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It should be noted that the Mn4+ —0 bond has been
assumed equal in length to the Mn'+ —0 bond with
covalent character. This is a fair approximation if the
covalent character of the Mn4+ —0 bond is less than
that in the Mn'+ —0 bond; the general decrease in To
with added Mn4+ content is consistent with this
hypothesis.

It is concluded, therefore, that at least in the
manganites [La,M(II)]MnOs the theory of superex-
change is inadequate whereas the concepts of covalence
and semicovalent exchange offer a consistent model for
explaining complicated variations with chemical compo-
sition of crystal structure and magnetic interactions.
These concepts were first developed to account for
cation ordering, lattice distortions, and magnetic inter-
actions in spinel-type lattices'; their generality demands
that they be valid for other crystal types. It is therefore
significant that they apply so strikingly to this
perovskite-type system.
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APPENDIX

Consider the following problem: assume that when a
La'+ ion is replaced by a M'+ ion, two Mn'+ ions become
Mn4+ and a neighboring La'+ becomes La'+ so as to
minimize the Madelung energy of the configuration.
Calculate the fraction of M'+ ions necessary to make half

the manganese ions Mn4+ if the M'+ ions replace
lanthanum ions randomly and the replacement of a
La'+ by M'+ causes no change in the valencies of the
manganese ions. This problem has identical boundary
conditions and is mathematically similar to the problem
of calculating the fraction of randomly distributed Mn4+

ions which gives the largest number of Mn'+ ions with
one, and only one, Mn4+ near neighbor,

Two Mn4+ ions are created by the first La'+ ion re-
placed by a M'+ ion. When the second lanthanum ion is
replaced, the probability that it be a La'+ ion is pt
= 1/(S—1), and that it be a La'+ ion is (1—pt), where
X is the total number of lanthanum ions present. When
the third lanthanum ion is replaced, the probability that
it be a La'+ ion is ps ——(2—pt)/(X —2), and that it be a
La'+ ion is (1—ps). When the (st+1)th lanthanum ion
is replaced, the probability that it be a La'+ ion is
p„=(rs—p t)/(X —rs), and that it be a La'+ ion is
(1—p„). Half the manganese ions are Mn4+ when

( ss—p t) 1V

S—rs) 2

When X is large, the summation can be approximated
by

where x=rs/X. Equation (1) reduces, therefore, to

2@=0.25—log(1 —x),
@=0.31.
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The symmetry properties of the one-electron energy bands of a crystal of the zinc blende structure are
studied by means of group theory. This is done both with and without the inclusion of spin-orbit coupling.
The character tables and cornpatability tables are obtained for the various irreducible representations of the
space group Tq' associated with the zinc blende structure. The degeneracies and the gradients of the various
possible energy bands are studied at lines and points of symmetry in the Brillouin zone. These results are
compared with those for the equivalent energy bands in a crystal of the diamond structure.

I. INTRODUCTION

~COMPOUNDS of the zinc blende structure are today~ assuming positions of increasing importance and
interest in solid-state physics. The III—V compounds
such as InSb are being intensively studied as semicon-
ductors, ' while II—VI compounds such as ZnS are used
both as photoconductors and as phosphors. ' There is

' H. Kelker, Z. Naturforsch. 7a, 744 (1952); Sa, 248 (1953).' R. H. Bube, Phys. Rev. 83, 393 (1951).

thus much interest in the nature of the one-electron
energy bands in these compounds. Considerable infor-
mation of a qualitative nature can be deduced about the
energy-band maxima and minima in these compounds
by means of a judicious combination of symmetry argu-
ments, perturbation theory, and experimental informa-
tion. ' Here we propose to determine what can be said

' F. Herman, J. Electronics (to be published); Phys. Rev. (to
be published).



R. H. PAR MEETER

FIG. 1. Lines and points of symmetry in the Brillouin zone of the
zinc blende structure

about the energy bands in these compounds on the basis
of symmetry alone. In order to do this we will first
construct the group-theoretic character tables associ-
ated with the zinc blende structure. These character
tables are the basic quantities from which all symmetry
properties will be deduced. As was first emphasized by
Klliott4 and by Dresselhaus, Kip, and Kittel, ' the spin-
orbit coupling energy,

(h/4nt'c') L (V V)&p) eg (1)

may have a profound effect upon the one-electron
energy levels in semiconductors. (Here V is the crystal
potential, p the electron momentum operator, and e
the electron spin operator. ) Therefore we will consider
the symmetry problem erst without and then with the
inclusion of spin. Since the diamond structure may be
considered to be a special case of the zinc blende
structure (i.e., a IV-IV compound), we will compare
some of the symmetry properties of the energy bands of
the zinc blende structure with those of the diamond
structure, character tables for the latter being available
both with' and without spin.

II. CHARACTER TABLES

The space groups of many of the simpler crystal
structures are referred to as Point space groups. s Every
element of a point space group may be written as the
product of an element of a translation group with an
element of a point group, every element of the latter
being either a rotation or the product of a rotation and
an inversion. For example, the zinc blende structure has

Private communication to E. N. Adams, II. See E. ¹ Adams,
II, Phys. Rev. 92, 1063 (1953), reference 7.

~ Dresselhaus, Kip, and Kittel, Phys. Rev. 95, 568 (1954).
6R. J. Elliott, Phys. Rev. 96, 280 (1954). Klliott's character

table for the extra representations of A. and Ii is in error. The
correct table is identical with Table III of the present paper; i.e.,
the character table for A and Ii is identical for the simple cubic,
body-centered cubic, face-centered cubic, diamond, and zinc
blende structures.

~ C. Herring, J. Franklin Inst. 233, 525 (1942).Table XI of this
reference is in error, but it is corrected in Table VIII of reference 6.

W. H. Zachariasen, Theory of X-Ray DigractiorI, ~n Crystals
(John Wiley and Sons, Inc. New York, 1945), Chap. 2.

H*= V-iHV, (3)

it immediately follows" that any eigenfunction of H,
namely 0 (r, t), is degenerate with U+*(r, t), also an-
eigenfunction of H. Without electron spin in the
Hamiltonian, V=1.With spin, V=0-„, the y-component
of the Pauli spin operator. This result is referred to as
time-reversal symmetry in the Schrodinger equation' ""
in addition to the crystallographic symmetries present.
Time-reversal symmetry clearly leads to inversion sym-
metry of the energy bands in k-space. Since time-
reversal symmetry is distinct from the symmetries as-
sociated with the space group, it will be necessary to
consider the eGects of the former after having con-
structed the character tables for the space group T~'.

The shape of the Brillouin zone in k-space associated
with the zinc blende structure will be taken identical
with that conventionally chosen for the diamond' and
the face-centered cubic" structures, namely a truncated
octahedron. Along with the lines and points of sym-
metry, it is shown in Fig. 1. It should be emphasized,
however, that this choice of shape is not unique. In fact,
the only parts of the surface of the Brillouin zone which
are uniquely specified by symmetry are the lines Z

See, for example, E. Feenberg and G. E. Pake, bootes oe the
QuantuIn Theor& of Angular Momentune (Addison-Wesley Press,
Cambridge, 1953), p. 28."J.M. Blatt and V. F. Weisskopf, Theoretical iVnclear Physics
(John Wiley and Sons, Inc. , ¹wYork, 1952), p. 525."E.Wigner, Gott. Nachr. p. 546 (1932)."C.Herring, Phys. Rev. 52, 361 (1937).' Bouckaert, Smoluchowski, and Wigner, Phys. Rev. 50, 58
(1936).

the point space group TP, associated with which are the
face-centered cubic translation group and the tetra-
hedral point group T&. Similarly, the face-centered
cubic structure has the point space group Og, ', associated
with which are the face-centered cubic translation group
and the full cubic point group Os. (The space group for
the diamond structure, O~', however, is not a point
space group. )

An electronic wave function without spin is a scalar
function of position and always transforms into itself
under a 360 rotation; with spin included, however, the
wave function is a spinor and always transforms into the
negative of itself under any 360' rotation. ' Thus, if
without spin a crystallographic point group contains e
elements C;, then with spin the point group will contain
2n elements, namely n elements C; and n elements C;,
where C; is defined as

C;=EC;, —
(2)

E being defined as some 360' rotation (E is the identity
element). C; and C, are of course identical in their
operation on a point in space. The crystallographic
groups without and with spin are referred to as single
and double groups, respectively.

Since in Schrodinger's equation the Hamiltonian
operator H is such that H and H* describe equivalent
physical situations; i.e., H differs from H only by some
unitary transformation V,
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TABLE I. Character table for the representations of the
single group of F.

24

E
C4'
C3
JC4
JCp

2
2—1
0
0

3—1
0—1
1

3—1
0
1—1

TABLE II. Character table for the representations of the single
group of a. (The two distinct operations JCs are those about the
two twofold axes perpendicular to h.l as and h4 stick together.

E
JC2
JC2
C4 ))

1

—1—1

TABLE III. Character table for the representations of the
single group of A..

1
2
3

E
Cs
JCg

hl.

2—1
0

"Consider a group 0', with elements a; and a group S with
elements b;, where a;b; =b;a;. The direct product of groups Ol and
(8 is a group 8= eg S whose elements g,re c;;=a;b;.

and the points L lying in the centers of the hexagonal
faces. As far as the space group Tg is concerned, L has
no higher symmetry than that of A, so that L will not be
mentioned in constructing the character tables. The
additional symmetry of L arises from time-reversal.

Consider a given point space group. For a given wave
vector k associated with some symmetry point in
k-space, we find those operations of the point group
associated with the space group which transform k into
itself plus some reciprocal-lattice vector. Such a set of
operations forms a group called the group of the wave
vector k. There will be a distinct wave-vector group for
each type of symmetry line and point in the Brillouin
zone. All the wave-vector groups are subgroups of the

.point group associated with the space group. We now
determine. the members of the wave-vector group for
zinc blende for each type of symmetry point in the
Brillouin zone and compare each of these groups with
the corresponding wave-vector group for the face-
centered cubic structure as given in reference 13 (with-
out spin) and reference 6 (with spin). (We use the
terminology of reference 13 to denote the group opera-
tions and the lines and points of symmetry. ) For A, the
wave-vector groups for zinc blende and fcc are identical,
and thus so are the character tables (note comment of
reference 6). For both I' and X. the wave-vector group
for fcc is the direct product of the corresponding wave-
vector group for zinc blende and the group of order two,

62, whose elements are E, the identity element, and J,
the inversion element. ' Group theory states that, con-

TABLE IV. Character table for the representations of the single
groups of Z and Z.

E
C2

TABLE V. Character table for the representations of the
single group of X.

E
C4'~
C4~l [

JC4) ]

JC2

Xt Xs

1

1—1—1

—1
1—1
1

X4

2
0—2
0
0

TABLE VI. Character table for the representations of the single
group of W. (The two distinct operations JC4 are those about the
fourfold axis parallel to the face diagonal containing lV.) lV3 and
W4 are degenerate by time-reversal symmetry.

JC4
JC4
C4~

1—1

1

1

—$—1

sidered as a matrix, "the character table appropriate to
a direct-product group is itself the direct product" of the
matrices representing the character tables of the groups
occurring as factors of the direct-product group. '~ With
the aid of the character table of the group 6s (it is
equivalent to Table IV), it is a simple matter to obtain
the character tables for zinc blende for the points F and
X from the corresponding character tables for fcc.
Considering the Z and Z lines in zinc blende, it is ap-
parent that without spin these wave-vector groups each
contain only two elements and are thus both simply
isomorphic with the group 62. Including spin, it is
evident that these two groups are simply isomorphic
with the cyclic group of order four. Thus for each group
the characters are the appropriate powers of a fourth
root of unity. '8 Turning to the point 8', without spin the
wave-vector group is also the fourth-order cyclic group,
the elements of the group being various powers of JC4,
an inversion combined with a 90' rotation about the
fourfold axis parallel to the face diagonal containing 8'.

"A character table may be considered a square matrix whose
rows designate the classes of elements and whose columns desig-
nate the irreducible representations."The direct product of an mph matrix having elements o.;;and
an nXn matrix having elements P;; is an mn)&nun matrix having
elements e;;P;;, i and i' designating the row and j and j ' the
column.

's F. D. Murnaghan, The Theory of GrouP RePresentateous (Johns
Hopkins Press, Baltimore, 1938), p. 101.

' The cyclic group of order n contains the elements C, C~,

C, ~ ~ .C"=Z. Since any two elements commute, each element
forms a class by itself. Since there are n classes, there are n
representations, each necessarily one-dimensional. A one-di-
mensional representation and its character being identical, the
characters must transform as do their corresponding group
elements and thus rggst be appropriate powers of g.n nth root of
unity,
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TABLE VII. Character table for the extra representations of the
double group of I'.

1
1
6
8
8
6
6

12

E
E
IC4', C42

C3
C3
JC4
JC4
JC2, JC2

2—2
0
1—1

v2—V2
0

2—2
0
1—1—V2

v2
0

4,

4
0—1
1
0
0
0

TABLE VIII. Character table for the extra representation of the
double group of A.

E
E
JC2, J| 2

JC2, JC'2
C4 ll~ ~4 ll

2—2
0
0
0

12

E
C3
C3
JC,
JC2

1—1—1
1

2—2
1—1
0
0

TABLE IX. Character table for the extra representations of
the double group of A, A4, and A5 are degenerate by time-reversal
symmetry.

contrast with the other representations, the extra
representations always occur with the elements C; and
C; having characters of opposite sign. (Thus whenever
C; and |.; occur in the same class, the corresponding
characters of the extra representations always vanish. )

III. RESULTS

As we move continuously in k-space from a point of
higher symmetry to a point of lower symmetry, we wish
to know how the various irreducible representations
associated with the former point transform into those
associated with the latter point. To do this we construct
what are known as compatability tables. "We express
the characters of a representation for the higher-
symmetry point in terms of a sum of corresponding
characters of lower-symmetry representation&, this to be
done simultaneously for each group operation common
to the two points. These lower-symmetry representations
are what combine at the higher-symmetry point to form
the higher-symmetry representation. The compatability
tables for the single groups without spin are given in
Table XIII, and those for the double groups with spin
(extra representations) are given in Table XIV.

Physically, the zinc blende structure may be con-
sidered to be the result of a deformation upon either the
face-centered cubic structure, OI, ', or the diamond
structure OI,'. Thus we may construct a second type of

TABLE X. Character table for the extra representations of the
double groups of z and Z. z3 and z4, Z3 and Z4, are degenerate
by time-reversal symmetry.

Similarly, with spin the wave-vector group is the
eighth-order cyclic group, so that the characters are the
appropriate powers of an eighth root of unity. For the
fourfold axis 6, without spin the wave-vector group
contains the identity element E, the two commuting
elements JCs (representing reflections in the planes
perpendicular to the twofold axes which are in turn
perpendicular to 6), and the element C4'~

~
(representing

a 180' rotation about 6) which is the product of the two
rejections. Thus the group may be considered to be the
direct product of two second-order groups 62, and the
character table follows immediately. With spin the
wave-vector group for 6 can be seen to be simply
isomorphic with the group for X without spin, with the
result that the two character tables are equivalent.

In this simple fashion we have obtained the character
tables for the zinc blende structure for both the single
and the double groups. The single groups without spin
are listed in Tables I—VI. A perusal of our results
demonstrates a rule generally valid" that the irreducible
representations of the single group occur unchanged in
the double group with the elements C; and t; having the
same character. For this reason, we do not bother to list
these representations again in the double groups, but
restrict ourselves to listing the additional or extra
representations, which are given in Tables VII—XII. In

's W. Opechowski, Physics 7, 552 (1940).

E
g
JC2
JC2

E
g
C 2

Q 2

TABLE XI. Character table for the extra representations of the
double group of X.

16 X

E
g
C2 g2

4 lie ~4 Il

JC4ll
J~4ll
JC2, JC2

X6

2—2
0
0

v2—v2
0

2—2
0
0—V2

v2
0

W5

g
JC4
JP4
JC4
JC4
C42
C42

TABLE XII. Character table for the extra representations of the
double group of 8".8'5 is degenerate vnth 8'7 and lY6 is degenerate
with W8 by time-reversal symmetry. e= (1+i)jN.
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TABLE XIII. Compatability tables for the representations of
the single groups connecting symmetry points with symmetry
axes.

F,
F2
F12
F1s
F26

~1+~2
~1+~3+~4
~2+~3+~4

A1
A2
A3

A1+A3
A2+A3

Z1
Z2

Z1+Z2
2Z1+Z2
Z1+2Z2

X1
X2
X3
X4
Xs 63+6,4

Z1
Z2
Z1
Z2

Z1+Z2

Z1
Zl
Z2
Z2

Z1+Z2

W1
W2
W3
W4

Zl
Zl
Z2
Z2

F6
F,
F,
X

X6
X7

266

A6
A6

A4+Ae+As

Z3+Z4
Z3+Z4

Z3+Z4
Z3+Z4

2Z3+2Z4

Z3+Z4
Z3+Z4

TABLE XIV. Compatability tables for the extra representations
of the double groups connecting symmetry points with symmetry
axes.

set up connecting the representations of 83 with those of
T~. A wave function of spin alone belongs to the Dy
representation of 83. Since the explicit form of the D~
representation matrices is available in the literature '
the characters can be calculated, whence it is found that
D~ corresponds to the I"6 representation of the T~ point
group. An eigenfunction of our Hamiltonian containing
spin for the zinc blende structure will be a sum of
products of a function of spin (belonging to the Dl
representation) and a function of position (belonging to
some representation; of the single space group Tj).
Thus this eigenfunction will belong to one of the
irreducible representations contained in the direct
product;&F6. Table XVII is now obtained by making
use of the fact that a character of the direct product of
two representations, which is the product of the
corresponding characters of the two representations, can
be written as the sum of the corresponding characters of
all the irreducible representations composing the direct
product.

We are now in a position to study the nature of the
energy bands in zinc blende (as imposed by symmetry).
First we consider the possibility of the sticking together
of two bands associated with distinct representations;
i.e., two wave functions of a given k being degenerate
although belonging to two distinct representations. An
operation of the class JC4~~ (rotation by 90' about the
axis 6 followed by an inversion) followed by the time-
reversal symmetry operation (replacing k by —k) will
convert a wave function belonging to d 3 into one

We
W6
Wy
Ws

Z3
Z3
Z4
Z4

TABLE XV. Compatability tables for the representations of the
single groups connecting the zinc blende (Td') with the face-
centered-cubic (Os') and the diamond (Os") structures.

compatability table between TP and Oss and between
Tj and Osr, showing how the various irreducible
representations for 0&' and Oz are transformed by the
deformations which convert these structures into Tg.
Using the same technique described in the previous
paragraph, we obtain Tables XV and XVI. Such tables
are particularly useful in looking at some zinc blende
structure as a perturbation upon some similar diamond
structure, ' e.g., GaAs as a perturbation upon Ge.

A third type of compatibility table is needed to show
how the various irreducible representations for zinc
blende without spin are transformed upon the introduc-
tion of spin. Such information is given in Table XVII,
which demonstrates the general rule that only the extra
irreducible representations occur. Table XVII is ob-
tained in the following fashion. If we take the point
group Ts and replace the elements JC4 (90' rotation
about a fourfold axis followed by an inversion) and JCs
(180' rotation about a twofold axis followed by an
inversion) by C4 and Cs respectively, we obtain the point
group 0, which can be seen to be simply isomorphic
with Tq. Since 0 is a subgroup of the rotation group 83,

it follows that a conventional compatability table can be

Td2

F1
F2

F1s
F2s

A4

A1
A2
A.3

Z2

Z1
Z2

X1
X2
X3
X4
X,

W1
W2
W3
W4

Of'

F1 or I'2
F2 or F1.
F12 ol F12'
I'16 or F26
F26 or Pier

61or h2
A2 or d1

A1
A2
A3

Z1or Z3
Z2 or Z4

Z1 ol Z2
Z3 ol Z4

X1or X2
X2 or X1
X3 or X4
X4 or X3
Xs or Xs

Wl or W2
W1 or W2

W3

Td2

F1
F2

Fls
F26

A4

A1
A2
A3

Z1
Z2

Z1
Z2

W1
W3
W2
W4

OI7

F1 or F2.
F2 or F1.
F12 ol F12
F16 Or F26
F2s or Fls

61 or h2
h2 or 61

A.1
A2
A3

Z1 or Z3
Z2 or Z4

Zl

X1

X2

X3 or X4



R. H. PARMENTER

TABLE XVI. Compatability tables for the extra representations
of the double groups connecting the zinc biende (Tq') with the
face-centered cubic (OA5) and the diamond (O@7) structures.

Td2

F6
F7
F,

OA6

F6+ or F7-
F6 or F7+
F3+ or Fs-

F6
F7
F8

OA'

F6+ or F7-
F6- or F7+
F8+ or Fs

A6 or A7 a6 or a7

A4
A5
A6

A4
A5
A6

A4
A5
A6

A4
A5
A6

Z3
Z4

Z3
Z4

X6
X7

W5
W7
W6
Ws

Z5

X6+ or X7-
X6- or X7+

X6
X7

W5
W6
W7
W8

Z5

X5

W3orW5or W
W4 or We or
W3 or W5or WW4or W6or

belonging to h4, while leaving k and the Hamiltonian
invariant. Thus 63 and A4 stick together. In a similar
fashion, at the point L the time-reversal symmetry
operation will convert a wave function belonging to A4

into As, while leaving k and the Hamiltonian invariant.
Thus A4 and h.5 stick together at the point L. These are
the only cases of bands sticking together as a result of
time-reversal symmetry. Since, however, the characters
belonging to the representation Z3 are complex con-

jugates of those belonging to Z4, it follows from time-
reversal symmetry that for every wave function of a
given wave vector k belonging to Zs there is a degener-
ate wave function of —k belonging to Z4. Identical
arguments hold for A4 and A5, for z3 and z4, for 8 3

and 8'4, 8 & and 8'&, and W6 and 5'8, respectively. "
As was emphasized by Elliott, "at a point of no special

symmetry in k-space, the extra representations are
always doubly degenerate in crystals possessing a center
of inversion, such as diamond. Because of the lack of
inversion symmetry, this is not the case in zinc blende.

g We wish to investigate whether or not, on the basis of
symmetry, the gradient in k-space of a given energy
band will vanish in a given direction at a given point in
A-space. Since V qE(k) is proportional to the expectation
value of momentum, it is necessary to investigate
whether or not the matrix elements of (A/i)V vanish,
these matrix elements being taken with respect to the
wave functions belonging to a particular irreducible
representation of the wave-vector group associated with
the given point in k-space. For the component of the
gradient along a direction specified by the unit vector u,

20The writer is indebted to G. Dresselhaus, who has inde-
pendently studied the symmetry properties of the zinc blende
structure, for pointing out errors in the writer's original analysis
of the eGect of time-reversal symmetry on the points A and Z
for the double groups.

& R. J. Eiiiott, Phys. Rev. 96, 266 (1954).

we need to consider matrix elements of (A/i)u V, these
matrix elements being integrals over ordinary space."
The integrands of these integrals transform into one
another under those particular operations associated
with the given wave vector group which transform u V
into either plus or minus itself (the operation acting on
V but not on u). Such operations form a group which we
shall call the gradient wave-vector group. If we knew the
character tables of the gradient wave-vector groups, it
would be an easy matter to decide whether or not a
given matrix element vanishes. Thus we would resolve
the representation to which the integrand belongs (the
direct product of the three representations corresponding
to the two wave functions in the integrand and to u. V,
respectively) into a sum of irreducible representations of
the gradient wave vector group, in exactly the same
manner used to obtain Table XVII. We now make use
of the fact that the integral will vanish unless the sum of
irreducible representations contains the totally sym-
metric representation (that representation all of whose
characters are unity). " '4 We actually have the char-
acter tables of the gradient wave-vector groups, since
every gradient wave-vector group is simply isomorphic
with some particular wave-vector group. "

FI
F2

F„
F95

d4

Al
A2
A3

-"s Xi"6

F6
F,
F3

F7+F8
F6+F3

A6
A6

A4+A5+As

ZI
Z2

Xj
X2
X3
X4
X5

WI
W2
W3
W4

="sXi 6

&3+~4
~3+&4

Z3+Z4
Z3+Z4

X6
X7
X7
X6

X6+X7

W5+ W7
W6+Ws
W51 Wg
W6+W7

ms For the spin case, V should be replaced by LV+(s/4mc'(rr
&)&Vj, The latter, however, has the same transformation proper-
ties as & and need not be considered further.

"See, for example, Eyring, Walter, and Kimball, QNaetlm
Chemistry (John Wiley and Sons, Inc. , New York, 1944), p. 187.

'4 In some cases where the above analysis does not indicate a
vanishing gradient, it is evident that the gradient must vanish in
order to maintain time-reversal symmetry.

25 The gradient wave-vector groups at F for u pointing along
6, A, and Z are simply isomorphic with the wave-vector groups
at X, A, and 6, respectively. The gradient wave-vector groups at
X for u pointing along 6, Z, and- Z are simply isomorphic with
the wave-vector groups at X, 6, and 6, respectively. The gradient
wave-vector groups at W' for u pointing along Z and along either
of the two (100) directions perpendicular to Z are simply iso-
morphic with the wave-vector groups at W and Z, respectively.
The gradient wave-vector groups at 6 for u pointing along a
perpendicular (100) direction and along a perpendicular (110)
direction (both perpendicuiar to a) are simply isomorphic with
the wave-vector groups at Z and 6, respectively. The gradient
wave-vector groups at A, Z, and Z are all simply isomorphic
with the wave-vector group at Z.

TABLE XVII. Compatability table connecting the representa-
tions of the single groups with the extra representations of the
double groups.



ENERGY BANDS OF ZINC BLENDE STRUCTURE

Finally, we wish to point out two facts which are
useful in any study of energy bands. The first is that the
complete set of energy bands must have the full sym-
metry of the Brillouin zone. The second is that, as we
move along a continuous curve (with continuous de-
rivatives) in k-space, it is always possible to trace out a
continuous curve (with continuous derivatives) of
allowed energy versus k.

With the aid of the considerations of the previous
paragraphs it is now possible to deduce the nature of the
energy bands in the vicinity of a symmetry point. First
we consider the single groups without spin. For this
case the energy bands are identical in their symmetry
properties with those of the diamond structure every-
where except along the symmetry axes Z and Z. As in
diamond, F is a point of zero slope in the directions
of the three symmetry axes 6, A, and Z; L is a point
of zero slope in the direction of A; 6 is a point of zero
slope along the (100) and (110)directions perpendicular
to the given 5 axis; and A may be a point of either zero
slope or finite slope in directions perpendicular to the
given A axis (Ai and A2 have zero slope, A3 has finite
slope). Although Z is nondegenerate as in diamond, it
divers from diamond in that it is a point of finite slope
along the (100) direction perpendicular to the given Z
axis (although it is a point of zero slope along the
(110) direction perpendicular to the given Z axis).
If we consider the square-face diagonals, unlike dia-
mond X is always a point of zero slope along the three
symmetry axes 6, Z, and Z, while Z and 8' are non-
degenerate, lV being a point of zero slope in any direc-
tion and Z being a point of zero slope in directions
normal to the given Z-axis.

We now consider the double groups with spin. For
this case the energy bands of the zinc blende structure
are considerably diferent from those of the diamond
structure. The types of possible E versus k curves in the
neighborhoods of symmetry points are shown in Fig. 2.
F6 and Fv are points of zero slope along 6 and A. but
finite slope along Z, while F8 may be a point of finite
slope in any direction (although A6 will approach F8
with zero slope), as has been suggested by Kittel and
Dresselhaus. ' h.4 and A.5 approach L with finite slope
while A6 approaches L with zero slope. I is a point of
zero slope along d and finite slope along Z and Z.
8' is a point of zero slope in any direction. 6 is a point
of finite slope in directions normal to the given 6 axis.
A may be a point of either zero slope or finite slope in
directions perpendicular to the given A. axis (A4 and
A5 have zero slope, Aq has finite slope). At Z or Z the
slopes in directions perpendicular to their respective
axes are similar to those for Z and Z in the absence of
spin. Unlike diamond, at many points in k-space a
nondegenerate band may occur. We see that the only
points of special symmetry at which an energy band
minimum or maximum can occur on the basis of
symmetry alone are the points W'. A minimum or max-

~6 C. Kit tel (private communication).
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FIG. 2. Nature of possible E eersls k curves in the neighborhood
of symmetry points.

imum may occur somewhere along A or Z, but none
will occur along 6 or Z, or at the points F, X, or L.

In conclusion, we might point out that if we look at
the zinc blende structure as a perturbation on the
diamond structure, ' then the difFerence between a given
energy level of the unperturbed diamond structure and
the corresponding energy level of the perturbed zinc
blende structure will vanish (to the accuracy of first-
order perturbation theory) everywhere except on the
square-face diagonals in the case of no spin, but will
vanish only along the axis 6 (including F but excluding
X) in the case of spin To pr.ove this, we first note that
the perturbation potential which converts a diamond
structure into a zinc blende structure will have odd
parity with respect to an inversion about a point
midway between two adjacent atoms. By combining
degenerate unperturbed diamond-structure wave func-
tions associated with different values of k, we can
always form new unperturbed wave functions which
have either even or odd parity with respect to inversion
about such a point midway between two adjacent atoms.
It now follows that all diagonal matrix elements of the
perturbation potential with respect to these new unper-
turbed wave functions will vanish, and thus the sum of
diagonal matrix elements over a degenerate set of
unperturbed wave functions, i.e., the trace, will vanish.
This means that first-order perturbation theory may
split a degeneracy but will not affect its "center-of-
gravity" (mean energy). But Tables XV and XVI show
that, in the case of no spin, degeneracies are split only
along the square-face diagonals, whereas, when spin is
present, degeneracies are split everywhere except along
the axis 6 (including I' but excluding X). This com-
pletes the proof.
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