—p®)*. There is
a value po of p at which the total Coulomb plus cen-
trifugal barrier is equal to the laboratory energy
ErL=E,—V of the photoparticle. For R>p>p,, the
penetrability 7'(p,E,) is small, and it can be shown®
that for cases of interest, the contribution of the in-
tegral (17) from this region is small also and may be
neglected. The integration may be done exactly and
gives the average transmission probability for photo-
neutrons and photoprotons formed in the nucleus.
Numerical work based on the resulting formula is given

TaBiE II. Average proton barrier penetration probabilities for
the carbon nucleus calculated by using a nuclear potential well
depth of 40 Mev and 3.2X 1073 cm for the radius of the carbon
nucleus.

Lab proton energy

Average penetration
Er (Mev)

probability

10 0.5953
20 0.7924
30 0.8675
40 0.9052
50 0.9280
60 0.9425
70 0.9525
80 0.9600
90 0.9654
100 0.9661

27 Block, Hull, Broyles, Bouricius, Freeman, and Breit, Revs.
Modern Phys. 23, 147 (1951).

28 There is an error in Fig. 5.3 (p. 363) in reference 12. The T}
are shown much too small.

2 See reference 17, p. 66.
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F16. 4. The theoretical angular distributions of photoprotons
and photoneutrons with laboratory energies E1,=23.6 Mev, from
carbon irradiated by 75-Mev photons.

in Table II in the case of the carbon nucleus with a
nuclear potential well depth of 40 Mev.

V. NUMERICAL RESULTS

The cross section ¢(0,E,) given by Egs. (8) and
(13) has been evaluated numerically in the case of the
Gaussian ground state nucleon momentum distribution,
where the 1/e value occurs at 16 Mev. The numerical
work?®® is done for four photon energies, »z., 50, 75, 100,
and 125 Mev. For each photon energy, the cross section
is evaluated at 10° intervals in the laboratory coordinate
system and at a variety of values of the photoparticle
energy E, which is the energy taken with the bottom
of the nuclear potential well as a reference. The results
are presented in Table I and give the value of v0(0,E,),
where v is the nuclear volume. These results are not
intended to be descriptive of the photoeffect for a par-
ticular nuclide except where the Gaussian ground-state
nucleon distribution parameters chosen (1/e value at
16 Mev) represent to a better approximation the
momentum distributions in some nuclides than others.

In applying the results of Table I to a particular
nucleus, we must divide by the nuclear volume » which

z.o-ro“‘r

C;(8,E) — cmymev”

o 10 20 30 40 50 1] 70

LABORATORY PROTON ENERGY — MEV

Fig. 5. The theoretical energy spectrum of photoprotons from
carbon irradiated by 75-Mev photons. The yield is taken at a
laboratory angle of 60°.

% The numerical work was performed on the I.B.M. Card-
Programmed Calculator of the Stanford Computation Center.

may be taken as (47/3)R3, where we may use R=r,43
in which 7=1.4X10"" cm and 4 is the mass number.
It is then necessary to multiply by NZ, the number of
quasi-deuterons in the nucleus, since the calculation
of Sec. III was done for one quasi-deuteron. Finally,
the result must be multiplied by the escape probability
calculated in Sec. IV.

As an example of the use of the tables, consider the
photoeffect in carbon irradiated by 75-Mev photons.
We calculate the angle distributions of 23.6-Mev photo-
protons and photoneutrons and the energy distribution
of photoprotons at the laboratory angle of 60°. The
results are given in Figs. 4 and 5, respectively. To ob-
tain the angle distributions of Fig. 4, we enter Table I
with a photon energy of 75 Mev, and with an E,, value
of (40+-23.6)=63.6 Mev for both photoprotons and
photoneutrons. The tabulated values are then multi-

[

RELATIVE COUNTING RATE

o

30 60 90 120 150 180
LABORATORY ANGLE — DEGREES

(-]

F16. 6. Experimental data of Johansson® showing the yield of
photoprotons with energies greater than 14 Mev obtained from
carbon irradiated by the bremsstrahlung beam from a betatron
operating at 65 Mev. The smooth curve is the calculated yield
of 13.3-Mev photoprotons from carbon irradiated by 50-Mev
photons. The normalization is at 60°.

plied by (NZ/v)=2.61X10® cm=3. In the case of
protons, we then multiply by the value of the proton
barrier penetration probability (0.825) which is ob-
tained by graphically interpolating between values
given in Table II. For neutrons, we multiply by (0.875)
which is the appropriate barrier penetration proba-
bility. The energy distribution of 60° photoprotons of
Fig. 5 is obtained from Tables I and II in essentially
the same way.

VI. DISCUSSION

Experimental data which allow a detailed check of
the calculations presented here are not available at
present. In most experiments, the bremsstrahlung beam
from a betatron or electron synchrotron is used and so
the photoparticle yield is from many photon energies.
The experimental apparatus of Weil and McDaniel®
counts only those events due to 190-Mev photons out
of a bremsstrahlung beam, and any data that may be
taken in the future using a method such as theirs should
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be very helpful in making a critical evaluation of our
photoeffect calculations.

No numerical work was done at photon energies as
high as 190 Mev and so comparison with the data of
Weil and McDaniel is not possible. The bremsstrahlung
experiment of Johansson® at 65 Mev is of interest
since both photoneutrons and photoprotons which had
reasonably well defined laboratory energies were ob-
served. The angular distribution of the yield of photo-
protons having energies greater than 14 Mev from
carbon as observed by Johansson is shown in Fig. 6.
By way of comparison, there is shown also on Fig. 6,
our calculated results for 13.3-Mev photoprotons from
carbon irradiated by 50-Mev photons. The two curves
are normalized at 60° laboratory angle. In the case of

3 S, A. E. Johansson, Phys. Rev. 97, 434 (1955).

photoneutrons, Johansson obtained no data for carbon,
but did notice in the cases of Be, Al, Ta, and Tb, that
neutrons were emitted preferentially at 90° in the
laboratory. This agrees qualitatively with our results
for photoneutrons, as may be seen in Fig. 4.

As more experimental data become available, it
might be of interest to test deuteron-model calculation
using a variety of ground-state nucleon momentum
distributions and then see if the same momentum dis-
tributions that give the best agreement in the case of
the nuclear photoeffect also give the best agreement for
proton scattering” and the “pickup” process.®
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Gamma-Gamma Angular Correlation in Ba!3*

ErnesT D. KLEMA
Oak Ridge National Laboratory, Oak Ridge, Tennessee

(Received May 20, 1955)

The directional angular correlation of the 1367-605 kev v-y cascade in Ba!3 has been measured with a
coincidence scintillation spectrometer using Nal detectors. For a dilute cesium chloride aqueous solution
source, the observed correlation function, after correcting for the finite angular resolution of the detectors,
is given by W (8) = 1+ (0.0902-0.0086) P2 (cosf) — (0.00440.013) P4(cosf). From this result it is not possible
to assign unambiguously a spin and parity to the 1972-kev level in Ba’3, from which the cascade originates.
However, the present angular correlation data taken with internal conversion coefficient data for the
transitions from this level indicate that it very probably has spin 3 and odd parity.

I. EXPERIMENTAL RESULTS

HE directional angular correlation of the 1367-605

kev v-y cascade in Ba!® has been measured with

a coincidence scintillation spectrometer using Nal de-

tectors in a series of 5 experiments with a total of

1.1X10% coincidence counts taken at 19 angular posi-

tions. The source was a dilute aqueous solution of
cesium chloride.

The data were obtained as discussed previously' and
were analyzed following the paper of Rose.2 The y-ray
spectrum of the cesium chloride source is shown in
Fig. 1. Each point on the curve out to a pulse height
of 810 units contains 4096 counts, and the points for
greater pulse heights contain 1024 counts each. The
windows of the differential pulse-height analyzers were
placed, as shown in Fig. 1, so that one was set on the
full-energy peak of the 605-kev y ray and the other
accepted only the full-energy peak of the 1367-kev
v ray. Since the latter v ray is the highest-energy one
of the source, the measurement of the angular corre-

1LE. D. Klema and F. K. McGowan, Phys. Rev. 91, 616 (1953).
2 M. E. Rose, Phys. Rev. 91, 610 (1953).

lation of the 1367-605 kev cascade is a clean one and
needs no correction for interference by the other
cascades.

The true coincidence counting rate for the present
experiment was of the order of 3.5X10~2 count/sec
and the random rate was 159, of this. The correlation
function obtained, after correcting for the finite angular
resolution of the detectors, is

W (6) = 1+ (0.090-0.0086) P3 (cos6)
— (0.00440.013) P4(cosf).

The errors given above are the standard deviations as
defined by Eq. (30) of Rose’s? paper.

II. ANALYSIS OF RESULTS

The most recent decay scheme proposed for Cs!* is
given in Fig. 2.3 In contrast with the ones previously
advanced, it agrees with coincidence data obtained at
this laboratory and with the relative intensities of the
v rays as measured by scintillation spectrometry here.*

8 Keister, Lee, and Schmidt, Phys. Rev. 97, 451 (1955).
4 R. C. Davis, private communication.



