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A, general connection between equilibrium superQuidity and superconductivity is established. This con-
nection allows us to apply to superconductivity a previously established theorem on the nonexistence of
equilibrium superQuidity in actual physical systems. It follows that London s equations can only be approxi-
mately valid and have to be modified. An alternative equation proposed by Pippard is also in contradiction
with the theorem.

1. INTRODUCTION

'T has long been suspected that there exist funda-
~ - mental links between the two low-temperature
phenomena of superRuidity and superconductivity. ' 2

Recently, such a connection has become more ap-
parent through the exhibition of a common model for
the two phenomena: the perfect Bose-gas. It was shown
that a gas of charged bosons below condensation is a
superconductor. '

Furthermore, it has been shown that for a small

range of angular velocities, the perfect Bose gas also
exhibits superRuid properties. 4 It is the purpose of this
paper to establish the validity of the connection be-
tween the two phenomena beyond the range of the
Bose-gas model and to show that the two phenomena
are related quite generally. More specifically, we shall
dehne "perfect superconductivity" and "equilibrium
superQuidity" of a physical system as being those prop-
erties which are actually exhibited by the Bose gas and
then prove that for a system of identical spinless par-
ticles one of these properties entails the other. For
systems of nonidentical particles cancellations can occur
which destroy one eGect, and therefore exceptions to
the theorem are possible. Similar cancellations may
occur in the case of particles with spin, namely when the
contribution of the spins just cancels the contribution
of the orbits. Such cancellations do not, however,
acct the general connection between the two phe-
nomena of superfluidity and superconductivity.

Beyond establishing the reason for the existence of a
common model, the Bose gas, for the two phenomena,
the above theorem yields important information about
the superconductivity of real metals when viewed in

connection with a recently established theorem on

superQuidity in real physical systems. ' It was pointed
out there that for every real physical system, (i.e., a
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~yst~m of interacting particles) at a finite temperature
there exists a "correlation length A.

" such that the
momentum correlations of two particles farther apart
than A decrease very rapidly. It was then proved' that
no system with finite A, i.e., no real physical system,
can show equilibrium superQuidity. In conjunction with
the present theorem this entails that no superconduct-
ing metal can be a "perfect superconductor. "It will be
shown in Sec. 2 that a system obeying London's phe-
nomenological equations6 of superconductivity is a
perfect superconductor. Ke can, therefore, conclude
that the London equations are incompatible with the
finiteness of the correlation length and can, therefore,
only be approximately valid. Similarly, it can be shown
that the modi6ed equations proposed by Pippard are
inadmissible for the same reason. A more detailed dis-
cussion of this point will be given in a subsequent
publication.

A word must be added at this stage about the ques-
tion of how far one is justi6ed in drawing from our
theorem any conclusions about the behavior of actual
superconductors. The possibility of accidental cancella-
tions mentioned earlier presents no difhculty here,
because the proof that the London equations are in-
compatible with the existence of a finite correlation
length is independent of the actual occurrence of such
cancellations. Apart, therefore, from the remote possi-
bility that superconductivity be an effect of the spins
rather than orbital motions —which seems to be
excluded both by the existence of charge-carrying super-
currents and by the essentially diamagnetic nature of
the Meissner-Ochsenfeld egect—our theorem can be
applied to actual superconductors.

2. DEFINITIONS

Vfe erst de6ne our terms precisely.
A. Consider a system in thermal equilibrium rotating

with angular velocity co around the s-axis and denote
its angular momentum by I.(to). The quantity

I= (dl./de) s—
' See reference 2, paragraph 8.
r A. B.Pippard, Proc. Roy. Soc. (London) A216, 547 (1953).
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is the moment of inertia. Its classical value is, for a
system of E identical particles with mass M

Io=EM(x'+y')

where ( ) denotes the average in thermal equilibrium.
Definition I: We call "equilibrium superfluid" a sys-

tem for which (I Is)/—I& does not decrease indefinitely
as (x'+y') is increased, i.e.,

(I Io)/I—s)t))0 for all (x'+y'). (3)
Pote Z: It is known' that the ideal Bose gas is an equilibrium

superQuid in this sense. It is also known that equilibrium super-
Quidity is not enough to ensure actual superQuid behavior.

B. Perfect Superconductisity

Consider a system of charged particles in a fixed
cylindrical volume V in a homogeneous magnetic field
II parallel to the axis of the cylinder. Denote the total
magnetic moment this system acquires in thermal equi-
librium by M(II). We shall define a quantity

curlH = (4s./c) i (8)

one has to put H = B. (7) and (8) together, then, do not
allow any homogeneous field to penetrate. However, as
has been pointed out earlier, ' it is a consistent
"gedanken-experiment" to allow for a magnetic po-
larization P(x) inside the superconductor (arising e.g. ,
out of a polarization of the nuclear moments) which
has no other interaction with the superconducting
particles than the magnetic one. The result is that, since
now B=H+4wP, a homogeneous B is possible, and (8)
can be disregarded, its only function being to determine
the necessary polarization P.

For a cylindrical container with B parallel to the axis
(7) at once yields

i,=i„=o;
1 r

z ————8
Xc2

holds, is a perfect superconductor. In actual super-
conductors, the only source of B is the supercurrent i
itself, so that in Maxwell's equation

1 ~mq
x'(U) =——

f

U E..r)II) ~ s

Therefore,
(4)

For any system with paramagnetic or diamagnetic
behavior, g' is independent of V.

1
M=- d' (xryi),

2J

3f,=31„=O,

(10)

M, = —(1/8Xc)8UR'

(6) and therefore,
x'= —(1/8Xc)R'.

This proves our assertion.

S'ote Z: The quantity y' here is not necessarily identical with and
the magnetic susceptibility p as usually defined. The latter is

1 aMx= lim lim lim
H~oaH~O V~~ U AII '

whereas (4) means, for large volumes

x'(00) = lim —lim lim (6)
V-+oo V H-+0 hH-+0 AH

(12)

The limiting processes are not necessarily interchangeable, and so
x' and x may turn out to be different. However, we are not con-
cerned here with the value of the susceptibility; we only ask
whether the last limiting process in (6) exists or not; i.e., whether
x' approaches a Rnite limit or whether it increases indefinitely
with the dimensions of the container. This question, however,
makes clearly no sense in relation to the susceptibility X.

Definition II: A system for which

(a) x'«
(b) -x'

3. CONNECTION THEOREM

We wish now to prove the following theorem, which
forms the main body of this paper:

Theorens II. If a system of identical spinless particles
is an equilibrium superAuid, then the same system,
when the particles are given a test charge e, is also a
perfect superconductor; and, conversely, any perfect
superconductor consisting of identical spin1ess particles,
is an equilibrium superRuid.

More in detail, we shall show that the moment of
inertia I (1)and the quantity x' (4) are related by

increases indefinitely, ~R, with the radius E. of the
cylinder, shall be called a "perfect superconductor. "

Defini, tion IIa: A system for which

Mc')
I=Is] 1+

n(x'+y') e' 3
(13)

() x'»
(b) x'"R' where n is the density of particles. (Note that x' is

proportional to e', so that the test charge e actually
drops out. )shall be called a "perfect ferromagnet. "

Theorem I: A system for which London's equation
for the current density

—Xc curli= B

Pote 3: The restriction to spinless particles may easily be
removed, at least as long as one neglects any spin-orbit coupling.

(7) One can then define uniquely an orbital part of x', x&'and a spin

See reference 2, paragraph 3. ' M. R. Schafroth, Helv. Phys. Acta 24, 645 (1961),
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part x2'. In terms of these one finds that (13) is replaced by

)+2(X1 +g 'X2) ~&'
()3,)n(x'+y') e'

where g is the g-factor of the particles. This can lead to an excep-
tion from the theorem, when xi'~(x'+y'), x ~(x'+ys), but
xi'+g 'x2' ——o((x'+y')); i.e., when the system is at the same time
a perfect superconductor and a perfect ferromagnet, in such a
ratio that the two susceptibilities just cancel. This case is clearly
too exceptional to warrant the complication of carrying through
the proof of (13') in detail.

Pote 4: Similarly, the restriction to identical particles is not very
serious. Taking r kinds of particles with charges e;, masses 3I;,
densities e; and g-factors g;, (13') has to be replaced by

r'= g (C, o)+C, (»)
Io i,j=1

where C;;('), C;;(') are certain coeKcients. For the system to be
either an equilibrium superfiuid, a perfect superconductor or a
perfect ferromagnet, at least one of the C's has to be 0:(x +y').
lt can, however, happen that for certain values of e;, m;, g; one of
the two expressions (I Io)/Io and x—' is ~(x +y'), whereas in
the other the corresponding terms just cancel. Accidental can-
cellations, therefore, are possible which invalidate the theorem.

We now proceed to prove (13).The Hamiltonian for
E identical spinless particles of mass 3I and charge e

in a volume V under the influence of a homogeneous
magnetic field H is

over a canonical ensemble with Hamiltonian"

or

O'=Q —p,s+V(ri, riv) oio—L,
~& 2M

(2O)

N 3f
&'=Q —(p' —oooo X r;)'——(~oX r;)'

~& 2M 2

One finds, therefore
+V(ri, riv). (20')

L(oi) =Trace{g(r~Xps) exp( —PH')}. (21)

Comparing (21) with (18) we see that, neglecting
terms of second order in ~p, one has

M= L(ooo) — Trace fP ri, X (oooXra))
MC MC

On the other hand, the angular momentum in
thermal equilibrium of the same system without mag-
netic field, but rotating with angular velocity up, is
given by taking the average of the angular momentum
operator

1 ir e
H=P —

~ p, ——HXr;
~
+V(ri '''rN). (14)

~i 231 l 2c )
Xexp —P P p'+ V (22)

s 2'
The magnetic moment operator is Taking wp to lie in the s-direction this reads

N e (p=P r;X( p;——HXr; ~.
'=i Mc E 2c

(15)
eA"

M = L(too) ——6io(x'+y'),
MC C

(23)

( e
M=(ts)=Trace P rsX~ ps ——HXrs

~

& M'c E 2c

1
Xexp —

P~ P ~
p,——HXr; [ [+V, (16)('2M( 2c ) )

where the trace has to be extended over the space of
all properly symmetrized states, and where P= 1/kT.

Introducing the Larmor angular velocity

(16) can be written
oso eH/23Ec—— (17)

M= Trace LP(ri, Xps MrsX(tooXr, )—]
MC

1
Xexp —P pi (p;—MoooXr;)'+V i

I. (18)) I

The average magnetic moment in thermal equi-
librium is, therefore,

where ( ) is the average over the equilibrium distribu-
tion at up=0. Differentiating with respect to mp and
using (1), (2), (4), and (17) this readily gives (13).

The essential step in this proof is the expansion of
(16) and (21) in powers of coo, keeping only linear terms.
This is only justi6ed by our particular definition of I, (2)
and y', (4) which is restricted to finite volumes. The
expansions in power of cop will, as a rule, be justified
only for very small angular velocities, coo(oii A/3''.
Therefore this procedure cannot be used for computing
the actually measured quantities x, (5) and

with

61.(o)If
AM

hen&&cog.

(24)

However, for the purpose of this paper, the foregoing
procedure is justified.

"See the detailed discussion of this in Blatt, Butler and
Schafroth, this issue LPhys. Rev. 100, 481 (1955)j.
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i(x) = —const d'x' rt r A(x')),
r'

(25)

where r=x —x', $ is a characteristic length of the
material, and A is the vector potential of the field 8,
gauged to divA=0 and (A n) = 0 at the surface. Equa-
tion (25) is, however, also inadmissible from our present

4. DISCUSSION

It has been shown' that no real physical system can
be an equilibrium superHuid. The reason for this is that
for all systems of interacting particles there exists a
correlation length A. which is an intrinsic property of
the system, independent of the size of the volume, such
that particles which are apart by a distance &A have
strongly decreasing momentum correlations.

The theorem of Sec. 3 together with the above
statement that no equilibrium superQuid exists yields
at once:

Theorem III: Eo perfect superconductors exist irt
nature.

In conjunction with the result of Sec. 2 that a system
obeying London's equation is a perfect superconductor,
this implies:

Corollary: 1Vo physical system car obey London's
eciuation (7) exactly.

The ideal Bose-Einstein gas is not a physical system,
since it does have an inhnite correlation length4; indeed,
it obeys London's equation. '

Note 5: The theorem of reference 5 is restricted to particles
without spin and does, therefore, not exclude an anomalous mo-
ment of inertia I which is larger than the classical value I0,. this
means that we cannot make a statement about ferromagnets
similar to the one about superconductors.

Theorem II therefore leads us to the conclusion that
London's equations can only be approximately valid
for actual superconductors and that they have to be
modified to comply with the finiteness of the correlation
length A. We shall leave the task of finding an appro-
priate form of this modiGcation to a later paper.

At present, we only wish to recall that the necessity
for modifying London's equations has already been
inferred by Pippard from experimental results on the
penetration depth with impurity contents. Pippard
proposes the following equation )reference 7, Eq. (7)j
to replace London's equation (7):

point of view since it still describes a perfect super-
conductor. This can be seen qualitatively by noticing
that Eq. (25) expresses the current density i as a certain
average of the vector potential A over a region of space
of the dimension of the characteristic length g. If one
considers now a cylinder of radius E in a homogeneous
field IIO, then the vector potential A= —',i)&HO increases
linearly from the axis to the surface of the cylinder. If
the radius of the cylinder is large compared to $ the
current density increases essentially linearly, too, and
therefore the argument in Sec. II for the London equa-
tions goes through essentially unchanged, leading to a

Indeed, Pippard's modiGcation of the London equa-
tion goes in the opposite direction from the one required
by our theorem. The London equation is a strongly
nonlecal relation between field and current .The current
density is determined only by knowledge of the field 8
over the whole volume of superconductor. The fact
that it can be brought into the local-looking form

i= —(1/Xc) A (26)

Lwhere A is the vector potential in the same gauge as
in (25)$ only shows that the vector potential in this
gauge is a nonlocal description of the magnetic field.
Pip pard's procedure of smearing (26) over small
volumes tends to make the relation between current and
Geld even less local, whereas the finiteness of the corre-
lation A requires that the relation in question should
be more local than (26), namely such that the current
density is determined by the field distribution within
a volume of order A'.

We therefore conclude that London's equation (7) as
well as Pippard's equation (25) are incompatible with a
finite correlation length h.. In a later paper we shall
propose modified phenomenological equations for super-
conductors which are consistent with a finite A, and it
will be shown then that Pippard's experimental facts be-
come naturally understandable on this new basis, the
correlation length h. taking the role of his parameter $.
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