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A formalism is derived for approximately solving problems in the transport of radiation or particles by
isotropic scattering with absorption. Although the present theory is very similar to diffusion theory, com-
parison with rigorous solutions where available shows that the results are more accurate than those of
diffusion theory especially in highly absorbing media and in regions close to sources. Moreover certain
ambiguities and difhculties in extending diffusion theory are eliminated. The derivation proceeds directly
from rigorous transport equations and is based on a series expansion for integrals of the Helmholtz type.

1. INTRODUCTION

1.1 Need for a Simple Theory

'HE transport or "diffusion" of various radiations
and particles through scattering media is gov-

erned by the classical Boltzmann transport equation
originally derived in the kinetic theory of gases. Un-

fortunately, rigorous solution of this equation involves
mathematical difficulties of a high order. Only recently"
has the simplest problem been rigorously solved,
namely the distribution due to an isotropic point source
in an infinite isotropically scattering medium. Recent
years have also seen numerical solutions' 4 for a class of
problems involving uniformly illuminated plane slabs.

In the vast majority of problems, however, recourse
must generally be made to diffusion theory. ' ' The
latter is simple enough to allow solution of a much wider
range of problems but suffers several unfortunate draw-
backs. Since the concept of diffusion in response to a
concentration-gradient is itself an approximation, the
coefficient of diffusivity is poorly defined and several
values have been proposed. ' "Secondly, simple diffu-
sion theory cannot be realistic in regions where the
motion is highly organized in direction as is the case
near a source or in a highly absorbing medium. The
results therefore cannot be trusted in such regions where
the "direct beam" may be dominant. Finally, it is
diS.cult to establish realistic boundary conditions where
the scattering medium gives way to vacuum or a pure
absorber. This is espically true if the boundary is di-

rectly illuminated by an external source.
In spite of these disadvantages, diffusion theory has
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been widely and usefully applied to problems where
other theoretical methods are intractable.

1.2 Scope of Present Study

It is the aim of this paper to develop a formalism for
isotropic scattering as simple and as widely useful as
diffusion theory, but possessing the following ad-
vantages:

(a) unequivocal values for constants;
(b) definite boundary conditions even under external

illumination;
(c) more accurate results particularly in regions near

a source and in media which are highly absorbing.

Basic relations are set up in paragraph 2, the approxi-
mate formalism is developed in paragraph 3 and a
comparison with other theories is given in paragraph 4.

2. EXACT RELATIONS

2.1 Limitations and Notation

We consider throughout the following only media
which can absorb and scatter isotropically. Although
the formalism can, like the diffusion theory, be applied
to media which scatter anisotropically, the reduction
to an equivalent isotropic scattering is outside the scope
of the present discussion. For definiteness in terminol-
ogy, we shall speak of light scattering, although of
course the theory covers neutrons and other radiations
as well.

Only steady-state distributions will be considered;
time dependent problems are outside the scope of this
study but can be reduced (reference 2, p. 47) to steady
state problems.

Vacuum regions will be replaced by absorbing media
in the formal development because absorbers are easier
to treat in a unified manner and the two have the same
effect on photon distribution within other media;
neither returns photons. '

Kith these conventions it will then be assumed that

7 Obvious modifications in treatment are required if photons
may stream through vacuum from one scattering region to an-
other. These modifications will not be explicitly considered here.
Although the difhculties so introduced can be great, the present
theory is no more vulnerable in this respect than others.
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2.2 Basic Equations

As shown in standard references' ' the basic equation
for transport by isotropic scattering may be written

r e ~' "~/P
()= ()+ ' ' (') ('), d '. (1)

4~I r—r'I ~

This relation is easily derived by considering the photon
density at r as made up of (a) direct beam contribution
plus (b) photons scattered at r' and traveling without
further scattering to position r. The integral in (1) is to
be taken over all space but co(r') is understood to vanish
by the convention adopted above in regions where no
scattering can occur.

It should be noted that Eq. (1) together with given
pz(r) and ~(r) completely determine the solution of the
entire problem. Once the density is known I Eq. (1) has
a unique solution' for given pz(r), cu(r)), the current and
other quantities are completely determined. There is no
need to use the current in setting boundary conditions
on (1).

Nevertheless, since the current is often of interest in
the results, we mention here some relations which will
be used below.

v.3=V(r) —I 1—~(r))ep(r)/X,

V. 3 =V(r) —vp (r)/X,

Vxj =0= V'kg.

(3)

The first two relations are essentially conservation
equations. The first states that photons are gained from
the sources and lost only by absorbing collisions. Equa-

the (total) mean free path X is constant throughout all
space. To simplify expressions we will often employ
length units chosen so that X= i.

The "albedo" of scattering, ra(r), however, will be
allowed to vary arbitrarily with position. (~= scattering
cross section/total cross section=X/X„, &

——1—probabil-
ity of absorption per encounter. ) In particular co=0 in
vacuum regions.

Other notations which will be used below are as
follows:

e= velocity of photons,
p=density=number of photons/cm',
j=current=met vector Aux of photons/cm' sec,
q= number of photons emitted by sources/cm' sec,

p&= density of unscattered photons,
j~——met Aux of unscattered photons.

The latter two quantities refer to "direct beam" con-
tributions. Note that where several such beams cross at
a point, jg represents their vector sum whereas pq

represents the sum of their magnitudes, similarly q(r) is
a scalar sum of photons emitted per unit volume per
unit time. Note that the sources need not be isotropic.

tion (3) states that eescattered photons are supplied by
the sources and lost be either absorbing or scattering
encounters.

Equation (4) may be readily proved by setting up
integral expressions for j and j~ in terms of p, p~ and q
by the method suggested under (1). Taking the curl of
these expressions then establishes (4). Note that (4)
implies that j and j~ are completely determined by the
quantities on the right-hand sides of (2) and (3).

p= pg+Q(X'V2) "(~p) /(2n+1),
0

(5)

where V'" represents an e-fold application of the Lapla-
cian operator.

If terms with I) 1 are omitted in (5), the result is
the standard diffusion equation but with a source term
equal to pzv/X. However, since the coefficients in (5) fall
oG only as e ', neglect of higher order terms is probably
not very accurate.

To obtain a more rapidly converging series, operate
on both sides of (5) with the operator (X'V2 —1). Re-
arranging terms, the result is

X'V'I (3—2a))p/3] —(1—(u)p

(l%2V2—1)pg+ 2/ ($2V2) + ((gp)/ (4~2—1) (6)

In Eq. (6), the coefficients of high-order terms now fall
off very rapidly and we shall make the approximation of
dropping the final sum. In this way it is natural to
expect that the approximate results so obtained will be
more accurate than diRusion theory. Later comparisons
will bear out this expectation.

The formalism is considerably simplided if we intro-
duce an auxiliary function P(r) deffned by the follow-
ing equation:

p(r) =3I P(r)+pq(r))/L3 —2(v(r)). (7)

Making this substitution in (6) and dropping the inffnite
sum, one obtains

X'V'P (r) —E'P (r) = —(1—E')pg (r),
where

&(r) =
I 3(1—~)/(3 —2~))'.

Equation (8) with the definitions (7) and (9) forms
the basic equation of the present formalism. The func-
tions &o(r), the albedo for a single encounter, and pq(r),
the density due to direct beams, are presumed to be
given data for each specihc problem.

3. SIMPLIFIED THEORY

3.1 Derivation

Since X has been forced to be constant everywhere we
may apply to Eq. (1) the expansion (A.1) derived in the
Appendix. Upon evaluating the appropriate integrals
defined by (A.2), the result is
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V'(f+P) =0. (12)

Both P and f (aside from an undetermined constant)
must vanish at infinity since p and j must vanish there.
If we envisage any geometrical discontinuities in scatter-
ing media (i.e., discontinuities in K and a&) as replaced
by very sharp but nevertheless continuous transitions,
then on physical grounds all functions must be con-
tinuous with their first derivatives and it follows from
(12) that f may be taken equal to (—P). Equation (10)
then becomes

j= jg—XvV'P. (13)

This relation suKces to determine the net current when

(8) has been solved for P.
Note that the derivation has involved no further

approximations beyond the use of Eq. (8). Hence j as
determined from (13) will satisfy rigorously the con-
servation and curl relations (2), (3), and (4) but the
density appearing in these will be the approximate
density as determined from (7) and (8). In short, Eq.
(13) will yield precisely the current implied by the ap-
proximate p.

3.2 Boundary Conditions

In solving actual problems, it is convenient to con-
sider changes in physical properties between various
media as discontinuous. It then becomes necessary to
specify the behavior of the fundamental auxiliary func-
tion P at such discontinuities.

Since photons do not accumulate at boundaries, it
follows from (13) that the normal component of VP is
continuous. This result may also be derived from (8) by
integrating over a "pill box" volume which straddles the
interface and letting the height of the box approach zero.

To derive the second boundary condition, it is con-
venient to consider the limiting case of a continuous
transition between media as the distance through the
transition is made to approach zero. Assume first that
P becomes discontinuous in the limit. Then as the dis-
tance of transition is made small, the normal component
of the current j will, by (13) attain an arbitrarily large
value within the transition while remaining finite on
either side of the boundary. This situation can only
represent a "double layer" of sources and sinks dis-
tributed over the boundary, and must be ruled out of

Before discussing boundary conditions on P(r), it is
convenient to derive an expression for the net photon
current. From Eq. (4) it follows that both j and jz can
be repres nted as gradients of scalar functions. Con-
sequently we may also set

j—j~= XvVf.
Subtracting (3) from (2) and making the substitution
(10), one obtains

X'Pf= pe —(1—a&) p.

It then follows from (7), (8), and (9) that

any physical problem not involving such double layers.
Hence the remaining boundary condition is that P
itself is continuous.

It may be noted that p as given by (7) will then be
discontinuous at boundaries. This is not in general true
of a rigorous solution, ' but the latter often has a sudden
drop very near an absorbing boundary, and the dis-
continuity given by the present formalism is presumably
an approximation to this sudden drop.

It is of interest to note that the simple formalism
presented here also automatically gives an extrapolated
endpoint. ' Specifically, if we assume a plane boundary
located in a region where p~ =0 and separating a vacuum
or an absorbing medium from a medium with finite co,

then the solution of (8) on the absorbing side is of the
form exp( —

~

Z
~ /X) where Z is distance measured nor-

mally from the boundary. By continuity of P and its
normal derivative, the value and derivative of p will
then have the ratio X just inside the interface, and a
linear extrapolation of p into the absorbing medium will
then vanish at a distance ) from the boundary. Thus the
formalism gives an extrapolated end point of X rather
than the rigorous value, ' ' 0.7104K. However, the pres-
ent formalism will automatically alter this value to take
account of various specific local conditions. There is no
need, as in diGusion theory, to use separate arguments
to establish its appropriateness in any given situation.

K= L (1—co)/(1 —2co/3) fl. (14)

This completes the setup of the problem.
Solution of the problem is then eGected by solving the

following equation for the auxiliary function P(r)
X'V'P K'P =—(1—K')pe—

3.3 Summary

Here we collect the above results in a form which
would be used to solve a specific problem. For simplicity
it is assumed that there are no reflecting boundaries and
that the geometry is such that photons cannot stream
across a vacuum from one scattering medium to enter
another. While the complications thus excluded can be
very great, they are not peculiar to the present
formalism.

The function, &u(r) = the probability that an encounter
at r results in (isotropic) scattering rather than absorp-
tion, is specified by the properties of the various scatter-
ing media. It is assumed that the total mean path ) is
constant in all media, .

The function, pd(r) = density of unscattered photons,
is readily computed from the given distribution of
sources. Note that the sources need not themselves be
isotropic and that they can be located either inside
scattering media or in vacuum. Values of pq(r) will be
needed only in regions where co&0.

After pd(r) has been computed, vacuum regions are
replaced by complete absorbers (a&=0). The function
K(r) is then computed from
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TABLE 1. Comparison of E (&o) for various theories.

0
0.1
0.2
0.3
04
0.5
0.6
0.7
0.8
0.9
0.94
0.98
0.99
1

By (i4)

1
0.982
0.960
0.935
0.904
0.867
0.817
0.750
0.655
0.500
0.402
0.240
0.172
0

X(e0)
Rigorousa

1
1.0000
0.9999
0.997
0.986
0.957
0.907
0.829
0.710
0,525
0.414
0.243
0.1725
0

DifFusion theory

1.73
1.64
1.55
1.45
1.34
1.22
1.09
0.949
0.775
0.548
0.425
0.245
0.173
0

a See reference 2.

subject to the boundary conditions

P~O as r—+~

P and n VP continuous at interfaces. (16)

The density p of photons and the net Aux j are then
given by

j= jg—X'vVP. (18)

TABLE II. Values of 4~r'ps/S from various theories.
Point source in an infinite medium, ) = 1.

0.9

0.3

0
0.5
1
1.5
2
3

5
6
7

0
0.5
1
1.5
2
3

5
6
7

By (19)

2.5
1.96
1.84
1.77
1.68
1.43
1.13
0.85
0.62
0.44

1.25
0.85
0.58
0.40
0.28
0.13
0.060
0.028
0.012
0.005

Rigorous&

1
1.52
1.80
1.90
1.87
1.60
1.24
0.92
0.65
0.45

1
0.77
0.54
0.37
0.24
0.10
0.043
0.017
0.007
0.003

Simple
diffusion
theory

0
1.14
1.73
1.97
2.01
1.59
1.33
0.97
0.66
0.46

0
0.73
0.70
0.51
0.33
0.12
0.036
0.010
0,003
0.0008

Diffusion
theory with
rigorous X

0
1.15
1.77
2.05
2.10
1.86
1.47
1.08
0.77
0.53

0
0.91
1.11
1.01
0.82
0.45
0.22
0.10
0.045
0.019

a See reference 2.

In (18) jq is the riet flux of unscattered photons, which is
easily computed from the given source distribution
(with, of course, vacuum not replaced by absorbers).

Equations (17) and (18) give p and j assuming
vacuum to act as a perfect absorber. Under the limita-
tions stated above, they are thus correct (subject to
the approximation of the whole theory) within scatter-
ing media, but of course do not represent the actual

situation in vacuum regions. If needed, the latter must
be separately computed from the former.

The value (18) for j will satisfy rigorously the con-
servation relations implied by the approximate value
of p(r).

It will be seen that the effort of solving a problem is
about the same as that required by diffusion theory.
Nevertheless, the results are shown below to be more
accurate in cases where comparison with rigorous solu-
tion is possible.

p =PS/4s e (1—2'/3) j{e "/r +L (1—E )/2Er)

XLe x'2 tanh 'E+ex"Er((1+E)r)
—e x"Er((1—E)r))}, (19)

where

Er(X)= —Ei(—X)= )~ (e
—"/u)du.

X
(20)

It may be noted that when co vanishes (19) becomes
the rigorous solution for a perfectly absorbing medium.
It may also be shown that for all cu the total number of
photons in the distribution (19) has the rigorous' value
S/(1 —o))e.

In comparing (19) with the corresponding result for
diffusion theory, we run across one of the disquieting
features of the latter. Simple diffusion theory gives the
value t 3(1—co))' for E. This, of course, is greatly in
error for small ~ as may be seen in Table I where it also
is shown that the value (14) for E is much closer to
the rigorous value. In view of this discrepancy, vari-
ous corrected expressions are often used in diffusion
theory. Whatever the value of E employed, diffusion
theory with a 6-function source term gives the result
p = (3$/4s. v) (e x"/r).

Now this expression gives the correct total number of
photons only if the less accurate value of E is used.
Moreover, a similar feature arises in comparing detailed
values of p. In Table II are shown values of p given by
various theories for co=0.9 and co=0.3. For values of co

near unity, there seems to be little choice between the
various approximate theories (in this example at least).
For co= 0.3, we note again that the "corrected" diffusion

theory is rather poor whereas the simple diffusion theory
is surprisingly good in spite of the fact that E is 45 /o too

i. COMPARISON WITH OTHER THEORIES

4.1 Point Source in Infinite Medium

The present formalism is easily applied to the prob-
lem of an isotropic point source in an ininite homo-
geneous (isotropically) scattering and absorbing medium.
In this case we have immediately pz

——S exp( —r)/4s-r'v
where S is the source strength in photons/sec and the
unit of length has been chosen to make A=i. The
parameter E is a constant and Eq. (15) is readily solved
by the method of Green's function. The Anal result is
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TABLE III. Transmission of nonabsorbing plane slab. (X t, co=i)

cos 0

0.5

0.2

0.05
0.1
0.25
0.5
1

0.05
0.1
0.25
0.5
1

0.05
0.1
0.25
0.5
1

This
paper

0.975
0.953
0.889
0.802
0.667

0.953
0.910
0.802
0.674
0.522

0.890
0.803
0.637
0.507
0.402

Transmission

Rigorous»

0.975
0.953
0.890
0.797
0.660

0.954
0,910
0.800
0.666
0.502

0.890
0.801
0.627
0.480
0.354

DifFusion
theory

0.98
0.95
0.885
0.786
0.632

0.950
0.905
0.786
0.632
0.432

0.885
0.786
0.570
0.368
0.200

cos 8

0.05

0.05
0.1
0.25
0.5
1

0.05
0.1
0.25
0.5
1

This
paper

0.683
0.561
0.469
0.420
0.350

0.488
0.477
0.445
0.400
0.333

Transmission

Rigorous&

0.680
0.549
0.430
0.356
0.275

0.456
0.429
0.372
0.313
0.242

DifFusion
theory

0.632
0.432
0.200
0.100
0.050

a See reference 4.

large. At very great distances r, however, the reverse
must be true since the exponential function will eventu-
ally dominate the behavior. Thus, in all, it appears that
the present formalism, with no additional corrections,
produces a single set of formulas which are much better
approximations over large ranges of the parameters.

4.2 Plane Slab Problems

Consider a homogeneous plane slab of thickness t,
bounded on both sides by vacuum. Let the slab be
uniformly illuminated by parallel radiation making an
angle 0 with the normal. This problem also has been
rigorously solved' 4 for isotropic scattering.

In Table III, we show the transmission (=power
transmitted/power incident) of a nonabsorbing slab as
obtained from the various theories. It will be seen that
the present formalism in all cases gives results which are
better than those of diffusion theory and that in particu-

lar it predicts about the right transmission for grazing
incidence (|I=a/2) while diffusion theory gives a limit-

ing value of zero. In Table III moreover we also have
another example of the uncertainty entailed in any
simple attempt to correct diffusion theory. The values
shown are for the boundary condition p=0; in this
example, use of the extrapolated endpoint (equivalent
to using t+1 O'A as the .thickness) would make the diffu-
sion approximation worse.

In Table IV are shown values of the albedo (=power
reflected/power incident) for infinite thickness and vari-
ous or, 8. Here again it is seen that the present formalism
is a better approximation over the full range of the
parameters. Again, the results shown for diffusion
theory are those of the simple version; use of diffusion
formulas with the rigorous value of E makes the albedo
approximation worse although the detailed variation of

p is presumably better.

TABLE IV. Albedo of half-space.

0.1

0.3

0.5

cos 8

0
0.5
1

0
0.5
1

0
0.5

0
0.5
1

This
paper

0.018
0.012
0.009

0.065
0.044
0.034

0.133
0.093
0.071

Albedo

Rigorousa

0.052
0.024
0.016

0.163
0.082
0.058

0.293
0.161
0.115

Diffusion
theory

1
0.536
0.366

1
0.550
0.378

1
0.580
0.408

1
0.620
0.448

0.7

0.9

0.95

cos 8

0
0.5
1

0
0.5
1

0
0.5
1

0
0.5
1

This
paper

0.250
0.182
0.143

0.500
0.400
0.333

0.719
0.631
0.561

Albedo

Rigorous

0.452
0.278
0.208

0.694
0.508
0.415

0.776
0.626
0.536

Diffusion
theory

1
0.678
0.513

0.785
0.645

1
0.837
0.720

& See reference 3.
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4.3 Conclusions

In summary, an approximate formalism has been
derived directly from the rigorous isotropic transport
equations. Although the labor involved in the solution
of specific problems is about the same as that required
in diffusion theory, the results appear to be a better
approximation particularly for absorbing media. The
results are, of course, approximate but if further im-

provement is required, it is clear from the derivation it-
self what further steps should be taken to increase the
accuracy. This is in contrast to diffusion theory where,
as noted above, apparently reasonable attempts to im-

prove accuracy may in fact have the opposite effect. It
appears that the present formalism should be widely
applicable to problems too complex to be handled by
rigorous methods, and we expect to make a number of
such applications in the near future.

APPENDIX

The purpose of this appendix is to indicate the deriva-
tion of the following expansion.

three-dimensional Taylor series about r.

Ee" vF(r)3K(R)drtt/4x,

where the exponential operator is defined by its power
series. The mth term in this series is itself a sum of 3
terms which arise from the scalar product in the ex-
ponent. Collecting like powers of these ultimate terms,
the mth term of the main series can be written

1 /ttt ) (srt i 'l—
E(R)R +'dR.

~l 40 ('+t+s=ml Es & E j )
( ft &

' ( ct &
' t' ct I I'Y&Z~

dQtt. (A.3)
Ecig& &By) &Bs) 4xR

Now by spherical symmetry, the surface integrals in
this expression will vanish unlessi, j, and k are all even.
Consequently, the entire expression (A.3) vanishes un-
less ns is even. The surface integrals in the remaining
cases can be evaluated from Dirichlet's integral, a
special case of which is (for i, j, k even)

where

=p tt V'"F (r)/(2B+1)! (A.i)
0

e„= I Ns"+'K(m)dg. (A.2)

The notation V'" denotes an e-fold repeated application
of the Laplacian operator. No detailed examination of
restrictions will be made, but obviously necessary con-
ditions are the convergence of (A.2) for all st and the
validity of the Taylor series expansions for Ii.

To evaluate the integral in (A.1), change the integra-
tion variable to R=r' —r and expand F(R+r) in a

r(a
fi+1q (j+1y (k+1q (ttt+5p

DiGerentiating this with respect to a and then setting
a=1, the integral required in (A.3) is obtained. Sub-
stituting the result in (A.3), combining numerical fac-
tors, and recalling thati, j, and k are all even, it is found
that (A.3) reduces to the term st= m/2 in (A.1) and the
result follows.

lt is perhaps of interest to note that the case E(x)
=—e /x yields a series (A.1) formally equivalent to
the operator (Vs—1) ' thus indicating the well-known
fact that this particular E is the Green's function of the
operator (V —1).

'See, for example, R. C. Tolman, Principles of $tatzsticat
3Eechastics (Oxford University Press, Oxford, 1938), p. 656.


