
PH YSI CAI REVI E% VOLUME iso, NUMBER OCTOBER iS, 19SS

Effect of Defects on Lattice Vibrations*
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(Received July 13, 1955)

The theory of the effect of localized defects such as impurities, holes, and interstitials on the vibrations
of crystal lattices is developed. Although most of the analysis is concerned with one-dimensional chains, the
general approach to defects in three-dimensional lattices is outlined through the example of a simple cubic
lattice with nearest-neighbor interactions.

Many types of defects cause localized normal modes whose effect dies out rapidly with distance from
the defect. Mathematical techniques, which involve the use of Green s functions, are discussed for the
theory of these localized modes. The vibrational frequencies of these modes are displaced out of the band
of frequencies of a perfect lattice.

The theory of interaction of two defects as a function of their distance of separation is developed for the
range of very low temperatures through the calculation of the change of zero-point energy of a lattice as a
result of the introduction of a defect pair. Defects attract each other in a monatomic lattice. The attraction
between two mass defects in a linear chain is inversely proportional to the cube of their distance of
separation.

The effect of a localized defect mode in a simple cubic lattice diminishes as with the distance r as
r 'exp( —Ar).

INTRODUCTION

OCAL defects such as impurities, holes, interstitials,
& etc., in crystals make their existence apparent in

many striking ways. The impurity levels of semicon-
ductors are the seat of those electrons which can easily
make transitions into the conduction band and hence
(with the holes which behave in an analogous manner)
are to a large degree the dominant inhuence in the
electrical behavior of semiconductors. Impurities are
known to change relaxation times in magnetic materials
by many orders of magnitude. Transport processes such
as electrical and heat conduction are frequently con-
trolled by the scattering of electrons or phonons by
defects.

An enormous literature exists which gives a semi-
empirical or phenomenological theory of the eGects
mentioned above as well as of the diGusion of defects.
A proper basis for the systematic discussion of the eGect
of impurities on electrons in solids has been given by
Slater and Roster' through the use of localized Wannier'
wave functions. The eGect of defects on electrons in a
linear chain has also been discussed by Saxon and
Hutner. ' There is considerable similarity between the
behavior of electrons in semiconductors, spin waves in
magnetic materials and lattice vibrations incrystals
in general. Since lattice vibrations are the most amen-
able of these three phenomena to mathematical analysis,
the authors have felt that a detailed investigation of the
eGect of lattice defects on lattice vibrations might shed
some light on the general defect problem.

*This work was supported by the Air Research and Develop-
ment Command of the U. S. Air Force.

f' On leave from the University of Adelaide, South Australia.' G. P. Koster and J. C. Sister, Phys. Rev. 95, 1167 (1954) &

G. F. Koster, Phys. Rev. 95, 1436 (1954).
G. H. Wannier, Phys. Rev. 52, 191 (1937).

3 D. S. Saxon and R. A. Hutner, Philips Research Repts. 4, 81
(1949).

It is not only in solid state physics that defects are
important. Any discussion of the interaction of particles
with a Geld is really one of localized defects in the Geld.
Since the theory of lattice vibrations is mathematically
equivalent to that of a discrete quantum Geld, an
analogy might be made between lattice defects and
particles coupled to discrete quantum Gelds. For-
tunately a natural fundamental length, the lattice
spacing, is sufhcient to immunize the theory of lattice
vibrations from the divergences which are the curse of
continuum quantum Gelds. It is hoped that some of the
results on the discrete model may contribute to the
understanding of some of the difhculties in the con-
tinuum case. Lattice theories of quantum fields have
been discussed recently by SchiG4 and Rosenstock. '

A local defect influences the vibrational spectrum in
two ways. With the exception of a small number of
frequencies which normally lie near the band edges, the
possible frequencies are displaced by amounts of order
O(1/1V) (X being the total number of lattice points).
The exceptional frequencies, which might suGer a con-
siderable displacement, are associated with localized
normal modes which die out rapidly with distance from
the defect. A typical such mode is that associated with
a lattice vacancy. It corresponds to a pulsation (similar
to that of an explosion bubble in a fluid) whose influence
dies out as r ' exp( Ar) at —large distances. The large
class of slightly displaced modes can be discussed
through perturbation theory, but the exceptional
localized modes must be handled by a separate exact
calculation. The theory of these modes has been briefly
outlined by Lax and Smith' and is essentially the same
as that proposed by Koster and Slater' for electrons in
solids. Although the approach used in the present paper
follows in similar lines, it was first suggested to the

' L. I. Schifi, Phys. Rev. 92, 764 (1953).' H. B. Rosenstock, Phys. Rev. 93, 331 (1954).
6 M. Lax, Phys. Rev. 94, 1391 (1954).
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authors by a mathematical investigation of discrete
potential theory by Duffin. '

Every lattice defect has a "self-energy. " This cor-
responds to the difference in bond energy between the
imperfect and perfect lattice plus the diGerences in
vibrational zero-point energy, the —,'hv's associated with
each frequency.

An interesting feature of defects in a monatomic
lattice is their clustering tendency. The short-range
preference for pairing of vacancies due to the lowering
of total bond energies is well known. We shall show
that a longer-range attractive force also exists between
defects. If the defects are light isotopes imbedded in a
matrix of heavier isotopes, this attractive force gives
rise to a separation of the isotopic mixture into two
phases at very low temperatures. This point has been
discussed by perturbation theory by Prigogine, Bingen,
and Jeener. a

The authors feel that this attraction between defects
is a rather general property of locally perturbed 6elds.
In this case it would give rise to the following mecha-
nism: defects might be created by some means of excita-
tion, as they are formed they would cluster together so
that when they exist in sufficiently large numbers they
might condense in a manner analogous to that in which
a gas condenses.

There are three phases of the theory of defects which
must be investigated. First, the statics or the energetic
considerations such as their self-energies and the inter-
actions between defects; second, the dyamics or motions
of defects through the lattice, and finally the statistical
mechanics or the eBect of thermal excitation on defect
formation and interaction. This paper is concerned with
the statics. The authors hope to discuss the other two
phases later. Stripp and Kirkwood' have analyzed the
statistical mechanics of holes and impurities in lattices
but this work deals only with perturbation theory and
neglects the eGect of the localized modes which in some
situations might be extremely important.

1. DESCRIPTION OF THE MODEL

Our detailed analysis will be carried out for linear
chains and simple cubic lattices with nearest neighbor
interactions only. Other lattices can be handled in an
analogous manner but require somewhat more cumber-
some mathematics. We describe our model in this
section.

(a) Lattice or Field

Let us consider a simple cubic lattice of 2P identical
particles each of mass M and coupled to its nearest
neighbors through both central and noncentral forces.
The forces are postulated as harmonic so that the total

7 R. J. Dugan, Duke Math. J. 20, 233 (1953).
'Prigogine, BIngen, and Jeener, Phypica 20, 383 (1954); 20, 516

(1954).
9 K. F. Stripp and J. C. Kirkwood, J. Chem. Phys. 22, 1579

(1954).
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when the set of displacements {xl „,yl, sl, , ) from
equilibrium positions exist at the lattice points {l,m, rl).
The lattice spacing is u. We generally let y;=p;/a'. The
constant y~ represents the central force constant while
we usually write p&

——p3 for the noncentral force con-
stants. Since a simple cubic lattice with nearest neighbor
central force interactions only is unstable to shear we
must introduce the noncentral forces to give the system
a realistic character.

We shall have occasion to discuss a discrete scalar
field whose potential energy can be described as a special
case of (1.1).We characterize this field by one parameter
xl, „associated with each lattice point (l,m, m) and by
the potential energy function (1.1) with pi ——pp

——pp
——p

and y=s=0.
We shall first give a classical mechanical discussion

of our system and later analyze it quantum mechani-
cally. It is to be recalled that in the case of harmonic
operators the quantum mechanical energy levels are
E=Z(e,+,')hv;, where th-e el's are integers and v s
the classical frequencies of the normal modes of vibra-
tion of the system. Our system of particles is of course
equivalent to a triply periodic set of springs and masses.
We shall sometimes refer to it as the "field."

Since the motions in the x, y, and 2 directions are
independent of each other in our model we need only
analyze the behavior of a lattice with one degree of
fi.eedom per lattice point. Newton's equations of motion
for such a system are

MXl, m, n (Pl/ll )LXl+1, m, n 2Xl, m, n+Xl—1, m, n]

+ (p2/a')Lx1, +1, —2xl, , „+x, 1, „]
+ (PP/& )LXlm, n+1 2X ,lm, njX l, m, n—, 1] (1.2)

Similar equations exist for the y's and s's. The equations
of motion of our model of a discrete scalar field are the
special case of (1.2) with Pi ——Pp ——Pp ——P.

potential energy of the lattice is

C =C'p+64',

where 40 is the potential energy of the lattice at equi-
librium, C p

——3X ep (ep being the binding energy per pair
of particles) and

1
Ac= Pi P L(xl, „,„—xl 1„„)'

2g2 L, m, e

+ (ylm, n, ylm+1, , n.) + (Sgm, n Sl, m, n+1) ]
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We shall choose our system to be composed of
A')&X&$ =Ã' particles and use periodic boundary con-
ditions

2' l, wa, n,
=& l+N, m, n =& l, m+Nn= ,

2'
l, in, n+N q

etC. (1 .3)

Then the normal modes can be expressed as

where

and

or

Xl, „, =u(l, 233,23) eXp —icot,

u(l, tl3, 23) = exPi (yif+ ystls+ y,23),

y, = 22rcc;/S; ai, as, as ——1)2) )1V

—g n ~ n g1
2 ) 7 2

(1.4a)

(1.4b)

(1.4c)

(cu/cu ) .(n/~ )
FIG. 2. The distribution function G(co~) for the number of fre-

quencies between cns and cns+dcu'. (a) pc=ps=y3, (b) vi)7.=v3.
G(cps) has the same shape as the energy distribution function for
the tight binding model of electrons in semiconductors.

The circular frequencies of the normal modes of
vibration of our "field" are so that as A'—+~

G2Mol2=2 P P, (1—COSy,); (1.5a) f 1l

f(Il) = 2r-3 g expL2irlM
—Iy;(1—cosy, )]dy;

if a—+0, p~co, M—+0 in such a way that p/M=cr
= constant and L=Ãa= length of an edge of our lattice,
we find

0

=g(exp(2isM 'y, )) (Js(2sM 'y;) },
+ 42r + (cric31 +cc2G2 +cr3G3 ) (1.5b)

where Js(x) is the zeroth-order Bessel function.
The distribution function G(aP) of ols is then

00

G(ops) =—,~ exp( idols) f—(s)ds
2x ~

(1.10)

FIG. 1.The distribution function g(cn) for the number of normal
frequencies between cn and cn+cfnl (a) con. tinuum, (b) pc=72=&3,
(c) pc) I3= 'I3.

the square of a typical frequency of a normal mode of
the continuum. It is to be recalled that our equations of
motion (1.2) reduce to the wave equation (when
Q] =Q2= QS=Q

%su= cc 2c)2u/c)P— (1.6)

An important difference between the continuum and
a discrete lattice is that the largest frequency in the
discrete lattice is

oii,2=4M I(vi+ys+ys), (1.7)

while the set of normal modes of the continuum is
unbounded. It is this unboundedness that leads to
many of the divergences in field theories.

The distribution function g(&v) defined so that g(cv)d&v

is the number of frequencies between co and o&+dcd is
quadratic in co in the continuum t Fig. 1(a)j and has the
same character at low frequencies in a lattice, but
vanishes at high frequencies Lsee Figs. 1(b) and 1(c)j.

The distribution function of co' is found from its
characteristic function

f(s) =E(expisols)

1 3

exp(2isM ' P y;(1—cosy;)), (1.8)
g3 a1,e2,a3=1 1

It is related to the frequency distribution function g(o&)

by 2cdG(cos) =g(&u). The integration of (1.10) has been
discussed by Rosenstock and Newell" and one of the
authors. "It is plotted in Fig. 2.

We shall, in the usual language of solid state physics,
frequently refer to the continuum of possible frequen-
cies of our lattice as the "frequency band. "We shall see
later that localized disturbances in the lattice some-
times give rise to new discrete frequencies which are
displaced out of the band (Fig. 3).

FIG. 3. Frequency spectrum of (a) perfect lattice, (b) lattice
with defect. col, =maximum frequency, coD= discrete frequency for
localized mode.

'0 H. B. Rosenstock and G. F. Newell, J. Chem. Phys. 21, 1607
(1953).

~ E.W. Montroll, Proceedings of the Third Berkeley Symposium
on Mathematical Statistics and Probability (University of Cali-
fornia Press, Berkeley, 1955).
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(b) Defects

~ ~ ~

~ ~

~ 0 ~
interstitial

~ ~ ~

~ ~ ~ ~

We now introduce three kinds of disturbances into
our perfect lattice or field. Our first local disturbance is

the replacement of a normal lattice
~ ~ ~ particle by an impurity atom of

mass 3f'. Since the interaction of
this mass with its neighbors divers
from the normal interactions, we

~ ~ shall replace the normal central
impurity force constant p& by a new one p&'.

Generally we shall characterize
the impurity by the two parameters

P=yt'/y~ and Q = M'/M.

Our second type of local variation is the interstitial,
a normal or impurity atom inserted between normal

lattice points.
~ 4 ~ ~ Generally the static dis-

tortion caused by the inser-

t ~ tion of an interstitial or an
impurity extends over several

~ 4 ~ 0 lattice spacings. However,
since our first aim is to get
a qualitative understanding
of the inQuence of local dis-
turbances, we shall suppose

that only nearest neighbors are directly influenced (of
course more distant neighbors will be a8ected indirectly
through new localized modes of vibration or from scat-
tering of waves by the disturbance).

Our third type of field singularity is the hole or the
omission of an atom from the lattice. It is to be noted

that a hole and interstitial
~ ~ ~ ~ would generally be created

together (say by radiation
damage in a crystal). This
might be the analog of pair

~ ~ production in a quantum
field. Indeed in a neutral

~ ~ 0 ~ ionic lattice (or in the cor-
the hole responding discussion of elec-

tron levels in semiconduc-
tors) the pair is characterized
by two regions of space with

0 ~ ~ average charges of opposite
sign.

0 ~ ~ ~ At first glance one would
be tempted to characterize a

~ ~ ~ ~ hole by P=Q=O, since the
the pair original lattice mass is re-

moved and therefore no po-
tential energy of interaction exists with its neighbors.
However, the hole forms an interesting model of a
particle in a field if we characterize it by I'&1 and

Q =0. This choice of P is seen to resemble a hole in a
crystal lattice if one examines what happens when an
atom is removed from a lattice site in a monatomic
lattice. The repulsive force which kept its neighbors in

their places is removed so that a tendency exists for
them to fall into the hole. We characterize this tendency
by coupling the neighbors of the hole to the hole's
lattice point by a stronger than normal spring (7&')yr),
or by an alternative model in which the neighbors on
opposite sides of the hole are coupled together with a
spring constant y~"——-', y~'& -', y~.

An interesting property of a hole is that it is the
source of a pulsating mode. In a quantum mechanical
system there exists a nonvanishing probability (even
when the motion of the lattice is its zero-point oscil-
lations) for a neighboring particle to fall into a hole
(see Fig. 4). It will be assumed that even though it may
take a long time for a neighboring particle to decide to
jump into a hole, the time required for the jump to
occur, when once started, is small compared to the
period of the pulsating mode of the lattice. Hence the
motion of a hole does not change the structure of the
mode (see Fig. 4) but eventually causes a readjustment
of the amplitude of the vibrations of neighboring lattice
points. This readjustment is propagated through the
lattice with a finite velocity. We see that the motion of

FIG. 4. The pulsating localized mode for a hole. The motion of
the hole (i]lustrated above as a displacement of one lattice spacing
to the right) does not alter the character of the mode.

x++j—sjo (2.1b)

a hole is a random process. In a very small time the hole
either remains stationary or jumps to one of its neigh-
boring lattice positions. The existence of an external
field or other holes might give a preference to jump in
a particular direction.

Classically this random process corresponds to the
random walk of a particle on a lattice. In the limit of
very small lattice spacings its motion can sometimes be
described through the diffusion equation. If, however,
the lattice and hole are disturbed by the measurements
required for the determination of transition proba-
bilities of various jumps, a Schrodinger equation yields a
more appropriate description in this limit. The effective
mass of the hole would be assigned in the manner that
is used to define the effective mass of an electron in a
metal or semiconductor or of a bubble in a Quid. This
paper is mainly concerned with one-dimensional systems.
Although formulas will be given for many three-dimen-
sional situations, the details of these more lengthy
calculations will be reserved for a subsequent paper.

2. GENERAL EQUATIONS FOR A ONE-DIMENSIONAL
LATTICE

The equations of motion of a one-dimensional ring
of S atoms are
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o», 2(=y/M)** sin-', pi, ——o&r, sin-,'p&„

where ~& is the largest frequency,

M(og' ——4p.

(2.2b)

(2.2c)

The dimensionless constants {A&,l are to be chosen to
satisfy initial conditions in the lattice.

The quantum mechanical zero-point energy of our
perfect lattice is

Here x; represents the displacement of the jth atom
from its equilibrium position and D, is a difference dif-
ferential operator which characterizes the lattice defects.

In the perfect lattice (D;—=0) of lattice spacing u, the
displacements can be expressed as a linear combination
of the normal modes

x;=A &a expi(lo»+ jp&); p& ——27rk/N (2.2a)

(and those with exponentials of to», )—. Here

It is easy to see that the solution of (2.6) is

N(j) =p ' P P g(j+k—l)w&"&(l)N(l) (2.7a)

for, if we apply the L operator to N(j) we find

II(j)=y ' P Q w &'& (l)m(i) Dg(j+k l)—

=P w~~& (l)e(l)8(j+k—l) =P w&'& (j+k)u( j+k).

If the disturbance has an inhuence on lattice points
1&, l2, , l, then the new frequencies and normal modes
are found by successively setting j (in 2.7) equal to
l~, l~, , l, and finding the values of co for which this
set of homogeneous equations has solutions. It is to
be noted that the Green. 's function g(j) depends on o&.

When the solutions of these equations have been found,
we see that

N

Zo ——-', ko&1, Q sin(7rk/N) ho&zN/~, (2 3)

N(j) =y ' P P g(j+k —l»)w&"&(lp)N(ls). (2.7b)
P=l k

The Green's function which satisfies (2.6) is

(2.ga)

exp( —
l jl (s+i~)) (—1)' exp( —

l jl s)
(2.8b)

2 sinhs 2 sinhs

so that the zero-point per lattice point is 60= Ao&r/7l. cosp jdp
When lattice defects exist the normal modes divide g(2) = h'/~)

I

into two classes; those whose frequencies suGer slight
variations in the band, and those whose frequencies are
displaced out of the band. This latter group corresponds
to modes localized around the defects and must be 27r "0 cosp+coshs
analyzed separately. The former group can be discussed
by perturbation theory. The detailed manner in which
this division into classes occurs is presented in Appendix
I.

When perturbation theory is not appropriate we
assume that

where, defining f as f=o&/o&r„

coshi2s=o&/o&r, ——f)1. (2.9)
x,= uAu(j) exp —io&l, Note that (2.5b) implies

(2.43

where I(j) is a set of dimensionless numbers which in
an infinite lattice are defined by

LN(j)= Mo&'N(j )+pku(j+1) 2N(j)+N(j 1)3

=P w'"'(k+ j)u(k+ j) (2.5a)

j=0 &1 +2

g(j)~0 as j—+Do and therefore that s) 1. (2.10a)

Also, since s~ao as f~~,
g(j)—&0 as f +~ for fixed j. (2.10b)

This means that the higher the frequency of a localized
mode, the more rapidly it decays spacewise. Note also

and which are localized around defects so that
gU)=g( j)—(2.10c)

u(j) ~0 as j—& +~. (2.5b)

Lg(j) =
if j=0

0 otherwise.
(2 6)

The operator I. is defined so that Lu( j) gives the middle
quantity in (2.5a). It has the differential representation
I =Mo&' —2y(1 —coshD); D=d/dj. The w&~&(j+k)'s
characterize the lattice defects and vanish as j—+~ ~.

The general solution of (2.5a) can be obtained in
terms of the Green's function g(j) which is defined by

Similar formulas can be derived for the discussion of
the propagation of a plane wave through our lattice.
Let us assume that in the absence of local disturbances
a plane wave

with
x; = aA expi( jap —o)/), (2.11a)

Mo&~=27(1—costa) or o&=2(y/M)& sini~po (2.11b)

is propagated through the lattice. Here Au represents a
length which is a fraction A of a lattice spacing. If the
"scattering" of the plane wave by the disturbance is
elastic, the complete displacement of the jth lattice
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particle is
x;=Aae '—"'$u(j)+expij po$,

where u(j) is the solution of the equations

Lu( j)=M~'u(j)+pLu( j+1)—2u( j)+u(j—1)3

(2.12)
localized modes. Equation (2.7b) is equivalent to

when j=li, l&, , l, . Hence if we express u as u= P u„P~
the condition for the existence of solutions of N=GN is

"(P+j)ku(1+i)+expi(l+j) poj, (2.13) Q u„(1—X„)$„=0 or u„(1—X„)=0 for all u. (2.21)

The solution of (2.13) is easily seen to be

u(j) =p ' g g(j+k —l)w&"&(l)Lu(l)+expiloooJ. (2.15)

Since the postulated disturbance is chosen to be
localized, u &o'(1) vanishes for only a small number of
values of /, and the displacements in the summand of
(2.15) range over only a small set of l's. If these be l, ,

lo, ., l, then we must determine u(li), , u(l, ) by
succesively letting j be 1&,

., l, and solving the result-

ing s inhomogeneous equations for u(li), , u(l,).
Then the final solution of (2.15) is

( ) = '2 + g( +& 0) "'(4)L"(4)+ p o1 7.

(2.16)

If we let u be a vector with components u(le)&

P=1, , s we see that the s equations derived from

(2.16) for u(li), ~, u(l, ) can be written in the matrix
form

(2.17)

where e is a known vector and 6 a known matrix. Then,
if P„and t „are the characteristic vectors of G defined by

(2.18a)Gf„=X„P„and f„G=Xg„

(2.18b)

where (X„}is the set of eigenvalues of G, we can expand
the known vector v as

&=K &A'u'

Then it is easily seen that

u=p„)X„v„/(1—X„)jP„.

(2.19)

(2.20)

It is to be noted that the characteristic values and
vectors of G can also be used to And the frequencies of

the disturbance again being introduced through the set
of numbers (zero'(k+ j)}.The solution of this set of
equations is obtained as before, through the use of the
Green s function g(j) which satisfies (2.6). In this case
the denominator of (2.8a) has a pole (since now

0&oi&oor). Hence we must use the Cauchy principal
value of (2.8a) to find

cosy jdp
g(j) = 4/~)

o 2y(cosoo —1)+Mo~'

1 cosyjdp 1 sin(~ j~ vapo)

. (2.14)
2x o cosy —cosy o 2 sing o

We shall now apply the various formulas derived in
this section to the investigation of the egect of an
isolated defect in a one-dimensional lattice.

3. ISOLATED POINT DEFECT

This section is concerned with the theory of localized
modes associated with isolated defects. The amplitude
of lattice displacements due to these modes diminishes
exponentially with distance from the defect. The types
of defects analyzed are

(a) The variation of the mass of a single particle and
of the force constants associated with that particle and
its nearest neighbors. If the force constants are not
changed this corresponds to the introduction of an
isotope into the lattice.

(b) The interstitial.
(c) The changing of a single force constant.

(3.1a)Lu(j )=0 except when j =0, &1,

Lu(0) = (M—M')o~ou(0)

+(~—~')I (1)—2 (o)+ (—1)j, (3.»)
Lu( —1)= h"—V)Lu( —1)—u(o)3, (3.1c)

L (1)=(v'-v)E (1)- (o)j, (3.1d)

The topology of a linear chain is such that the localized
modes of an interstitial can be deduced from those of a
normal impurity, and that of a hole can be deduced
from the results of (c).

In general the localized modes associated with im-
purities are either symmetrical or antisymmetrical
about the position of the impurity (particles to the left
being either in or 180' out of phase with those to the
right). As the mass of the impurity is reduced the
frequency of the symmetric mode increases and its
range of inhuence on its neighbors decreases; in the
limit of zero mass the eGect of this mode is no longer
propagated through the lattice. The only mode asso-
ciated with a hole is the antisymmetric one; this mode
exists independently of the mass of the impurity pro-
vided the new spring constant is sufliciently large (in
fact if p'/&=5)2). The impurity frequencies are
plotted in Fig. 7.

A brief discussion of the scattering by an isotope is
given at the end of the section.

Let us insert an impurity atom of mass M' in the
lattice point "0"in a chain of 21V+1 atoms, and let y'
be the force constant of the "spring" which connects
this atom to atoms "1"and "—1." Then Eqs. (2.5)
become
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and the w's of (2.5) are

zc'"'(k+ j)=0, for all k and j except (3.2a)

where we set

P=7'/7 and Q =M'/M, f=a&/~r, :. (3 4)

rc'o' (0)= (M—M')(u' —2 (7—7');
rc&+"(a1)=7—7', (3.2b)

~"'(0)=~' "(o)=7—7'; ~"'(+1)=7'—7.

Since the coeKcient of m(0) will appear in many places
we employ the definition of g(j) [Eq. (2.6)) to derive
it in a more compact form:

+(7 7')I —g(j+1)+g(j 1)3—

7 '{g(j)L(M—M') '—Z(7—7'))
The solution of Eqs. (2.5) from which localized

normal modes are to be determined is

NU) =7 'N(o){g(j)l:(M—M')~' —2(7—7'))
+(7—7') Lg(j+1)+g(~—1)3
+~(1)(1—P)l g(j)—g(j—1))

+~(—1)(1—P)l.g(j)—g(j+1)), (3 3)

4f'g(j) (P Q)—
4f'g(o)(P —Q)+(1—P) if j=o

The matrix G defined in (2.17) is

(3.5)

(1—P)Lg(1)—g(o)) 4f'g(1)(P Q) — (1—P)Lg(1)—g(2))
G= (1—P)l g(0) —g(1)) 4f'g(0)(P —Q)+(1—P) (1—P)Lg(0) —g(1))

.(1—P)Lg(1)—g(2)) 4f'g(1)(P Q) — (1—P)Lg(1)—g(o)).
(3.6)

One of the characteristic vectors of G is with an a/b ratio

a X+P 1—4f'g(—0) (P—Q)

2(1—P)Lg(o) —g(1))

(3 7b) The left characteristic vectors are of the form

f'= (2ac+ bd) '(c,d, c),
—

The adjoint (left-hand characteristic vector of G) is

pi= ', (1, 0,-. —1), so that fr Pr 1. ——

This is a pulsating mode
with

f ={1,0, —1} with X = (1—P)['g(2) —g(0)). (3.7a)
(3.13b)

(3.14a)

It is the one-dimensional analog of a periodically
expanding and contracting spherical bubble.

The other solutions are easily found when P= 1 (the
case of an impurity such as an isotope which does not
distort the lattice, 7'=7). Then

fg= {1,g(0)/g(1), 1}; Xg ——4f'(1—Q)g(0), (3.8)

c ~+P 1 4f—'g(o—)(P Q)—
8f'g(1) (P—Q)

(3.14b)

Since there are two roots of our characteristic equation
these are the vectors of the form (3.13) and (3.14).

The frequencies associated with our isolated defect
modes are determined by referring back to (2.21). In
order that

and

Finally
t~=(0 g(1)/g(0) 0).

$3-—{1,0,1}, X3——0,

t 3=-'(1, 2g(1)/g(0) 1)

The modes in this case are

(3.15a)

(3.15b)

N= {u(—1), N(0), n(1)}
(3 9) be expressible as

(3.10)

(3.11)
the condition (1—),„)N„=O must be satisfied for all p, .
Hence if N @0 then X„=1.The frequency &u associated
with the symmetrical pulsating mode (i) LEq. (3.7a))
is then determined by

In the general case the roots A2 and X3 satisfy the
characteristic equation

l '—~((1—P) {Lg(1)—g(2))+3l.g(1)—g(o)3
+ (1—Q) {1—2rg(1) —g(o)3)

+4f'g (1)(1—P) (1—Q) =0. (3.12)

The characteristic vectors are of the form

(1—P)I:g(2)—g(o))=1 (3.16)

When &o/~i, )1, g(j) is given by (2.8b). Therefore we
have

—'(1—P) (c "—1)/sinhs= 1 with s) 1 (3.17)

so that exp( —s) = 1/(P 1). This quantity —is (1 as is
required only when P=7'/7) 1. Then

P'
(cv/cur)'= cosh' —'s =- when P)2; (3.18)

4 (P—1)

P= {a,b,a}, (3.13a) as P—+2 this mode returns to the band.
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g(P)
~

I

o
e(~-~) 2.

2$(P-g)

FIG. 5. The intersec-
tion of g~(f') and g2(f')
represents the solution of
Eq. '(3.22). P&1.

The displacement of the jth lattice point of a system
oscillating in this mode is [see Eq. (2.76)j

u(j)=(1—P)e(1)[1/(1—P) j&, j&&1 (3.19a)

u(j)= n(—j) —for j&0. (3.19b)

Note that large values of P correspond to high fre-
quencies and a rapid drop in ~N(j) ~

as
~ j~ increases.

Also, the frequency is independent of the mass of the
defect particle.

The symmetric mode (ii) [u(j)=N( —j)j has an
easily determined frequency when P=1 (the isotope
case). Then (3.8) implies

4(~/-z)'= 1/g(o)(1 —Q),
or

(~/-z)'=1/Q(2 —Q) with 0&Q&1. (3.20)

This mode goes back into the band as Q—+1. It has the
property

()= (—)=LQ/(Q —2)1 (0)
when 0&e&1. (3.21)

It is interesting to note that the frequency (3.20) is the
same as that of the pulsating mode of a hole if one
replaces P by 2/Q.

The frequency of the symmetric mode (ii) is obtained
as a general function of P and Q by setting X=1in Eq.
(3.12). If one uses (2.8b), (2.9), and the equivalent of
(2.9), sinh-,'z=(f' —1)' with f=~/&uz some algebraic
manipulation yields the following equation for the
frequency of our required symmetrical mode:

2 P
I
=1+ (322)

&p —1) P(1—e)+2Q(P —1)f,

while the factor (b/a) in (3.13) becomes

so that (3.22) becomes

e/"=0«') =ep/[p+ "( —')~+0«')
or a=-', P and as Q

—+0

f --:p/e+o(e). (3.25)

Hence as the relative mass Q=M'/M of an impurity
vanishes, the frequency of the local mode becomes very
large while the effective range vanishes. In the limit
a= 0 the neighboring lattice points do not feel the effect
of this mode and the particle of mass M' disappears
leaving a hole. One degree of freedom of our chain
then disappears. Then the only localized mode asso-
ciated with a hole is the antisymmetric or pulsating
mode (i). It can be shown that a/b in Eq. (3.23)
satisfies —1&a/3 &0 when f)1and 1)Q) 0.

Our frequency ratio f is displaced out of the band
only when certain relations exist between P and Q. One
way of solving (3.22) is to plot both the left and right
hand sides as functions of f'and to find their point of
intersection (see Fig. 5). We shall denote [f'/(f' —1)$'
by g, (f') and the right hand side by g2(f'). Two cases
are to be examined separately, namely P& 1 and
0&P&1 (P=1 having already been disposed of). It
will generally be assumed that Q &&0. When P)1 the
right-hand side of (3.22) approaches 1+P[2f'(P —1)$ ')1+-',f—'. Hence, the function g2(f') eventually lies
above gi(f') as f'~~. Since g2(f') forms a hyperbola
with one asymptote at f'=P(e 1)/2Q(P——1) and the
other at f'= 1, the condition for the interaction of
gi(f') and g2(f') to exist (as it must if our required
frequency is to rise out of the band) is that

P(Q —1)/2Q(P —1) &1 or P&Q(2 —P).
Otherwise the asymptote of g~(f') lies to the right of
that of gi(f') and no intersection or proper value of
(3.22) exists.

When P &1 the hyperbola which represents g~(f') is
twisted by 90' about the intersection of the asymptotes
(see Fig. 6). Here an intersection of gi and g~ exists as
long as

(Q—1)P/2(P —1)Q)1 or P)Q(2 —P)

as in the foregoing. It is to be recalled from (3.20) that
a solution exists when P=1 if O&Q&1. Hence, our

a/b= —
Qf(f—[f'—1)i). (3.23)

An asymptotic expression for thefrequency f=~/cup,
can easily be obtained in the limit of very small mass
of the impurity Q=e 0. Here we assume f'=a/Q and
find e by noting that

[f/(f -1)j-:=1+e/2a+o(e), (324)

I
I I

e(Q-&)
z&k(p-n

FIG. 6. The intersec-
tion of g&(f'l and gm(f')
represents the solution of
Eq. (3.22). P&1.
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result can be summarized by stating that a normal mode
of type {ii) exists with a frequency above the band
when all the following conditions are satished

P)0, P)Q(2 —P), and Q & 0 (3.26)

with the frequency going to in6nity as Q—+0.
Equation (3.22) can be squared and rearranged to

yield the following quadratic equations for the squares
of the normal mode frequencies

4Q'(P 1)f'+—PQf'(4 PQ —2P) —P'=—0 (3.27)

The reader is to be warned that spurious roots generally
exist. The only root of significance here has the
property (o&/o&z, )' ~&1. A root can always be checked for
appropriateness by substituting the corresponding
values of f' back into (3.22). The impurity frequencies
are plotted in Fig. 7.

Once the frequencies of modes of type (ii) are known,
all displacements can be discussed in terms of u(0)
through the equation

N(j)=QN(0)(1+e*) exp —
I jI (s+i~);

o&/o&z, = cosh-,'s. (3.28)

As (o&/o&z)~eo, s~~ and tz(j)—+0 so that high fre-
quencies imply rapid spacewise decay as was mentioned
earlier.

The characteristic equation (3.12) may have two
roots with X=1 when special relations exist between P
and Q. However, this is not the case under two con-
ditions of greatest interest; those with either P= 1 (the
"isotope" case) or Q=0 (the case of the "hole").

A discussion of the interstitial proceeds along the
same line that was followed above for holes and im-
purities. Since an interstitial does not change the
topology of a linear chain one expects the results to be
equivalent to those derived in the foregoing (as can
indeed be proven to be the case). Since an interstitial
in a three dimensional simple cubic lattice gives a
local body centered structure, this equivalence disap-
pears in a real lattice.

%e shall now give a brief analysis of the interstitial
to show how it can be fitted into the mathematical
formalism discussed in Sec. 2, even though no unex-
pected results are obtained.

Consider a linear chain of 2E atoms and suppose an

l. 7

/+-
Cdfed

/Q—

/. 0
0 0.2 o.O o.6

Q os2P

FIG. 7. Variation of impurity frequency co with impurity param-
eter (Q =M'/M for an isotope, I' =y'/y for a hole). caz =maximum
frequency for the perfect lattice.

atom of mass M" is inserted at an interstitial site "-,'"
between the two sites "0" and "1." If y" is the force
constant of the spring connecting the interstitial to its
neighbors, then the fundamental equations (2.5) become

Lu(j) =0 except when j=0, 1 (3.29a)
LN( j)= (y"—p)N(0) —y"I (—', )+yu(1) if j=0, (3.29b)

LN(j) = (y"—y)u(1) —y"I(-', )+ytz(0) if j=1, (3.29c)

with the additional equation

VN (l) = —7"I:~(1)—»(l)+I (0)3
+ (y —M"o&s)zz(-'). (3.29d)

The form of this last equation is somewhat arbitrary;
the present choice is consistent with the definition (2.6)
of the Green's function. The z functions are all zero
except that, with an obvious extension of the notation

w&'&(0)=w&" (1)=y"—y, (3.30a)
w&'&(1)=w& '&(0)=y, (3.30b)
w&i&(-')=w&l&(1)=w& —»(-')=w&—l&(0)= —y", (3.30c)

w "&(s)=-27"+(v —zl-f'"~') (3.30d)

The determination of the normal modes and frequencies
depends on the solution of the eigenvalue problem for
the matrix 6, given in the present case by

(P —1)g(o)+g(1) —P Lg(o)+g(1)j g(o)+(P —1)g(1)
6= gPr 1 Pz+2Qzf'— 1p

(P.—1)g(1)+g(o) —PzI. g(0)+g(1)j g(1)+ (Pz —1)g(o)

(331a)

where

Pz =y "/y and Qz =M"/M. (3.31b)

Although this matrix seems quite different from that
given by (3.6) for the impurity problem, it leads to the
game normal modes and frequencies. For example, one

characteristic vector of G is

Pz ——(1, 0, —1) with Xi= (Pz —2)Lg(0) —g(1)g (3.32)

The corresponding normal frequency co is obtained from

(P.—2)Lg(o) —g(1)j=1, (3 33a)

which is only an alternative forzn of (3.16) leading to
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the same result

(~/~z)'=-'L "/(1"—)j (3 33b)

with
(0/(d g =f= sin p p p (3.44)

A detailed analysis of the other modes for the inter-
stitial con6rms that they also are identical with those
for the impurity. For the one-dimensional lattice,
therefore, the eGects of the impurity and the interstitial
are the sam, e; this might well have been inferred from
their obvious "topological" similarity and would not
be expected for lattices of higher dimensions.

The last type of isolated defect to be examined is the
single anomalous force constant. YVe let the force
constant associated with the interaction between the
lattices points 0 and 1 be y" and the rest be y as usual
and define

and u(0) is found by setting j=1. Since g(0)=0,
u(0) =0 and

u(j)=2f'(1 —Q) sin(I jI pp)/slnppp. (3.45)

The total displacement of the jth lattice point from its
equilibrium position is (see Eq. 2.12)

x,=aAe '"'Le""'+2f'(1—Q) sin(I jI pp)/sinppP. (3.46)

Since the term sin
I j I pp contains terms with both posi-

tive and negative exponents, the scattered wave
contains both a rejected and transmitted part.

The full matrix theory must be used when E/1.
&'=v"/v.

The required equations of motion are

(3.34)
4. ZERO-POINT OR VIBRATIONAL SELF-ENERGY

OF DEFECTS

Lu(j)=0 except when j=0, 1, (3.35a)

Lu(j) = (p —p")Lu(1) —u(0)l forj =0, (3.35b)

Lu(j) = (y —y")Lu(0) —u(1)$ for j=1. (3.35c)

Hence,

w&+(k+ j)=0 for all k and j except
w&'&(1) =w&—'&(0) = (y —y")=—w&" (0)= —w&P&(1).

(3.36)
The G matrix is

( 1 —1)
G= (1—1")Lg(1)—g(o) jI (3.37)

E —1 1 j
The characteristic values of 6 are

4= 2(1—&')Lg(1)—g(o)3

with characteristic vectors

(3.39a)

(3.39b)

The antisymmetrical vector fp yields a frequency out
of the band, for if we let X2=1 and define g(j) by (2.8b)
we have

f'= (~/~z)'= (&')'/(2&' —1), (3 40)

which is exactly the same as the frequency of the
pulsating mode of a hole LEq. (3.18)j if we identify I"
with ~I'. The decay factor exp —2 is

exp —s= 1/(2P' —1). (3.41)

The theory of scattering of plane waves which is
summarized in Eqs. (2.16)—(2.00) can be applied to the
problem of scattering by an isolated defect. The simplest
case is that of the isotope, X=1. Equation (2.16)
reduces to

An important characteristic of a lattice defect is its
vibrational self-energy. VJe define this quantity as the
diGerence between the zero-point energy of the lattice
with a defect and that of a perfect lattice. The total
potential energy of a lattice can be approximated as a
constant term (the sum of the bond energies) plus a
term quadratic in relative displacements. Hence the
total self-energy is the sum of that required to make
the change in the bond energies associated with the
introduction of the defect plus the vibrational self-
energy.

The vibrational self-energy can be decomposed into
two parts; the first being due to the shifting of fre-
quencies in the band, AEb, and the second being due to
the removal of frequencies from the band, AE&. If
{cv;&P&} represents the vibrational frequencies of a
perfect lattice and {cu;&"} those of a lattice with a single
defect, the vibrational self-energy is

AE=-,'P; AL&u, "&—(u, ~P&$=AEp+AE . (4.1)

When Q is close to 1, DE follows immediately from per-
turbation theory as well as from an exact analysis of
all the normal modes (those inside as well as outside
the band).

In order to avoid the necessity of using perturbation
theory of degenerate characteristic values, we shall use
the solutions of

Lu(e) =0 with u(cV) =u(—1V)=0 (4.2a)

as the unperturbed characteristic vectors. The fixed
particles at the end of the chain lead to normalized
solutions

u(u) =X—l sin(cV —rs) pp

with

u(j) =v 'g(j) '(~—~')I:u(0)+13,
where g(j) is (see 2.14)

g(j)=-,'(sin
I jI q p)/sinpp,

(3.42)

(3.43)

pp
= vrj/2$, j= 0, 1, 2, , 2X,

with normal mode frequencies

(4.2b)

cv'= 2y(1 —cosa.j/2E) =4p sin'7r j/41V. (4.2c)
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The first-order perturbation in 3foP for an isolated defect at m=0 is

(7'—7) (7—7') 0
'

~(—1)'
~~~k'= (I(—1), ~(0), N(1)) (7—7') (~—1lf')r~s"'7' —2h —7') (7—7') &(0)

0 (7—7') (v' —v). . ~(1) .
=(7'-7)(l. (o)- (-1)j+l. (o)- (1)»+(~-~')L-."i (o)
=4 (7'—7)1V ' sin'-', ykfcos' (X——',)ps+ cos'(1V+ Is) q sf+ (M—M')

1 ros &'&)'1V ' sin'cV pq, (4.3)

where ~&&" is the unperturbed frequency given by
(4.2c).

The vibrational self-energy is (each frequency con-
tributing —',AoI to the zero-point energy of the lattice)

aP= ', It P -AoIs ——-', 5 +Les —oIs&'&j

(~~s I/Ms $ j.
We see that (4.3) breaks into two subsets

kx kx
2(P—1)oIIsX ' sin' cos' k even

4S 4X

Hence

~~ =l~.(l Q(2 —Q)3-i—1)
= l~iL(1—(1—Q)'l '—1l

("isotope" case). (4.7)

The exact evaluation of the total vibrational self-

energy can be achieved through the application of the
following theorem" on contour integration: Let g(s) be
a function. analytic inside a contour C and f(s) be a
function with zeros at s~, s2, -, s inside C. Then, if

f(z) has no poles inside or on the boundary of C

AGop- km kx
2(P—1)oIIsE I sins sins

4Ã 4Ã

1 t f'(s)
g(z)«=Z a(s )

2~i & c f(s)
(4 g)

+L(d &'I$'1l1' '(1—Q) k odd.

kx
&&=-'&X ' 2(P—1) Q oIs&sI cos'

i„& even 41V

Those zeros of f(s) which lie on C are given a weight
-' in the sum.

It is shown in the Appendix that the possible normal
mode frequencies of a perfect chain are

kx
+ Q o)s&'I sin'

& odd 4Ã

M=NL, sin~ y,

+( Q) ~ ~s 1' where the p's are zeros of the two functions
k odd

(4.9)

~P =-'aX-IL2(P —1)+(1—Q)jg ~,&»

k=0

=-,'ko&I, Ir
—'L2 (P—1)+(1—Q)$. (4.5)

Second-order perturbation theory gives terms of order
(P 1)' and (Q—1)—' to AE so that (4.5) is merely the
beginning of a series in (P 1) and (Q —1). —

The contribution of the localized defect modes to the
vibrational self-energy of a defect are

AED ', h P; (ro; oII) =——,'A—~zP;(f—;—1), -(4.6)

where the summation extends over all defect modes
which go out of the band. The assumption is made that
the defect mode is the displacement of a mode which
was very close to the top of the band in the perfect
lattice. Ke shall give an explicit formula only in the
case of the "isotope. " When P=1 (the "isotope" case
7=7') the only mode which escapes from the band is
the symmetric one with frequency

f=~/~~= L1/Q(2 —Q)7'.

In the limit as X—+~, ~~"' for a given odd k is prac-
tically equal to its value for the even number 4+1.
Hence, as g—+~,

fI (p) = slnlVp, (4.11a)

fs(y) =cosXp+ (1—Q) tan-,'y sinÃy. (4.11b)

Z 0'

FIG. 8. The contour C which is the path of
integration used in (4.12l.

~ See E. C. Titchmarsh, Theory of Functions (Oxford University
Press, Oxford, 1932), p. 116.

fI"'(q) =siniV ir and fs&" (q) =cosNy (4.10)

in the range 0&Rely ~&w. A lattice with a single isotopic
defect of mass M'=QM also has frequencies given by
(4.9) where the y's are the zeros of
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It is easy to show that

hp~l, (Q—1) l Ã sin-', z cos-', z+-', coslVz sinlVz !
47ri ~ a cosXz cosizz —(Q —1) sin-', z sinNz I

The application of (4.8) implies that

kmg f d
DE= sin-,'z—! log fp(z) —

log f2'& (z)7dz, (4.12)
d,E=

where the contour C (see Fig. 8) contains the zeros of
both fz(z) and fz&" (z). As is discussed in the Appendix,
the zeros of fp&Pi(z) and fp(z) which corresPond to
normal modes in the band are located on the real axis
in the interval (o,z). The frequency of the localized
mode corresponds (as 1V—+~) to the points on the line
z= m. +iy at y= &log[(2 —Q)/Q7. We take our contour,
C, through both of these points since each (being on the
boundary) contributes only one half of the required zero-
point energy to (4.12).

Xsin-', zdz/cos —', z cosIVz. (4.13)

This integral can be decomposed into the sum of four
integrals, one for each side of the rectangle in Fig. 8.
The integrand of (4.13) is an odd function of y along
the line z=7r+iy from (—a, z.) to (a,z.). In the limit
of very long chains, as S—+~, the two integrals along
the longitudinal parts of the contour combine to give a
contribution

sin-', (x—ia) Ck
Lkpii, (Q- 1)/8z.7

~p cosp($ ia)/—cos ', (z -ia)+—i(Q 1) s—ing($ —ia)7

sin-,' (a+ ia) dx

cos-,' (z+ia)! cos-,' (a+ia) i (Q—1) s—in-', (z+ia) 7

These integrals can be transformed easily into ele-
mentary real integrals and are found to be (in the case
sinh-,'a+ (Q —17 cosh-', u) 0)

—hp~l. (—tan '(1/sinh-', a)
2'

+L1—(1—Q)'7—'*tan—'(L1—(1—Q') 7~/

XLsinh-,'a+ (Q —1) cosh-,'a7) ). (4.14)

Hence, for any fixed value of Q, the contribution of this
term to (4.13) vanishes as a~ pp.

The only remaining contribution to (4.13) in the
limit a—+~ comes from the imaginary axis. As E~~
the term —', coshcVy sinhiVy in (4.13) dominates cV sinh —', y
Xcosh-, y in this line contribution to (4.13).Hence, after
applying the appropriate large S asymptotic formulas
for coshSy and sinhgy, and letting a—&~ we reduce
(4.13) to

L)g sinh-', ydy
(1-Q)

4z. & p cosh-,'yf cosh-', y —(1—Q) sinh-,'y7

"" ! &
'y

I
'y

1

47r ~ p cosh-', y —(1—Q) sinh-,'y "p cosh-,'y!

=l~z~ —1+L1—(1—Q)'7 ' 1+-»n '(1—Q)
~

~

(4.15)

As (1—Q)—+0 this becomes -,'z. '(1—Q) which is
equivalent to the first-order perturbation result (4.5).
This is due entirely to the shift of levels in the band.
As Q-+0, DE—&-,'Appz, (2Q) & which is the limit of (4.7a).
To summarize, a very "weak" isotopic defect is de-

scribed by the intra-band shift of frequencies while a
"strong" isotopic defect, a very low mass particle
introduced into the lattice, exerts its inRuence through
the localized modes. The complete variation of the
self-energy of an isotopic defect is plotted in Fig. 9 as
a function of the mass ratio Q=M'/3I.

Since an interstitial has the same topology as a point
defect at a normal lattice position the contribution to
its self-energy made by those frequencies which are
displaced in the band can be inferred from the equations
derived above.

The first-order perturbation theory of the anomalous
force constant proceeds as follows:

~—~"p (u(o)q
cVA»P= {u(0),u(1))

Ey —y" y"—y Eu(1) &

=L (0)-.(1)7'(~"-~)
=4(y"—y)cV

—' sin'-,'ppi, cos'(iV+-,') pk.

Hence,
[ cos'z.k/4' if k is even

~pi&' ——4!»&P~7'iV—'(P —1)
sin'irk/4' if k is odd

so that by following the reasoning used in the derivation
of (4.5) we find

aE=-', A(P' —1)col/or+Of(P' 1)'7. (4.16)—
The pulsating mode which goes out of the band when

P')1 gives the contribution to the self-energy Lsee
(4.6) and (3.40)7:

AED ——-,'Ap~z, (P'(2P' —1)—-**—1). P' ~& 1 (4.17)

We conclude this section with a determination of the
vibrational self-energy of a hole. The contribution from
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the localized mode is

BED= &&col, ——1
P

2 (P—1)'
if P)2. (4.18)

/. 2-
The first-order contribution AE& of those frequencies

which suffer small displacements in the band can be
deduced from various formulas derived above. We
take the following steps.

(a) Insert an anomalous bond with force constant P'
into the lattice at the expense of AZq&" —,'A(P' —1)cerjz..

(b) Remove one particle from the lattice with
AEs&s'= —A~r, /z. [since this is the total zero-point
energy per particle in a long chain as derived in Eq.
(2 3)3.

(c) Without changing the topology of the lattice the
anomalous "spring" is chosen to span the hole so that
it is extended over two lattice spacings rather than the
usual one per bond. The choice P'= ~P is made to cor-
respond to a consistent model of the hole.

Then
AEs= —',Puolz- '(—',P—3).

5. THE DEFECT PAIR

(4.19)

This section is concerned with the interaction of a
pair of defects with each other. Several qualitative
comments can immediately be made concerning the
localized modes. If two defects are very far apart both
lead to a localized normal mode of the same frequency.
As the defects are brought closer together the degen-
eracy splits. If the defect coupling is very weak the
motion of a given particle located between the two
defects can be approximated as a linear combination of
the two isolated defect modes. Two independent situ-
ations are possible; in the first the motions of the
particle of interest due to each defect mode are in phase
and in the second they are out of phase. The in-phase
motion, which will be called the 6tting mode, corre-
sponds to an enhancement of the amplitude of the
lattice vibrations while in the out-of-phase motion of
the nonfitting case interference occurs. The non6tting
mode has one less node than the fitting one and is
associated with the low-frequency member of the split
pair.

Ke now proceed with the detailed analysis of the
localized modes of a defect pair.

If a defect is located at lattice point m it induces a
displacement from equilibrium at m whose space de-

/. 0-

0.8-

0
0 g. 4 O. 6

q =w/~

Since our diGerential equations are linear we can apply
the superposition principle to find the total displace-
ment which results from defects at m~, e2, ~ ~, n~.

u(m)=P u&"~'&(m).
j=l

(5.2)

When (5.2) is specialized to a pair of defects, one

located at m~ ——0 and the other at e2 ——e the frequencies
of normal modes are determined so that the homo-

geneous equations which relate u(+1), u(0), u(n),
u(n&1) are consistent. These equations are obtained

by letting m in (5.2) successively run through —1, 0, 1,
n+1, n, n —1. The vector u of Eq. (2.17) is

u= (u(—1), u(0), u(1), u(n+1), u(n), u(n —1)). (5.3)

The G matrix of Eq. (2.17) has the following form:

(Gr Gs)

~Gs Gt)
(5.4a)

where

FrG. 9. Self-energy of an isotope mass M' plotted against
Q=M'/M. (-',Aa&z is the zero-point energy corresponding to the
maximum frequency of the perfect lattice. )

pendent factor is [generalization of (3.3)$

u&"~ (m) =y—'{g(m —n)[ (M—M')(u' —2(y —y') j
+ (p —y')[g(m+1 —n)+g(m —1—n) j)u(n)
+ (1—P)[g (m —n) —

g (m —n —1)$u(n+ 1)
+ (1—P)[g(m —n) g(m+—1—n)$u(n —1). (5.1)

and

(1—P)[g(1)—g (0)] 4f'(P —Q)g (1) (1—P) [g(1)—g (2)]
Gr —— (1—P) [g (0)—g (1)] 4f'g (0) (P—Q)+ (1—P) (1—P)[g (0)—g (1)]

, (1—P) [g(1)—g (2)j 4f'(P —Q)g (1) (1—P)[g(1)—g (0)]

(1—P)[g(n+1)—g(n+2) j 4f'(P —Q)g(n+1) (1—P) [g(n+1)—g(n)7
(1—P) [g(n) —g(n+1) 3 4f'(P —Q)g(n) (1—P)[g(n) —g(n —1)3
(1—P)[g(n —1)—g(n) j 4f (P—Q)g(n —1) (1—P)[g(n —1)—g(n —2)g.

(5.4b)

(5.4c)
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The matrix
1 0 0

(I I i8=2='i .
)

with I= 0 1 0(I I)— .0 0 1-
transforms G into

(R+Gs
!Z-i'=

i

0 Gx—G2)

(5.5a)

(s.sb)

is satisfied at all points on the perimeter of C; then the
solution

(5.12)

regarded as an equation in {,has one root in the interior
of C; and further, any function of { analytic on and
inside C can be expanded as a power series in t by the
formula

tm dt's
—1

f({-)=f()+ Z —, ,[f'(){O()&"]. (5.»)

tm dm —1

{=~+ 2 — B(~)]-
~=~mt da

0 g(1)&g(n+1) 0
Gi&G2=4f'(1 —Q) 0 g(0)&g(n) 0, (5.6)

0 g(—1)+g(n—1) 0.

(5.14)

If we let exps={ then we can apply (5.14) to 6nd
with characteristic vectors

Pg
——{1,0,1), (5.7a)

e'= [(2—Q)/Q]+2( —1) (1—Q)Q '[Q/(2 —Q)]"

+ (2/Q) [(1—Q)/Q]'
2g(1)+2(1—2f') g(n)1(

2( f2—
Q

—2ni ( Q i'"
(s 1s.)g(o) ~g(n)

2 Q ) E2 Q)
with X1——0, (5.7b)

and set f({)=4'({+2+t ') in (5.13) to 6nd
5.8a

(—1)"(1—Q)'t Q i"
( / .)'=

Q(2-Q) Q'(2-Q)' i2-Q)
(1—Q)' Q+, [4-6Q+3Q -4(1-Q) ]I I +

Q'(2 —Q)' (2—Q)
.15b)

1 ( a[g(n —1)—g(n+1)]
2 ( g(0)+g(n)

with X2=0,

f,= {g(1)ag(n+1),g(0)ag(n), g(1)&g(n —1)), (5.9a,)

f,= (0, 1,0)/[g(0)+g(n)], (5.9b)

2(2—Q) &2—Q)
(S.9c)l =4f'(1—Q) [g(0)~g(n)].

In the "isotoPe" case, P=1, the matrices Gi~G2 are In particular the root { of (5.12) which lies in C is
of the form

The frequency which corresponds to the mode f3 is
obtained by letting X&——1 [see equation below (3.15b)].
If we introduce our usual expression (2.8b) for g(j) and
f' into (5.9c), we have the characteristic equation

e~—(2—Q)/Q= ~Q-'(1 —Q) (—1)~(e'+1)e ~~

0&Q&1. (5.10)

This equation has been obtained on the supposition
that I ~)3 but it is easy to show that it is also valid
when m=1, 2. A special analysis is required for these
two cases because when m=2 the isotopes are next
nearest neighbors and when v=1 they are nearest
neighbors.

Of course in the first approximation as e—+~,
expz= (2—Q)/Q) 1. A series expansion of our required
root can be obtained from the Lagrange theorem: Let
f(w) and f(w) be functions of a complex variable w

analytic on and inside a contour c surrounding a point
a, and let t be such that the inequality

it&(w)| &iw —a/ (5.11)

(1—Q)'
+— [3—4Q+2Q' —4n (1—Q)]

2 Q'(2 —Q)'

Q
2n

+ . (5.16)
(2—Q)

We see that the frequency of the isolated impurity
f=[Q(2—Q)] & is split into two frequencies as two
isolated impurities are brought together.

The difference in zero-point energy of the two particle
modes associated with a pair of particles e lattice
spacings apart and that of two isolated local modes is,
as e—+~

ZEST)=

', k Q h(o-
= —2nh~r, (1—Q)'[Q/(2 —Q)]'"/[Q (2—Q)]'"

(5.17)

since —', h[Q(2 —Q)] ' is the zero-point energy per
isolated impurity. Hence the localized modes give rise
to an attraction between defects. We shall show in the
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next section that in three dimensions this attraction is
of the Debye or Yukawa type at great distances.

When n is a small integer it is more convenient to
solve the characteristic equation (5.10) directly than
to employ the Lagrange formula. We have plotted AED
as a function of m in Fig. 10.

The attraction between light isotope defects in a
system of a heavy isotopic species leads to a clustering
tendency for the light isotope at very low temperatures,
and therefore one would expect an ordering into two
phases. This separation has been discussed by Prigogine
and his collaborators. '

The analysis of the interband frequencies of a chain
with two isotopic defects is similar to that of the
Appendix for the single isotopic impurity. If one
impurity is at —m and the other at m in a chain of
21V+1 atoms (with ends fixed) the equations for the
configurational factor of the displacements are

Manu(n)+y[u(ts —1)—2u(N)+u(m+ 1)$
= (M—M')M'8(n' —m')u(rs) (5.18a)

N(N) =u( —N) =0, (5.18b)

where as usual 5(s) =0 unless s=0 in which case it is 1.
The solution of this equation is

—'002

~ 0/

FIG. 10. Contribution of localized modes to the energy of inter-
action of two isotopes of masses ,'3II. (qhcor, is —thezero-point energy
corresponding to the maximum frequency of the perfect lattice. )

and the characteristic equation for q is

sin(N —m) rp

cotNg =2(Q—1) tan —,'g cosmic (5.21)
sinÃy

8 sin(N+e) g if e& —m

N(e)=» A sin(N —n)g if n~&m (5.19)

(b) The odd solution, u(e) = I( —e), w—ith

A= 8, C= —D, A sin—(N —m)g =2iC sinmto,

where
Ce'"r+De '"~ if —m ~&e&m

MoP=2y(1 —cosg) (5.20)

so that
sin(1V —m) g

N(N) =A sineq, —m &&e(m
sinmp

and the parameters 2, 8, C, D, and q are determined
from the four "connecting" equations which result from
successively letting ti be —m —1, —m, m, m+1 Abit.
of elementary algebra yields the four equation relations
between A, 8, C, D, and q.

(A+8) sin(N —m) g = 2 (C+D) cosmg,

(A —8) sin(1V —m)g =2i(C—D) sinmg,

8 sin(N —m —1)g —A sin(1V —m+1) g

+2i(Ce 'r De'r) sinmg-
=2(A+8) (1—cosg) (1—Q) sin(N —m) g,

8 sin(1V —m —1)y+A sin(N —m+1) g

—2(Ce 'r+De'r) cosmg

=2/3 —A) (1—cosg) (1—Q) sin(1V —m) g.

The solutions of this set are of two types

(a) The even solutions, N(n) =I(—I), with

A=8, C=D, A sin(1V —m)g =2c cosmg,

so that

sin(1V —m) g
N(e) =A cosnp, —m ~& e&m

cosmic

and the characteristic equation for p is

sinNg =2(Q—1) tansr g sin(1V —m) g sinmg. (5.22)

The characteristic equations which correspond to a
single defect at m or —m is

sinNg cosNg = (Q—1) tantsg sin(N —m) y
)& sin(N+m) gr, (5.23)

which when m=0 becomes

sinNg[cotNg —(Q—1) «n-,'g J=O

which is equivalent to (A-7) and (A-8) in the Appendix.
If we combine (5.22) and (5.21) we hand that the

values of p which lead to normal mode frequencies are
zeros of the function

f(qr) = {cosNg+2e tan-', g cosmg sin(N —m)g}
&&{sinNg+2e tanz g sin(N —m) g sinmg}

=A (g )+2eB(g )+e'C(g ), (5.24a)

where
(5.24b)

A(g)=cosNy sinNg =sr sin21Vg, (5.24c)

B(g )= -', tan-,'g {cos2mg cos2Ng }—, (5.24d)

C(g) =2 tan'z g sin'(N —m) g sin2my. (5.24e)
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The corresponding values of y associated with an e=O in the integrand of (5.29):
isolated defect at &m are zeros of

fo(e) =A(v)+ep(~),
while those of perfect lattice are zeros of

(5.25)

fi(~) =A(~). (5.26)

A generalization of (4.12) leads immediately to a
formula for the interaction energy of a pair of defects
separated by a distance 2m lattice spacings

d
~E= sin-', s—(log f(q) —21ogf0+log fi}ds4-i", 'ds

Aug p
t

p' fn'j—'+e(np' 2pn'—) )sin-,'s ds, (5.27a)
4vri ~ g l (1+en)(1+2en+Pc') I

~MLE
sinh-', yd{tanh'-,'y exp —4my}

2x "p

C &GAL

e ' " tanh'-,'y cosh-,'ydy
4x "0

(5.30)

6 &COL

—P(-', +2m)+P(-,'+2m),
4m (4m)' ——,

'

where as usual

4m
sech-', y exp( —4my)dy

147r (4m)' —-' "0

(5.31)

where

sin 2'
t
cos2ms —cos2Ns

n=B/A= tan-', s
i

(5.27b)

1 ~ z
P(s) =—logI'(s) = —y —-+Q

ds s =in(s+e)

tan' —,'s sin'(N —m)s sin2ms
p=C/A=4 (5.27c)

sin2Ez

The contour C is again around the counter clockwise
rectangle given in Fig. 8.

It can be shown that in the limit as 2V~~, the
integrand is an even function of y along the line z=iy
and an odd function along s=~+Zy. Hence the integral
from m+iy—to ~+iy vanishes. It can also be shown
that as N-+", the values of n and p along s=x+ia are

n i tan-', (x+ia)+O(exp —Na), (5.28a)

with p=0.57721. The asymptotic formula for large z

P(s) =logs —(2s) ' —P B' s '"/2s+O(s 2™2)
n=1

and Norlands factorial expansion

s 1s(s—1)
~(+ )-~()=—— +

a 2u(a+1)

are useful for finding the interaction of two widely
separated isotopic defects. A finite series for AE is

~ AMLf ——+ 1—-'+
- l(8m)2-1 4

p —tan'-,'(@+i')+O(exp —Na). (5.28b) dE=—
7

Sm —1

(5.32)

while the first few terms of the asymptotic series for
large separations are

n= —tanh2y, p=(tanh2siy)(1 —exp[ —4myj),

Hence the integrand of (5.27a) along s=x+iu is of
O(exp —Na) and can be neglected. One also finds the
integral along z=x—iu to vanish in the same way.
Since, as E—&~

we 6nally obtain, after letting a—+~, (Q—1)'h(opt 1 2
+ (5.33)

e%vz, p" $sinh-,'y tanh-', y]e
—'""

2~ "0 (1—e tanhisy)

4m tanhiy(1 —e tanh —,'y) —sech' —',y

1—2e tanh-', y+e' tanh' —,'yf1 —exp( —4my) )I
(5.29)

The authors have not been able to evaluate this
integral as a function of e and nz. However it is easily
calculated as e—+0 and as e—+1.

The energy of interaction of two weak isotopic defects
separated by 2' lattice spacings is found by setting

It is remarkable that the asymptotic formula is valid
over the entire range of integral values of ns. When
m=1 it is found that the exact equation (5.32) yields
AE= —1.903)&10 'AcoLE /''x' while the first two terms
of theasymptotic formula yield E=—1.89&&10 %uz, e'/~
with even better agreement when m &~ 2.

The result (5.32) has also been obtained from second-
order perturbation theory.

In the limit of a strong defect (Q=O) we use the
fact that c=1 so that

1—e tanh-,'y= sech-,'y exp —-,'y,
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which yields

p'A&pI. t
"sinh' ', y—e &' ""{4msinh-', y —e'"}dy

AE=—

The normal frequencies of the perfect three-dimen-
sional simple cubic lattice are dehned by

2x' ~
p 1—sinh'py exp{—(4m —1)y} M~&=2 p v„{1—cos(2&&„/N„)};

(5.34)
r„=1,2, , N„, (6.1)

With the possible exception of the choice m=1, the
term sinh'2y exp[ —(4m —1)yj in the denominator of
the integrand can be neglected when compared with 1.
Hence the integration becomes elementary and yields

with the maximum frequency

M~"=4(v~+v+vp).
The zero-point energy is found to be

2p'furl(4m —1)
(5.35) g p~„

m. (Sm —5) (Sm —3) (Sm —1) (8m+1)

(6.2)

Corrections for small ns are easily obtained by expanding
the denominator in powers of sinh'-', y exp[ —(4m —1)y).

The first few terms in an asymptotic series for hE
which is valid for all e when nz is large is obtained by
expanding all terms in (5.29) as a power series in y.
Then

6 hML 3
1+ p+O(m ') (5.36)

(Sm)' 4m

which is consistent with (5.35) and (5.33). It is to be
noted that the 6rst-order term has the same form for
all values of p=1—Q.

Note added ie proof. In the case—of a pair of holes

Q is to be replaced by 2P '. If one mass defect corre-
sponds to p& ——(1—

Q&) and the other to p&
——(1—Q2) the

first-order term in (5.36) has p' replaced by pqpp. Hence
the interaction between a heavy and a light defect is
repulsive.

0. DEFECTS IN THREE-DIMENSIONAL LATTICES

We now sketch the generalization of the discussion
of previous sections to three-dimensional lattices.

II ' „{Ev. (1— ~.)}'
(2m) & l ~=i 2s I ~ 4 &

p

X~&pAYApp (63)

Ig(i~,i p,i p) =
vx+vp+vp if jr= jp= jp=0

(6.5a)
0 otherwise

is readily verified to be

If one component of the displacement of the mass at
lattice point j&, j&, jp is represented by u( j&,jp, jp) then
the operator I. which is a generalization of that given
by (2.5) is

tu(j~ jp, jp)
=M~ u(ji,jp, jp)+vi[u( jr+1, jp, j3)

—2u(jp, jp, jp)+u(jp —1, jp, jp)7
+vp[u(j ~ j,+1, jp) —2u(j&, j2,jp)
+u(j&, j&—1, jp)j+vp[u(j&, j&, jp+1)

—2u(j&, j&,jp)+u(j&, j&, jp—1)j. (6.4)

The Green's function satisfying

g(j~, jp, jp) =—vi+v2+v p cosgypy cos$2+2 cosJap3

2~' 4 4 ~ e(vy+v2+vp) —vy cos(py —v2 cospp2 —vp costs
p

(6.5b)

where
+=1—-', M(o'(vg+vp+vp) '

=1—2f'.
(6.5c)

(6.5d) (6.7a)

with a discrete frequency which is the solution of the
transcendental equation

(up'(M —M')g(0, 0,0) =v&+vp+vp,
or

An extensive program for the computation of this
Green's function is being carried out. An interesting
asymptotic formula is

vi+v2+vpg~— exp{ 2f(v g+v p+—v p) &R} (6.6)
(vxv2vp)& 4mR

valid for large R= (jPv&+jm'v&+ jp'vp)&. This Green's
function has also been discussed by Koster and plater. '

As for the linear lattice, the mode corresponding to a
single isotope of mass M =QM is a symmetric vibration

4fp'(1 —Q)g(0, 0,0) =1. (6.7b)

The modes corresponding to a single hole in the
lattice are the three antisymmetric pulsating ones with
discrete frequency levels given by

(v~—v~')[g(2, 0,0)—g(o 0,0)7=v~+vp+vp, (68a)

(v2 v, ')[g (0)2~0) g (0~0)0)j=v,+v,+vp) (6 8b)

(vp vp')[g(0, 0—,2) g(0,0,0)f=—v~+v~+vp (.c).
The interstitial, placed at the center of a cell of the

lattice, is topologically different from a lattice point
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as it has eight nearest neighbors. If the force constant
for the interactions with these nearest neighbors is
taken as p', then there are four antisymmetric modes
with discrete frequencies satisfying

7'{g(00 0)—g(1 1 1)+g(1,0,0)—g(o, 1,1)
+g(o, 1,0)—g(1,0,1)+g(1,1,o)—g(0,0,1)}

=vi+v2+Va, (6 9a)

y'{g(0,0,0)—g (1,1,1)+g(1,0,0)—g(0, 1,1)
—

g (0,1,0)+g (1,0,1)—g (1,1,0)+g (0,0,1)}
=vi+v~+va, (6 9b)

7'{g(0,0,0)—g (1,1,1)—g (1,0,0)+g (0,1,1)
+g (0,1,0)—g (1,0,1)—g (1,1,0)+g (0,0,1)}

=vi+v2+v3, (6 9c)

y'{g(0,0,0)—g (1,1,1)—g (1,0,0)+g (0,1,1)
—g(0, 1,0)+g(1,0,1)+g(1,1,0)—g(0, 1,1)}' '=.,+.,'+~, . (6.9d)

If two isotopes occupy lattice sites (0,0,0) and

(ui, u2, n3) then, as for the linear lattice, fitting and
antifitting modes are possible with normal frequencies
satisfying

4f (1 Q){—(g,0,0)0~g(n nip, u)3} =1. (6.10a)

The so)utions of this equation give a splitting about the
solution for the case of one isotope. The contribution of
localized modes to the energy of interaction of the
isotopes is estimated from the second term in the
Lagrange expansion of f, using (6.10a) in the form

1 g(ni, u, ,e,)= 1—Q& (1—Q) . (6.10b)
4f'g(0, 0,0) g(0,0,0)

and where A is a positive constant and use has been
made of the asymptotic formula (6.6a). The energy
of interaction due to localized modes is hence given by

U(R)~ BR—' exp —CR, (6.13)

where 8 and C are positive constants (i.e., functions of
Q only and independent of ni, u2, u&). The force has
the sign of an attraction.

In the case of an isotropic discrete quantum field
so that R'=y(ei'+u2'+NP) and the

interaction U(r) due to localized modes between our
pair of defects is of the Yukawa type at large distances.

Since a crystal lattice corresponds to y~))y~ ——y3 the
force law (6.13) is not spherically symmetrical and
depends on the orientation with respect to crystal axes
of the line which connects the two defects.

A more detailed discussion of the three-dimensional
lattice will be given in a later publication.

APPENDIX. THE ISOLATED ISOTOPIC IMPURITY
IN A LINEAR CHAIN

We shall give a detailed analysis of the "isotopic"
impurity in this section. It will serve as an example of
how localized modes make their appearance in an exact
treatment of the modes in the band. A similar discussion
for the electron theory of solids has been given by
Koster and Slater, ' and by Saxon and Hutner. '

The equations for the time-independent factor of the
displacements are

3lcg u(u)+y[u(u 1)—2u(e)+—u(m+1)(=0,
u ~0, (A.1a)

~- (0)+~r (-1)-2 (0)+ (1))=0, (A»)
u(N) =n( —N) =0, (A.1c)

and

f '=4f'g(0, 0,0),

J({)=i.,

(6.11a)

(6.11b)
when one deals with a system of 2Ã particles of mass
M and one of mass M' located in the middle of the
chain while the end particles are held 6xed. One Ands

q (P) =g(ei, n2, u3)/g(0, 0,0), (6.11c)

which for large n~, n~, n3 becomes

—:(1-Q)'f'(f)—~'0)
- r (i o&=-(6.12b)

then the second term in the Lagrange expansion of f(g)
about f'=1—Q (i.e., f= fo ~/~r) is

l(1—Q)' {f'(t-)~—'(i-) } (6.12a)df. —l'=i—Q~

while

A sin(1V —e) y if u &~0
u(e) =

8 sin(N+n) y if N(0

M&u'= 2y (1—cosy ).

(A.2)

(A.3)

8 sin(lV —1)q
—A sin(N+1) y

= 2A (1—Q) (1—cos y) sinlV p, (A.4)

One relates the constants A and 8 by substituting
(A.2) into the connecting equations of (A.1) which
correspond to n=0 and n= —1. One finally obtains
the following relations between A, 8, and p:

with

= 2(1—Q)' {f'(t)}'—~'U')

A ——exp{—4f(yi+y, +y3) ~R}
df R'

R'= uP yi+ u2'y2+u3'y3,

)
f=fo

-f =fo

(6.12c)

(6.12cl)

(6.12e)
or

(a) A =8

(b) sinN y= 0.

(A 8) sinlVq =0. —

Two possible situations arise

(A.S)

(A.6)

(A.7)



EFFECT OF DEFFECTS ON LATTI CE VI 8 RATIONS

cotNy= (Q—1) tan-,'rp, (A.S)

for the determination of the io's. The solutions of (A.S)
can be determined by plotting (see Fig. 11) both the
left and right hand sides of (A.S) on the same graph
and locating their intersection points.

identicall s
When Q=1 the right-hand side of (A.S)

'
ho . vanis es

ica y so that the possible values of p are the inter-
sections of the various branches of cotE w' h h
axis, p, = ( j—1)m./2)V. When Q/1 one intersection
occurs in each interval (zrj/1V, zr(j+1)/1V} except for
the interval L(1V—1)zr/1V, ere when Q&1. No inter-
section occurs in this interval because th fe unction

(Q—) tan-, to always lies below cotNq in th t
interval.

q in e entire

Th
a dis lacem

e introduction of a heavy impurit ~~&1i y, &~, causes
a isp acement of the various intersections to th 1 f

yie s an associated decrease in normal mode fre-
quencies (the largest possible displacement being
zr/2N); that of a light impurity Q&1 causes dis ace-

o e rig t with associated increases in normal
mode frequencies (with the exception of the "lost
mode" the displacement is limited b zr/2N). Th

o e in e light impurity case corresponds to th
ized mode which emerges from the band. It is

s o e

q = zr z an consideringresurrected by assuming that = + '8 d 'cl

t e characteristic equation for 6, cothN8= (Q
—1

Xcoth-,'8. Then in the limit as N—+Do

exp' =Q/(Q —2),
while

(A.10)(co/cur, )'= —', (1—coshs) = 1/Q (2—Q),

which is exactly (3.20).
e change in zero-point energy of the lattice with

one isotope has been worked out in detail in Sec. 4;
we shall now check this result f th lor e imiting case
Q~O. In this limit, Eq. (A.S) becomes

Condition (b) leads to the odd solutions with A = 8—
while (a) leads to the even solutions. Since the 'ble e possi e

o p in the odd solutions are exactly the same
as those in the perfect lattice, (2zrj/2N}, no shift
occurs in the corresponding frequencies.

The even solutions of (A.1) have the characteristic
equation t'Q-&) t'ery -'

—bury —'y

Fto. 11.The solution of Eq. (A.8) can be obtained ra hicall
from the curves sketched above. The ri ht-hand
h t h dfo i 0&Q&1 dfo Q=

— . (2j—1) ~ . (2j-1)
Mr, sin sin

2 (21V—1) ~'=~ 4N
(A.13)

1 1
=—L)I, ' —cosec ————cosec

2 2 2(2N —1) 2 2 4N
(A.14)

=her
r

————
r (A.15)

2 E 2
for large N.

Since the level out of the band contributes

-'&»LQ(2 —Q)l '*

as given b E . ~4.7a hy q, „t e change in zero-point energy
is thus

1 -11
2 2
-~~ LQ(2 —Q)r' ——-+o(Q'*) (A 16)

which can be solved exactly:

io;=L(2j—1)zr/(21' —1)j; j=1, 2, , N —1. (A.1 )

As can be seen in Fig. 11, the first solution

iog= zr/(21V —1)

ts near zr/21V whereas p~ z
——(2N —3)zr/(2N —1) is near

e c ange in zero-point energy con-
tributed by the shifts of the levels in the band is
therefore,

l

cotE p = —tan-,' q, 's agrees with the expansion given in Eq. (4.15).A.11& This a


