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deuteron energy of 3.33 Mev. The yield curves shown
in Figs. 3 and 6 were normalized to the absolute values
at this energy. The curves have not been corrected for
the variation of the sensitivity of the modified long
counter with neutron energy. The e%ciency of the
modified long counter in its position behind the "slow
counter, " is a maximum for neutrons with an energy of
about 1.5 to 2 Mev and it has a lower eKciency for

both lower and higher energy neutrons. The decrease
in efficiency is about 40%%uo for 5-Mev neutrons and is
slightly greater for neutrons of energy less than about
0.3 Mev. Since the correction is complicated by the
existence of more than a single neutron energy group,
such a correction has not been attempted.

The estimated accuracy to which the absolute cross
sections have been determined is &50%
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The introduction of isotopic spin impurity by the Coulomb mixing of diferent nuclear eigenstates of T
can occur both through the perturbation of the wave function for nucleons in a J, T=0 core by the Cou-
lomb interaction of nucleons in the core, and through the perturbation of the wave function for nucleons
outside the core by their Coulomb interaction with nucleons in the core and with each other. In this paper
the core impurity, the sum of the squared amplitudes of higher isotopic spin eigenstates (TWO), is calcu-
lated for the ground state of N =Z even-even nuclei on the Fermi gas model. The core impurity is found to
exceed by a large factor the isotopic spin impurity in the wave function for nucleons outside the core.

I. INTRODUCTION

~ 'HE total isotopic spin quantum number T' exists
under the assumption of a "charge-independent"

interaction between nucleons of the form Q'(a+be, e;),
where a and 6 are functions of space and spin and ~; is
the isotopic spin vector for the ith nucleon. The primed
summation indicates that one sums over i/ j. The
present active interest in the isotopic spin quantum
number for nuclei began primarily among the experi-
mentalists and among those interested in cataloging
and understanding the large amount of experimental
information on light nuclei which is being accumulated
at an increasing rate. For this purpose the isotopic spin
quantum number provides selection rules on each of
three types of nuclear reactions: (1) reactions involving
absorption and emission of heavy particles, (2) P-decay,
and (3) isomeric transitions. Selection rules for processes
of type (1) are usually simple and forbid such reactions
as (d,n) going from the ground state of an X=Z
nucleus to the T=1 states of the 6nal X=Z nucleus.
Selection rules for the second process were given by
Wigner' and are different for the Fermi and Gamow-
Teller matrix elements.

Fermi: AT=0,
Gamow-Teller: AT=0, ~1, 0 W 0.

Finally selection rules for electric dipole transitions
were recently derived by Trainor' in supermultiplet

*Present address: Department of Physics, University of Wis-
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' E. P. Wigner, Phys. Rev. 56, 519 (1939).' L. E. H. Trainor, Phys. Rev. 85, 962 (1952).

theory and more generally by Christy, ' Radicati, ' and
Gell-Mann and Telegdi. ' We have discussed this selec-
tion rule in some detail and have shown it to be a
sensitive test of the validity of the isotopic spin quan-
tum number. '

The validity of the selection rules is affected only by
a nuclear interaction which does not commute with T';
i.e., by a "charge-dependent" nuclear potential, or by
the Coulomb interaction. Consequently, before any
conclusions can be drawn about the nuclear potential,
the quantitative e6ect of the Coulomb force on the
isotopic spin quantum number must be determined.
The possibility of accounting for any observed viola-
tions of the above selection rules by ascribing them to
the Coulomb potential would strongly suggest a nuclear
interaction of the form Q'(a+b~; ~;). Conversely, the
observation of large departures from the isotopic spin
selection rules which could not be explained by the
Coulomb force would certainly imply the existence of
charge-dependent nuclear interactions. Of course, in
case Coulomb forces should be shown to give rise to
considerable mixing of the states of different isotopic
spin, the usefulness of the isotopic spin quantum number
would be destroyed.

We are therefore interested in the extent to which
one can assign a total isotopic spin quantum number T
to the states of light nuclei for which A & 20. Specifically
we want to know how much admixture (sum of the

'R. F. Christy, Pittsburgh Conference on Medium Energy
Nuclear Physics, 1952 (unpublished).

4 L. A. Radicati, Phys. Rev. 87, 521(L) (1952).
s M. Gell-Mann and V. L. Telegdi, Phys. Rev. 91, 169 (1953).
& W. M. MacDonald, Phys. Rev. 98, 60 (1955).
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squared amplitudes) of states of different isotopic spin
is introduced into a total isotopic spin eigenstate by the
Coulomb interaction. We shall call the amount of
admixture —"the isotopic spin impurity of the state. "

In the shell model, the simplest nuclear state is the
ground state of a nucleus consisting of closed shells in
neutrons and protons. Although only a few of the
nuclear states are of this kind, the ground state and
certain low-lying states of a nucleus with one or more
particles in open shells can be regarded as the states of
a system consisting of a "core" of particles having
J, T=O and one or more particles in open shells. Since
the isotopic spin states of the same spin and parity
are separated by a rather large energy 15 Mev, in
lowest approximation the effect of the Coulomb inter-
action between core nucleons in promoting the isotopic
spin impurity of the ground state of the core can be
treated separately from the effect upon the isotopic
spin state of the Coulomb interaction of the outside
nucleons with each other and with the core. r (The
effect of the outside nucleons on the isotopic spin eigen-
state of the core can be taken into account approxi-
mately later, if necessary. )

In the present paper we shall determine the core
impurity for the ground state of an X=Z even-even
nucleus on the Fermi gas model. The results we obtain
consequently will be less dependent on the details of
nuclear structure than later calculations on the shell
model. The second source of isotopic spin impurity,
in the wave function for nucleons in open shells, will be
treated in a later paper using the jj-coupling model with
harmonic oscillator wave functions. A recalculation on
this model of core impurity for C", which in an E=Z
even-even nucleus and also has closed shells in neutrons
and protons, will be in agreement with results to be
found here.

The conclusion which we shall reach in these calcula-
tions on light nuclei (A (20) is that the core impurity
is much more important than the impurity of the
state of the outside nucleons. ' This result invalidates
the basis for some earlier somewhat less rigorous calcu-
lations on the mixing of the isotopic spin states by the
Coulomb potential. '
II. DECOMPOSITION OF THE COULOMB OPERATOR

with X neutrons and Z protons. The last two terms of
Eq. (1) commute with T' and, in fact, can produce no
mixing of states of either the same or different isotopic
spin if these states are orthogonal. These two terms
merely will produce relative displacements of the levels
of different isobars. To determine the eGect of the
perturbation produced by the 6rst term, which is the
Coulomb potential, one must perform a decomposition
into irreducible tensors in isotopic spin space. Each of
these tensors has different transformation properties
under rotations in isotopic spin space, and there will
exist different selection rules on the matrix elements of
these tensors. The decomposition can easily be made
and the selection rules stated which are relevant for our
d&scusscon.

—g+ T(M)+ T(so)

Scalar: S=se'P'(1+a~~; ~;)r,; ', AT=0
Vector: T&'+= —se' P'(rr, +rr;)r@ ',

AT=0, &1,0+) 0 (2)
Tensor: Tt'~=se'P'(rr rr '~"~,)r;; '

AT=0, &1, &2, 0W0, 1.

The quantity T&'&' is the jth component of a tensor
of rank i.' The scalar part S commutes with T' and can
be included in the nuclear Hamiltonian without affect-
ing the validity of the isotopic spin. The tensor T(2P)

can only mix the T=O with the T=2 state, and the
large energy separation of these two multiplets will
enable us to neglect T&"& in computing the impurity of
T=O states. One has to consider only T=O states for
the normal states of E=Z nuclei for A &20, and only
the vector component of Hq therefore need be
considered.

According to perturbation theory the perturbation
IIs introduces into an eigenstate @o the impurity p,
defined as the sum of the squared amplitudes of diGerent
eigenstates

By closure, an upper limit on p is

(4)p +pM

Since the perturbation which we shall use,

8—=Tt"&= —-', e' P'(rr,+rr )r'

stZ

has zero expectation in the T= T~=O ground state 'kp,
the maximum impurity is

(6)

E. P. Wigner, Grgpperttheoree (Friedrich Viewag and Sohn,
Braunschweig, 1931).

The so-called Coulomb perturbation is usually under-
stood to contain not only the Coulomb potential be-
tween protons but also the neutron-proton mass dif'fer-

ence. In the isotopic spin formalism the perturbation is

Ho= ~e' Q'(1—rr;) (1 rr;)r,; '+—(m„eN„)c'Tr-
+-',A (nz„+ett„)c', (1)

where rr has the eigenvalue (+1) for a neutron and

(—1) for proton. The l-component of isotopic spin
then has the eigenvalue Tr 's(E Z) for a nu——cleus—

'L. A. Radicati, Proc. Phys. Soc. (London) A66, 139 (1953);
A67, 39 (1953).

s W. M. MacDonaid, Phys. Rev. 98, 234(A) (1955).
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(r» r]3 )—V
J

dr]dr2dlgr» 'r» ', (9)

(r» 'r34 ') = V ' '

dr~dr2drsdr4r» —'r34

where V=(4/3)sR' is the nuclear volume and the
integrations are performed by allowing the points

The energy difference Eo—E1 which appears in Eq.
(6) should be the energy separation of the ground state
T=O from the erst excited state of the same spin J and
parity but having T=1. The importance of the dis-
tinction between this energy and the separation of the
T=O and T=1 multiplets is obvious for the odd-odd
nuclei where the first state of the T=1 multiplet is
only a few Mev above the T=O ground state. In most
cases, however, the erst T=1 state of the same spin
and parity as the ground state is not known. %e are
now interested only in the nuclei with N =Z and A =4n,
however, and for these the first T=1 level lies quite
high. In this case we can use the energy separation of
the T=O and T=1 multiplets since the 6rst T=1
state with same spin and parity as the ground state
cannot lie much higher. The energies E(T=0)

E(T=—1) are estimated from the energy separation of
the ground state of the T~=O member of an isobaric
triad from the ground states of the T~=1 components.
(See Table I.)
III. SIMPLE ESTIMATE OF ISOTOPIC SPIN IMPURITY

The matrix element of 6' can be estimated by a
method which is similar to that used for deriving sum
rules. The squared sum 6' can be written

e4
6'=—{2P'(rr;+rg;)'r, , '+2 P' (rr~+rr;) (rr, +rr~)

64

&&r;; 'r, ~
'+ P (rr,+rr;)(rrI, +rr~)r,; 'rj, g '), (7)

i,j,k, l

where the primed summations indicate that different
indices never assume the same value. The approxima-
tion is now made that the expectation values of the
reciprocal separations r;, ', r;; ri~ ', and r;; rI, ~

' are
the same for every term of each of the three sums
appearing in Eq. (7) and are respectively (r» '),
(r~2 'r» '), and (r~2 'r34 '). Each of the three sums over
the isotopic spin coordinates can be carried out ex-
plicitly to yield

(6')=—,',e'A(A —1){(r» ')+(A —4)(rg2 'res ')
—(A —3)(rg2 'r, 4-')). (8)

This expression vanishes for all r;; constant and equal,
as it must since then 6=—&e'r;; 'Tg=O.

The averages appearing in Eq. (8) will be calculated
by taking the nucleus to be spherical and of uniform
density.

(r12 ) V dr1dr2r12

TAsr.E I. Energy separation in Mev of isotopic multiplets
in Ty=0 even-even nuclei.

Z(T =1)—E(T=0)
g (Bes) 12 (C») 16 (01') 20 (Ne»)

16.7 15.1 12.9 10.1

r1, r2, r3, and r4 to move through the volume of a
sphere of radius R. These integrations yield

(r» ')= (9/4)R '=2.252
(r„—~r„—~)= (51/35)g—2= 1 457+—~.

(rq2 'r34 ') = (36/25)g = 1.44+ (10)

Inserting these average values in (8), we have &nally

e4

(8')= A (A —1)(0.76+0.017A).
16R'

This result is very interesting in its dependence on
atomic number. From Eq. (7) one might have expected
(8') to be proportional to A4R 2 but this result is pro-
portional to A(A —1)R 2 for A less than 100. If one
writes the impurity limit p~ in the form,

A (A —1) (e'/R)'
pM (0.76+0.017A), (12)

2 8(EO—Eg)'

an obvious interpretation is that the core impurity is
just the effect of the perturbation of a single-nucleon
wave function by another nucleon multiplied by the
number of interacting pairs. Stated in this way, no
account has been taken of the differences in interaction
between nucleons in different orbits. For example, the
Coulomb interaction between nucleons in an s orbit is
obviously greater than that between nucleons in a p
orbit and the perturbation of the single-particle orbits
is consequently greater in the first case than in the
second. Nevertheless, the qualitative idea suggested by
Eq. (12) is correct as will be seen in the shell model
calculations.

IV. THE FERMI GAS MODEL

This simple evaluation is completely independent of
the symmetric structure of the nuclear wave function
and does not even approximately take account of the
fact that the ground states of A=4m nuclei where
A(20 are of a four-structure with four nucleons in
each space state. This feature of Eq. (8) is a conse-
quence of the separation of the space and isotopic spin
dependence of the operator 6' in Eq. (7) by the intro-
duction of (r~2 '), (r» 'rqa '), and (r~2 'r34 '). Although
the use of such an approximation means that the co-
ef5cients of these averages in Eq. (8) are not really
correct, one might expect that the value of (6') given
by (11) has not been affected much by this error. The
reason is that Eq. (11) is mostly a consequence of the
necessary condition that 8=0 for all the r;; of Eq. (5)
equal to the same constant (r@=a) and of the near
equality of (r» '), (r» 'r» '), and (r» 'r34 ').
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In order to obtain a more correct evaluation of (8')
which includes the four-structure of the ground state
wave function, we shall work with the single-particle
model and use a formalism similar to that of Rosen-
feld. " The expression for the density matrix (i I glf)
found there, however, omit terms which are important
for this problem. The extension of these methods to the
evaluation of three- and four-particle operators has
not been necessary previously.

We begin by describing the nuclear ground state by
the wave function%'(Qi, ,Q&) which is antisymmetric
in the coordinates Q;, which represent three space
coordinates, a spin coordinate, and an isotopic spin
coordinate. In the single-particle model, the antisym-
metric ground state wave function can be represented
by

A(Q1) "lt 1(Q~)

P~(Q1) 0~(Q~)

where P„(Q„) is a single-particle wave function of the
form

6(Q.)=e,(')~,(~.,"). (14)
The function N„(e„,~„) is a spin and isotopic spin state
while y„(r„) is a space state. The whole development of
the expectation values of two-, three-, and four-nucleon
operators is quite general up to a point where the
"density matrices" are actually evaluated, but from
this point we use for the space states plane waves nor-
malized in the nuclear volume and fill all momentum
states up to some wave number k . This choice con-
stitutes the use of the Fermi gas model. "

V. MATRIX ELEMENTS OF MULTIPLE-NUCLEON
OPERATORS

Two-Nucleon Operators
Consider an operator Wis(Q1, Qs) on the collective

coordinates Qi and Q, . The expectation value of Wrs
will be

(W-(Q, Q.))= ' " ~'(Q, ,Q.)
"Qr ~QX

XW (Q,Q.)+(Q, ",Q.) (»)
This equation can be rewritten by separating the space
and spin coordinates (intrinsic spin and isotopic spin)
in Qi and Qs. Let s denote the "total" spin state of both
nucleons and r~, r2 denote their space coordinates. Then

(W(Q»Qs))= P I" " dr dr,e*
~ ~as ~9~

X (r1,rs,s; Qs, ' ' ' QA)Wls(Q»Qs)

X11f(rr,rs, s; Qs, ,Q~). (16)

The summation over s is simply the operation of taking
a trace over the 16-dimensional spin and isotopic spin

"L. Rosenfeld, Nuclear Forces (Interscience Publishers, Inc. ,¹wYork, 1948).
"H. Bethe and R. Bacher, Revs. Modern Phys. 8, 82 (1936).

See also reference j.o.

(slg(r»rs)ls')=
~

+ (~»~s»'Qs . . Q~)
Q3 ~QA

X+(~i,~s,s'; Qs, ,Qg).

In the state%' given by Eq. (13), we shall take every
space state to be completely occupied by four nucleons,
two neutrons, and two protons, with each pair of like
nucleons having opposite spins. We shall thus be
treating the normal states of nuclei with A =4m, T= T~
=0. In writing the exchange terms which appear in
(sl g(ri, rs) Is'), we shall make use of the total spin ex-
change operator (intrinsic spin and isotopic spin):I',&"'=sr(1+o; e;)(1+~; ~;). The density matrix is
then

(sl g(r, r,) Is )—
I

A (A 1)]—i

X( IZ ~.*(1)~.*(2)L~.(1)~.(2)-&.,"~.(2)~.(1)3
P, V

m

+8(s,sis)Z I@~(1)I'lp~(2) I'(1 P ")Is'), (19)

where sis denotes the total spin state (spin and isotopic
spin) of nucleons 1 and 2 for which the two nucleons do
not both have the same spin and isotopic spin. The
8(s,sis) restricts the sum over spin states s to those
states compatible with the requirement that the same
single particle state cannot be occupied by both nu-
cleons 1 and 2.

At this point, we introduce for the P„of Eq. (19)
plane waves normalized to volume V= (4/3)1'',

p„=V & exp (ik„r), (20)

with the free particle states being taken as dense in
k-space. We can replace sums over k„, therefore, by
integrals up to a maximum wave number k given by
k = (91r)l/2rs ——1.523/rs, where R= roA'*. The sums
which appear in (19) are then easily evaluated:

P I y„(1)I'I y„(2) I'=A (A —1)/16V'
p, , v

2 ~.*(1)~.*(2)~.(2)~.(1)= LA (A-1)/16V jG ("),
IItV

G(r) —= i 1(&-&)=3
I

—
I

k r (2) (Ie r)**
(21)

space of the two nucleons. We can make a unitary
transformation in this space to the representation in
which the states are eigenstates of r~~ and r~2, the
l components of the isotopic spin of the nucleons, and
of a,i and o.s, the intrinsic spin. The Eq. (17) can be
written then

(W(Q1 Qs)) p "dridrs(s
I
g(r»rs) I

s') (s'
I
W»

I s), (17)
8, S' 4

where s and s' are now quantum numbers for the total
spin state of the two nucleons and (s

I g(r»rs) I
s') is the

density matrix defined by
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The function G(r») is designated as the equivalent
nucleon correlation function since it gives the proba-
bility of a certain relative separation of two nucleons of
the same spin and isotopic spin.

If we insert the sums of Eq. (21) into Eq. (19), we
obtain

1
(slg(ri r2) Is')=

I
s L1 P "G'(r»)]

16V2

4
X 1y S{s,s») s' ~. (22)

where the proper density matrix is

(slg(r~, r2, ra, «) I")=
I

s L1+2 B&P„~KG(r;pp,p))]

X 1+ $8(s,sg2)+5($)$/3)+5($)$/4)
A —1

16
+h($,$23)+8($)$24)+8(Sq$34)]+

(A —1)(A —2)

Three-Nucleon Operator

The derivation of the density matrices for three and
four particle operators is very straightforward. Denote
the permutations P of the symmetric group by

~ ~ oQ ~ ~ ~ ~

(.. .p.&. . .)

where the n; designate only the numbers which are
not permuted into themselves by P. Further, let 5p be
the sign of the transposition so that 8~=&1 according
as P is even or odd. Then, if the expectation value of
8'»3 is given by

(W»3) =P
~

"dr, dr, dr,
s, a' J

X (s
~
g(r~, r2, ra) [s') (s'[ W~23~ s), (23)

the density matrix is just

(s I g(r, r, r ) I ")= I
~ L1+2 ~j P.,'GI G(r-'.$'.))]

P

Xg (s,s»4)+b(s, s»4)+8(s,s»3)]+
(A —1)(A —2)

X P (sisyn)~(sis34)+8($)Sy3)~($, $24)+~($)$14)~($~$»)]

64
8(s,sg234) s' i. (26)

(A —1)(A —2) (A —3)

These expressions are rather lengthy, but the calcula-
tion of expectation values with these density matrices is
greatly simplified in two ways. First, it will be noticed
that all the permutations which are equivalent under
the normal subgroup which leaves the operator invari-
ant, contribute equal integrals to the expectation value.
Therefore only one of the terms which are equivalent
under this group need be considered, multiplied by the
number of such terms. Secondly, a large number of
terms will be found to contribute nothing to the ex-

pectation value when the sum over total spin states
is evaluated.

VL EVALUATION OF (8') FOR Tr=0, A=4n NUCLEI

From Eq. (7), the squared Coulomb operator can be
written as

+ I ( )»)+ ( )»)+ ( ~ »)]
A —1

g2

6'=—jP'W;'+P' W'j)+ P' W@p~}
i, ~, t ', g', s, t

(27)

16 where
t 8($ $$»)+8(s,si»)] s'

I (24)
(A —1) (A —2) W' ~ = (rr +Trj) r W'ji='(rr'+rrj)(rr~+rrl)r jrl''

where s»3 is a permissible total spin state for three
nucleons occupying the same space state. The permuta-
tions P, on the spin and isotopic spin are all the
permutations belonging to the symmetric group on
three symbols.

Four-Nucleon Operator

The matrix element for the four-nucleon operator is
just

(Wi»4) =P dridr~dr3dr4

X (s
~ g (ri, r2, rq, r4)

~

s') (s'
( W 1284

~
s), (25)

W,; p& (rr, +rr;) (rr~+rri)r;; ——'rjr', (28)

and primed summations indicate that different indices
never assume the same value. From the complete anti-
symmetry of the nuclear wave function, it follows that

(6 )= i6e (gA (A 1)(W»)+A (A —1) (A 2)(Wy23)

+4A (A —1) (A —2) (A —3) (Wg2g4) }. (29)

The expectation value of each of the multi-nucleon
operators is to be found using Eqs. (22), (24), and (26) ~

In finding these expectation values, we shall omit the
exchange terms containing integrals over the correlation
function G(r) and defer consideration of their magni-
tude and effect.
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To terms of order 1/A, the expectation value of W12 is

(Wi2) = P dxidx2(s i W12 i
s') (s'

t 1
i
s). (30)

16V' 8 "~

The sum over the total spin states can be evaluated

Trg g2
——32rg2

—',

and the result found:

(W .)=("-) (31)

Neglecting only terms of order A ' in (W») implies
that (W122) must be correct up to terms of order A '.

When the traces over spin and isotopic spin have been
performed, the result is just

4(A+5)
(W1224) f]2 f34 ~

(A —2) (A —3)
(35)

Using now Eqs. (29), (31), (33), and (35), the ex-
pectation value of (6') is just

(6')=—,', 1,4A (A —1){(r12 ')+ (A+4) (r12 'r24 ')
—(A+5)(r12 'r24 ')}. (36)

When the average values from Eq. (10) are inserted,
this becomes

(W»2)= p d»dx2d»(slW»2I")
64@'2 8,8' J

e4

(6')= A (A —1){0.878+0.017A }.
16K'

(37)

4
Xi "1+ L~(,".)+~(,")+~(,".» i (32)

A —2

(A+4)
(Wu2)= I i(ru 'ri2 ')

I A-2) (33)

Finding the expectation value (W»24) is slightly
more trouble since one must now carry all terms up to
order A '. In this calculation some peculiar features
arise from the fact that in some isotopic spin states for
four nucleons Wi234 is positive, and in others it is nega-
tive. In the case of 8» and 8'»3, only positive values
were possible. A consequence of this fact is that
TrS'i234 ——0. The expression which would give rise to a
term in (6') proportional to A' therefore vanishes here
just as it did in the sum rule calculations.

The expectation value of (W»24) is found from Eq.
(26) to order A ' to be

(W 1224) Q ~

dl] dr2dr2dr4 (s i W1224 i
s')

256V4 ~,"~

4
X i

s' 1+ g(s,s»)+8($,$12)+8($,$14)
E.

16
+8 ($,$22)+8 ($,$24)+8($,$24))+

(A —1)(A —2)

Xfb($,$124)+8($,$124)+8($ $224)+8($,$122))

16
P (si$12)8 ($,$24)+8 ($,$13)8 ($,$24)

(A —1) (A —2)

+b($,$14)b($,$22)) s i. (34)

In evaluating (26), the sums over total spin states give

TrW»2 ——64r» 'r» ', Tr/W»28(s, s»))=32r» 'r12

TrLW1228 (s,s12))=0.

The expectation value is then

As we expected, although the expression for (6') in
Eq. (36) appears to be rather different from the result
given in Eq. (8), the insertion of numerical values for
the averages yields results given by Eqs. (11) and (37)
which are nearly the same.

VII. COMPILATION EFFECTS

The eGect of correlations introduced by the Pauli
principle on (6') can be seen easily. The averages
(r12 ') (ri 'r12 '), and (r12 'r24 ') which we have calcu-
lated by assuming a uniform distribution of nuclear
matter completely neglects the eGects of correlation
embodied in the Pauli principle. For example, two
nucleons in the same spin and isotopic spin state can
never come into coincidence, and for such pairs of
nucleons (r12 ') should be smaller. The effect of this
correlation should be greatest on (r12 ') in fact, since
contributions from the singularity are sharply reduced.
The average (r12 'r12 ') is affected somewhat less be-
cause a correlation of nucleons 2 and 3 does not reduce
the contributions from singularities of ri2 ' and res '.
Since there is very little reduction of (r12 'r, 4 ') pro-
duced by any correlation of nucleons 1, 3 with nucleons

2, 4, this average is aGected least of all.
A more physical way of seeing the eGect of correla-

tions on the averages proceeds from the physical inter-
pretation of these quantities. The significance of (r» ')
lies in providing a measure of the density fluctuations
in the nucleus. The quantity (r» 'r» ') on the other
hand correlates the "density" in one direction from a
point with the "density" in another direction from that
point. We may interpret (r12 'r» ') as a measure of the
"angular" uniformity about a point. The last quantity
(r»—'r24—') correlates the density at one point with that
at another point. In this sense (r12 'r24 ') measures the
uniformity in density of the nucleus. From the physical
considerations one sees, therefore, that the eGect of
correlations will be greatest on (r12 '), less on (r12 'r12 '),
and least of all on (r12 'r24 ').

Using this knowledge of the relative effects of correla-
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tions on the averages appearing in Eqs. (8) and (36),
one sees from these equations that the eRect of correla-
tions is to decrease the magnitude of (8'). This result
is reasonable when one realizes that the perturbation 6
produces an apparent attraction of neutrons and an
apparent repulsion of protons. Since we actually evalu-
ate (6'), the effect of 8 on any pair of neutrons or
protons can be regarded as a mutual repulsion. Now if
the original wave function contains any correlation of
this kind, the perturbation produced by 6 will be
reduced. The Fermi gas model does provide a correla-
tion between any pair of neutrons or protons which
have the same spin. To the extent that this correlation
coincides with the mutual repulsion produced by 6 will
the eRect of 6 in bringing in higher isotopic spin states
be reduced.

The correlation terms in (8') will appear as a linear
combination f(A) of integrals involving G(r), so that

(8')=—,', e4{ (rts
—')+ (A+4) (ris

—'ri -")
—(A+5) (ris

—'rs4—')—f(A) }. (38)

Clearly f(A) cannot exceed the value of other terms in
curly brackets even if G(r) were unity for r(R. The
short range of G(r) causes the correlation integrals in
f(A) to decrease as k~ increases. The integral which
decreases most slowly with increasing k~ is the corre-
lation integral for r~2 ', as we expected, and is

—V ' ~dridrsris 'G(ris).

The ratio of (r» ') to this integral is approximately
(k~)=(1.523A&), and even for A 8 the correlation
terms would only reduce (8') by about one-third at the
very most. Our values for maximum isotopic spin
impurity are not presumed to be more accurate than
this in any case.

VIII. IMPURITIES IN THE T=O GROUND STATE OF
T =0 EVEN-EVEN NUCLEI

The expression for (8') which has just been found
may be used in Eq. (6) with the energy differences
listed in Table I to find psr, the upper limit on the
isotopic spin impurity for the ground state of nuclei
with A =4n and Tr ——0. (See Table II.) To be useful
these values of psr should be quite close to the actual
value of the isotopic spin impurity for these states
found from Eq. (3). We have actually verified that
p=psr for the statistical model by explicitly writing
the perturbation expansion of Eq. (3), using for the

TABLE II. Statistical model estimate of isotopic spin impurity for
ground states of nuclei with A =4n and Tg=0.

Nucleus Bes 016 Nemo

P~ 2.6X10 ' 7.5X10 ' 1.9X10~ 3.9X10~

state +o that given by Eq. (13), and for the excited
states 4, a Slater determinant of free-particle states
with one nucleon excited to the continuum above the
Fermi sphere. " In addition, the perturbation of a
single-particle orbit found in this way agrees with that
suggested by Eq. (12).

These values of core impurity, while small, are not
negligible and should be detected, for example, in
violations of the isotopic spin selection rule for electric
dipole transitions. The core impurity is in fact much
larger than the isotopic spin impurity produced by
Coulomb distortion of the wave function for nucleons
outside the core."

We wish to remark that although the neglect of
correlations in (8') gives a PM which is an upper limit
on isotopic spin impurity, one must not conclude that
Eq. (37) represents an upper limit on the predictions of
more detailed single-particle models. For even though a
nuclear wave function of the form of Eq. (13) contains
certain correlations, the individual-particle wave func-
tions are smooth (~P~'=V ') and do not provide a
positive internucleon correlation. A wave function, or
set of wave functions, which describes a state of pro-
nounced maxima or minima of the nuclear density in
certain regions could increase (ris ') and (ris 'ris ')
relative to (ris 'rs4 ') and thus increase p. At the same
time such a set of wave functions will not provide so
large an overlap for all pairs of nucleons so that p
can also decrease. This latter result is what we shall
actually find when we calculate the isotopic spin im-

purity of the not. mal state of C" on the jj-coupling
model with harmonic oscillator wave functions.
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