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Statistical Mechanics of Rotating Buckets*
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A system in temperature equilibrium is enclosed in a container and this container is set rotating. We
show that the effective moment of inertia is the same as what one would compute in the usual way, for
both classical and quantum statistical mechanics. This apparently trivial theorem has applications for
the theories of superQuidity of liquid helium and of superconductivity of metals.

l. INTRODUCTION

"0one doubts that a bucket of water, set rotating
in such a way that thermal equilibrium is main-

tained at all times (e.g. , no turbulent currents are set

up), would show the conventional relation between
angular momentum L and angular velocity co.

L= Iv),

the ideal Bose-Einstein gas below its condensation
point) exist which violate (1.2). Some discussion and
conclusions are given in Sec. 8, but the important
applications of this theorem are given in subsequent
papers.

2. LINEAR MOTION AND THE EQUIPARTITION
THEOREM

We consider a box of volume V filled with an as-
sembly of E identical particles, each of mass M. We
intend to develop the formalism of statistical mechanics
appropriate to discuss linear motion of the whole
system with constant linear velocity e. The fact that
the linear momentum contributed by the Quid is E3fv
is of course a trivial consequence of Galilean invariance;
but our formal approach will enable/us to deduce a
nontrivial equipartition theorem from this fact.

I.et us first consider the statistical mechanics of the
box at rest, paying special attention to the method of
including the eGect of the walls of the box. The Hamil-
tonian of the system is

where I, the moment of inertia, has the classical value

I=Io= EM((ot'+y'))A' (1.2)

Here E is the number of molecules, M the mass of each
molecule, x and y are coordinates measured from the
axis of rotation (the s-axis), and the braces denote an
average over the volume of the bucket occupied by the
Quid.

Yet no one, to our knowledge, has proved this theorem
under general conditions, and it is the purpose of this
paper to do so. Contrary to one's first impression, the
proof is by no means trivially easy, and the theorem
has important applications for the theory of super-
Quidity of liquid helium and the theory of supercon-
ductivity. These applications will be discussed in
subsequent papers.

In Sec. 2, we consider a statistical system set in
linear motion; the method of discussing the statistical
mechanics of such a system is developed in some detail;
the fact that the apparent mass of the system is equal
to the actual mass E3II is a trivial consequence of
Galilean invariance, but our discussion allows us to
derive a nontrivial equipartition theorem for the kinetic
energy associated with the bulk motion of the Quid.
In Sec. 3, we develop the statistical mechanics of a
statistical assembly inside a rotating container, and we
de6ne the moment of inertia. Section 4 contains a proof
that this moment of inertia is equal to (1.2) in classical
statistical mechanics. Before we go on to quantum
statistical mechanics, we develop, in Sec. 5, the concept
of a "correlation length, " which turns out to be of
crucial importance for all the subsequent work. Section
6 and 7 contain a proof of (1.2) in quantum statistica
mechanics; this proof is more restricted than th
classical one, and exceptional systems (in particular

(2.1)IV= +''.p,'/23II+ V(rr, r2, ,rz).

The conventional procedure is the following: the po-
tential energy V includes the eGects of all forces
between the particles of the Quid, but does rot include
the eGects of forces between particles of the fluid and
the walls of the box. These latter eBects are taken into
account approximately by replacing the actual, rough
walls of the box by perfectly reflecting mirrors, or,
in quantum-mechanical terms, by boundary conditions
on the admissible wave functions. All wave functions
must vanish whenever any one of the coordinates r;
lies on or outside the walls of the container. The free
energy F of the system is then given by (P= 1/kT)

exp( —PF) =Trace[exp( —PH) j, (2.2)

*Also supported by the Nuclear Research Foundation within
the University of Sydney.

where the trace is to be taken over any complete set of
wave functions which satisfy these particular boundary
conditions. It is important to realize that the trace (2.2)
is not even dehned unless the boundary conditions on
the wave functions are specified. Furthermore, in order
to de6ne thermodynamic quantities such as the free
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energy which remain constant with time (in thermal
equilibrium), it is necessary that the boundary condi-
tions imposed on the wave functions be themselves
time-independent.

Let us now return to the boundary conditions for
the box at rest; what is the justification for replacing
the actual rough walls of the box by perfectly reQecting
mirrors? Consider a typical collision between a molecule
of the Quid and the actual wall: the collision results in
a reQection of the molecule back into the Quid, but
this reQection is not specular. The transverse component
of momentum is not preserved, because the wall is
rough and can take up transverse momentum; similarly
the normal component of the momentum is not merely
changed in sign. Furthermore the wall itself is in heat
motion, so that collision between a molecule and the
wall will in general result in an exchange of energy as
well as in an exchange of momentum. However, once
thermal equilibrium has been established within the
system the over-all, average eGect of collisions between
molecules and the wall is the same as if the wall were
a perfectly reQecting mirror surface without heat
motion. For any one wall collision in which a molecule
loses energy, there is another wall collision in which

some other molecule gains energy; for any one wall

collision in which a molecule loses transverse momen-

tum, another molecule gains transverse momentum by
a wall collision, etc. Thus it is a good approximation,
in thermal equilibrium, to replace the actual rough
walls by perfectly reQecting mirror surfaces. On the
other hand, this method is quite useless in considering
the approach to thermal equilibrium after the wall of
the box has been heated up slightly, to a temperature
higher than the temperature of the Quid. For by re-

placing the wall by a perfect mirror, we have lost the
very mechanism by which equilibrium is established in
this case.

One may object: Why can one not dispense with all

this, and simply include the coordinates and momenta
of the molecules making up the wall into the Hamil-
tonian H? This procedure is contrary to the spirit of
statistical mechanics, and is in principle impossible.
The difhculty is merely removed one step, not over-
come. The wall has an outside surface, and this outside
surface interacts with its surroundings. If we do not
wish to make approximations, the surroundings must
now be included in the Hamiltonian as well, until we

finally include the whole universe into the Hamiltonian.
This is of course an impossible program. No matter
how we do it, at a certain point we must make a cut
between particles included in our system, and the rest
of the world. This rest of the world nsgst be treated
schematically, in some approximation, not precisely by
including it in the Hamiltonian. Once we realize that
approximations of this kind are in principle necessary,
there is no' reason against making the simplest sensible

approximation, namely the replacement of the walls by
perfect mirrors.

Transforming back to the Hamiltonian formalism, we

get the following expressions for the canonical mo-

menta:
(2.4)

We note that the momentum variable p, represents
the linear momentum of particle number i with respect
to the stationary coordinate system, rot with respect
to the moving coordinate system. The transformed
Hamiltonian is

X
H'=H vp p, =H ——vP, (2 3)

where P is the x-component of the total linear mo-

mentum of all particles. The Hamiltonian B' is rot
numerically equal to the original Hamiltonian H; this
is a consequence of the fact that the transformation
(2.3), (2.4) involves the time explicitly.

We now determine the linear momentum of the Quid

in our moving box, in thermal equilibrium. This is
given by

TraceLP exp( —PH'))
P(v) =

TraceLexp (—PH') )
Trace(P expf —P(H —vP))}

(2.6)
Trace(expL —P (H—vP)) }

The trace is to be taken over all wave functions of the
desired symmetry (symmetric for Bose-Einstein sta-
tistics, antisymmetric for Fermi-Dirac statistics) which

satisfy the boundary conditions at the walls of the box.

Let us now consider the thermal equilibrium state
of the Quid in a box moving with a constant linear
velocity e in the x-direction. We again replace the
walls of the box by perfectly reQecting mirrors, and
write the eGect of these mirror surfaces as boundary
conditions on admissible wave functions. We observed
before that, in order to do statistical mechanics, it is
necessary that the boundary conditions imposed on
the wave functions be independent of time. Since the
boundary conditions refer to the walls of the container,
the only way to fulfill this requirement is to use a set
of coordinates in which the walls of the container
correspond to time-independent values of the coordi-
nates; i.e., in order to do statistical mechanics at all,
we are forced to transform to a system of coordinates
moving along with the container. This transformation
is not one of convenience, which could be avoided, but
is a necessary step in order to do statistical mechanics
at all.

The transformation to the moving coordinate system
is a canonical transformation; we obtain it most simply
by writing down the Lagrangian corresponding to
(2.1), and making the substitutions:

(2.3)
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In classical statistical mechanics the trace represents
an integral over the 6S-dimensional phase space.

We evaluate (2.6) by making a second canonical
transformation:

lf /
$$ X$ 7

p„"=p„'—Mv,

// I

I/ I
Ss )

I/ /

(2.7)
ZS Z2.

The fact that it is a canonical transformation can be
seen by writing down the commutators; the additional
term Mv commutes with everything. When we substi-
tute (2.7) into the effective Hamiltonian H', (2.5),
we obtain the new Hamiltonian B":

However, this trivial result has nontrivial consequences.
Let us evaluate the "effective mass" of the Quid in
the container, i.e., the derivative of P(v) with respect
to v, in the limit v—&0. According to (2.10) this deriva-
tive is equal to NM. But we can also evaluate the
derivative directly from Eq. (2.6). The denominator
of (2.6) does not contain a term linear in v, in spite of
appearances. This can be seen by observing that motion
to the left and motion to the right must be equivalent
in their effect on the partition function (the denomi-
nator); or else it can be seen directly from (2.8): the
additional term is of order v'. Hence we get'

H'= H"=Q (y;")'/2M+ V(ri",rs", ,rA ") ,'NM„—'-
(dP)
&dv), ,

Trace[P' exp (—PH) )=P(P')A. ; .=s.
Trace[exp( —PH))

(2.11)
=H (p;",q;") ', NMv'—, — (2.8)

N

P=NMv+p p.;"=NMv+P", (2 9)

where P" is the same function of the p;" as P was of
the p;. P' is clearly the linear momentum of the fiuid
as measured by an observer at rest with respect to the
box. Substituting (2.8) and (2.9) into (2.6) we get

P(v) =
exp( ——,'NMv') Trace( (P'+NMv)

&«xp[—&H (p",q"))}

exp( ——',NMv') Trace (exp[ —PH(p", q"))}
=NMv, (2.10)

where the last result follows from the fact that the
trace of P" is zero as a result of the formal invariance:
the trace of P' exp[ —pH(p", q")) is formally identical
with the trace of P exp[—pH(p, q)), and this latter
trace is just the expectation value of the total linear
momentum in a stationary box, which is zero.

So far, we seem to have done no more than to prove
a well-known result by a long and tedious method.

where now H(p,",q;") is formally the same function of
its variables as the initial Hamiltonian H, (2.1), was of
the variables p; and q;. This invariance of form is the
expression of the Galilean invariance of the underlying
physical problem. If we did not have Galilean invari-
ance, it would be impossible to 6nd a canonical transfor-
mation which brings the transformed Hamiltonian
back to its original form [except for an irrelevant
added constant in (2.8)). The formulation in terms of
the once-primed coordinates and momenta is definitely
not Galilean invariant, since we had to choose one
preferred (moving) system of coordinates. It will be
essential that a canonical transformation akin to (2.7)
is not possible for uniform aegllur motion of the
container.

We now substitute (2.7) into the definition (2.5) of

P, the total linear momentum, to get

When we equate this value to the result NM obtained
from (2.10), we get an equipartition theorem for the
degree of freedom associated with bulk motion of the
Quid:

((P'/2NM))A, ———,'kT. (2.12)

Hence we see that the degrees of freedom associated
with bulk linear motion have the equipartition value
of energy, even in quantum statistical mechanics. Yet
we know that the equipartition theorem itself fails in
quantum statistical mechanics. What, then, is the
relationship between (2.12) and the equipartition
theorem in general) To see this, we take the de6nition
of P as the sum of all the p„and substitute it into
(2.12). Since the particles are all identical, all square
terms give the same result, and all cross terms are
equal to each other; hence we get

(P'/2NM) A„(p»'/2M) A„——
+ (N—1)(p»p„/2M)„„=-',kT. (2.13)

In classical statistical mechanics, there is no correlation
between momenta of diferent particles. That is,
(P~iP~s)A~=0 and the equipartition theorem is a conse-
quence of (2.13). In quantum statistical mechanics,
even an ideal gas of identical particles exhibits corre-
lations between momenta of different particles, as a
result of the Bose-Einstein (or Fermi-Dirac) statistics,
i.e., as a result of the fact that the wave functions must
satisfy special symmetry conditions. If we could take
our trace over all wave functions, rather than over all
symmetric (or antisymmetric) wave functions, the ideal
(noninter acting) gas would obey the equipartition
theorem even in quantum mechanics. The presence of
interactions does rot lead to correlations between
momenta of diferent particles in classical statistical
mechanics. In quantum statistical mechanics, the inter-
particle forces can produce momentum correlations,

' Strictly speaking, an error is made here, since the operator P
does not commute with the Hamiltonian II in the presence of
walls. A more detailed consideration shows that the error is of
order t/X (%=number of particles) and must therefore be
ignored in statistical mechanics.
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for example by producing bound states of pairs of
particles vrhich then form "molecules. "

Equation (2.13) is the quantum-mechanical general-
ization of the equipartition theorem for a gas of identical
particles. We can solve for the correlation function of
momenta of diferent particles:

(N —1)(p~ip*i)A, =MkT —(p, i')„„. (2.14)

The deviations from classical equipartition are in

opposite directions for Fermi-Dirac and Bose-Einstein
statistics; the correlation coeKcient (p*ip*2)av is negative
for Fermi-Dirac statistics, positive for Bose-Einstein
statistics.

A very interesting feature of (2.14) is the dependence
of '(p, ip 2)i„on the number of particles N. We shall

return to this point in some detail, in Sec. 5.
An equation similar to the virial theorem in classical

statistical mechanics can also be derived, and again
divers from the classical equation by the presence of
correlation.

Finally, we can generalize to systems containing
di6'erent kinds of particles. Let us take two kinds of
particles, of masses M and 3f', respectively; there are
E particles of the 6rst kind, E' of the second kind.
Then the generalization of (2.12) is

(P')A„(NM+N—'—M')kT. (2.15)

The corresponding generalization of (2.14) is not very
useful, since it involves three difterent types of corre-
lations.

Substitution into the Lagrangean corresponding to the
Hamiltonian (2.1), and transformation back to the
Hamiltonian formalism gives the. transformed momenta

I
p8i p8iy pri = prig pzi =pzi. (3.2)

The canonical variable representing the transformed
angular momentum is physically the angular momen-
tum with respect to the rest frame, rot with respect to
the moving coordinate system. The transformed Hamil-
tonian is

H'=H —
a& Q pg, =H oiL, — (3.3)

pgi
Hi=(2M) '2( p-'+p-'+

'-i& rP P

+V—-'M~02+ r' (3 4)
i=1

where I. is the total angular momentum of all particles
around the s-axis. Again the transformed Hamiltonian
is not numerically equal to the original Hamiltonian,
nor is it equal to the Hamiltonian as written down by
an observer moving along with the box.

It is instructive to write down this latter Hamil-
tonian. The observer moving along with the box would
first of all introduce a term in the potential energy to
describe the centrifugal force, i.e., he would write down
the provisional Hamiltonian

3. DEFINITION OF THE MOMENT OF INERTIA

We now perform a similar analysis for rotational
motion. Unlike the translational case, the result is not
a consequence of Galilean invariance; the transfor-
mation to a rotating system of coordinates is not a
Galilean transformation.

The same arguments which led us before to trans-
form to a system of coordinates moving along with the
box, now lead us to transform to a system of coordi-
nates rotating along with the box. Just as before, the
conditions of the problem force us to use this transfor-
mation, since otherwise we could not replace the actual
walls of the container by perfectly reQecting mirror
surfaces (boundary conditions on wave functions). '

The canonical transformation to rotating coordinates
is similar to the transformation discussed in Sec. 2.
We use cylindrical coordinates r, 8, 2'. The new coordi-
nates are

r =r;, s =s;. (3.1)

'It is interesting to observe that, unlike the translational
motion of the box, there exists a special case here in which the
roughness of the walls of the box is essential to the attainment of
thermal equilibrium: consider a box with cylindrical symmetry,
set in rotation about its symmetry axis. If the walls of the box are
perfectly reQecting mirrors, the Quid inside the box is not set
into rotation at all. However, even one small irregularity on the
inside surface of the box is enough to make the thermal equilibrium
state unique. This small surface irregularity takes the place of
the "dust particIe" in the theory of blackbody radiation.

This Hamiltonian fails to give the correct equations of
motion because the Coriolis force is not included. The
Coriolis force is a velocity-dependent force at right
angles to the velocity vector, and is therefore entirely
analogous to the magnetic force on a charged particle
moving in a constant magnetic field (this is of course
the basis of the Larmor theorem). Hence our moving
observer would introduce a "vector potential" to de-
scribe the Coriolis force; the final Hamiltonian becomes

(pg; Mr iv))'—
H"= (2M) ' Q p '+p .'+

+&—-'Mrs, 2 Q r 2. (3.5)

It is easily seen that this Hamiltonian does give the
correct equations of motion. However, H" is formally
diferent from the Hamiltonian of the observer in the
rest system, i.e., from H, Eq. (2.1). That is, H" is not
the same function of its variables as H is of its variables.
The differences are twofold: there is the additional
potential energy of the centrifugal force, and the
alteration in the kinetic energy associated with the
Coriolis force. The centrifugal force is proportional to
co' and can therefore be ignored for small values of &.
One might think that we could introduce the momentum
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variables
P3;"=Pp; —Mr,3pp,

by (3.9) is equal to the conventional expression for the
(3.6) moment of inertia, Eq. (1.2).

which correspond to the angular momentum relative
to the moving system, and thereby make the Hamil-
tonian H" formally identical to H, (2.1), except for
terms of order aP (which are of no interest for the
moment of inertia). However, unlike the corresponding
Galilean transformation (2.7), (3.6) is 3303 a canonical
transformation. The new angular momenta introduced
by (3.6) fail to commute with the radial momentum
variables p„,, and the commutators are of order &u, not
oP.' This shows the essential difference between the
rotational motion and the much simpler translational
motion of the box.

The thermal equilibrium value of the angular mo-
mentum of the Quid in the rotating box is given by

TraceLL exp (—PH') ]I (pi) =
TraceLexp (—PH') j

Trace(I exp[ —P (H—piL) ]}
(3 7)

Trace (expL —P (H—coL)]}

The denominator of (3.7) is the partition function of
the rotating Quid, and is an even function of the angular
velocity M, by symmetry. We are interested in the
moment of inertia, which is defined by

O' Av

d'"q I d'"P PAPA f exp( PH)—

j d'Nq ~d3Np exp( —pH)

(4.2)

The Hamiltonian is a diagonal quadratic form in the
momentum components, i.e.,

4. THE MOMENT OF INERTIA IN CLASSICAL
STATISTICAL MECHANICS

We first prove a lemma which is itself of some interest
since it represents a considerable generalization of the
equipartition theorem. To save writing, we introduce
coordinates q&

——x&, q2=y&, . ~ . , q» ——zN, and we label
the corresponding momentum components accordingly.
Then the following lemma holds:

Lemma: Let f(qi, ,q3N) be any function of the
coordinates only. Then

(pApA f)A.= 43 MAT'(f)A. .

The proof of the lemma is patterned along the
conventional proof of the equipartition theorem. The
average value on the left side of (4.1) is given by

(dL't

(C4) (g—p

(3.8)
3N PA

H= Q +U(qi, . ,q3N). (4.3)

Tracet L3 exp( —PH) j
TraceLexp (—PH)]

(3.9)

where 8', Eq. (2.1), is the Hamiltonian of the Quid in
a stoti ovary container.

The following sections contain a proof, in classical
and then quantum statistical mechanics, that I defined

Unlike the translational case, where P is a linear
function of e as long as e is small compared to the
velocity of light, the angular momentum L is not a
purely linear function of ~; as the angular velocity
increases, centrifugal forces come into play, particles
tend to be forced outward, and L increases more
rapidly; that is, the effective moment of inertia is itself
a function of co. However, these effects are not involved
in the definition (3.8) since we go to the limit cv—+0.

We now differentiate (3.7) with respect to co, and
then set co equal to 0. The denominator is an even
function of or, and therefore its derivative with respect
to co is zero at co =0.We then get the following definition
of the moment of inertia of a Quid in thermal equi-
librium:

Hence we have the identity

p3= MABH/Bp3.

Substitution into the numerator of (4.2) gives

Numerator
8 exp( —PH)

(M /p) l d3Nq d3Np fpJ

(44)

3N 3N=+8,A. (M„/P) ~d3Nqj d'NP f exp( —PH), (4.5)

~NL'=
I &(x'p. '—y'p*') I

where the second step comes from an integration by
parts on PA together with the observation that the
function f is independent of pA. Combination of (4.5)
an.d (4.2) proves the lemma.

We are now in a position to prove the main theorem.
We need the average value of I.', and we therefore write

3 An expansion in powers of this commutator is possible,
however, as has been shown by R. Peierls, Z. Physik 80, 763
(&933).

= g (x;p„;—y;p„) (x,p„;—y,p.,). (4.6)
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Each term of (4.6) is of the form appropriate for use
of our lemma (4.1). When we employ the lemma, all

nondiagonal terms drop out identically, and we get

(4.7)

which is what we set out to prove,
At first sight it may seem as if we have proved too

much; for consider the following counter example: a
cylindrical, closed container is filled partially with
water and is mounted with its axis horizontal. The
water settles in the lower part of the container. We
now start rotating the container about its horizontal
axis. The water stays near the bottom, and the observed
angular momentum is not equal to Ice with I given by
(4.7). The answer is that under these conditions thermal
equilibrium is never reached. As the container rotates,
the layer of water in contact with the wall moves along
with the wall, and closed currents are set up in the
water. These currents maintain themselves as long as
the container is kept rotating. The viscous forces then
produce heat in the water, and the temperature in-
creases. Thus our theorem is not in contradiction to
this case, simply because the theorem starts from the
assumption of thermal equilibrium and is therefore not
applicable to this case.

One condition of applicability of our theorem, i.e.,
the condition for the existence of a rotating motion of
the Quid in thermal equilibrium, is that the potential
energy V must be invariant under rotations.

This is true, for example, for a rotating bucket of
water with the axis of rotation parallel to the direction
of the gravitational force, and is not true for a bucket
of water mounted with the axis horizontal.

5. CORRELATION LENGTH

Unlike classical statistical mechanics, Eq. (4.7) does
not hold exactly in quantum statistical mechanics. For
normal systems, we shall show that (4.7) is approxi-
mately correct, the approximation becoming better and
better as the size of the container is increased. However,
there exists at least one exceptional system (the ideal
Bose-Einstein gas below its condensation point) in
which (4.7) is violated, no matter how big the size of
the container. ' lt is clear, therefore, that some physical
assumption about the Quid is necessary in order to
prove (4.7) in quantum statistical mechanics. Thermal
equilibrium alone is not enough.

4 There are two kinds of "rotational invariance": (1) Invariance
of the form of the Hamiltonian under change of the origin of the
angle variable 8, i.e., under the transformation 8'=8 42, and (2)—
Invariance of the form of the Hamiltonian under a transformation
to rotating coordinates, 0'=0—cot. The first invariance is the one
we need here, and is frequently fu]filled in practice. The second
invariance is never true. This differs from linear motion, where
both translational invariance and Galilean invariance are ob-
served.' J. M. Blatt and S. T. Butler, preceding paper Lphys. Rev.
100, 476 (1NS)j.

We shall restrict ourselves to fluids (gases and
liquids), and ignore solids. The moment of inertia of a
solid is equal to the classical value immediately, as a
result of the solidity, so we do not lose much in general-
ity by restricting ourselves to Quids from the start.
We point out, however, that our considerations cue be
applied to the electron gas in a metal, thereby enabling
us to deduce some statements of interest for the theory
of superconductivity (this will form the subject of a
separate paper).

Let us consider two particles in our field, separated by
a distance r12. The correlation coeflicient between their
momentum components P,i and p 2, say, is defined by

Q *(r12) (P 1P 2)A/((P 1))A ((P 2 ))A

with similar equations for Q „,etc. We assert that these
correlation functions depend on the distance r12 between
the two particles in the Quid, and in particular there
must exist in any physical Quid a "correlation distance"
A such that the correlations Q become negligibly small
for r12)&h.. Since this correlation distance forms the
starting point of the entire subsequent discussion, we
shall now devote some time to clarifying its meaning.

First of all, the correlations Q are identically zero in
classical statistical mechanics. That is, two different
particles of the Quid always have uncorrelated momen-
tum components in thermal equilibrium, no matter how
close together the particles are. Thus the correlation
length A in classical statistical mechanics is zero. One
might think a priori that momentum components of
diGerent particles should show a correlation if the
particles are within one mean free path of each other,
but the formalism of classical statistical mechanics
shows that this is not so. The mean free path is a
nonequilibrium concept, whereas the correlation length
is an equilibrium quantity, and in classical statistical
mechanics there is no relation between the two.

In quantum statistical mechanics, one may at first
object to our definition of the correlation coefficients,
on the grounds that the momenta and coordinates of
the particles don t commute. However, it is still possible
to define a quantity analogous to a probability of
finding one particle at ri with momentum Aki and
another particle at rs with momentum hk2. This is
done in the next section, Eq. (6.20). The analogy is
imperfect, since the quantum mechanical expression is
not only not positive definite, but even fails to be real.
However, this does not affect the possibility of defining
a correlation length, since the correlation coeKcient Q
can become small without being real or positive.

It was pointed out in Sec. 2 that there are two ways
in which quantum mechanics leads to momentum corre-
lations between particles of the Quid. First, there is the
possibility of the formation of discrete bound states
(molecules) in which the momenta of the atoms making
up one molecule are strongly correlated. Second, the
requirements of Bose-Einstein or Fermi-Dirac sta-
tistics entail momentum correlations even in an ideal
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gas. Let us make a very rough first estimate of the
correlation lengths we can expect from these two effects:
the first effect gives rise to momentum correlations
over distances of the order of'magnitude of interatomic
distances within molecules (we exclude solids from this
discussion), the second eRect can be estimated to give
momentum correlations of significance over distances
of the order of a de Broglie wavelength of a particle
with energy 8=kT.

These rough estimates are probably adequate for
most systems, but they fail for some special systems.
The most conspicuous failure occurs for the ideal Bose-
Einstein gas below its condensation point. This system
contains a macroscopic number of particles (comparable
to the total number E) in a single-particle state of
de Broglie wavelength comparable to the size of the
box. Thus this de Broglie wavelength, rather than the
de Broglie wavelength of a particle with energy E=kT,
gives the most far-reaching momentum correlations,
and momenta of different particles in the gas are
correlated even when the particles are at opposite ends
of the box, no matter how big we make the box. That
is, the ideal Bose-Einstein gas below its condensation
point does not have a finite correlation length (a
correlation length independent of the size of the
container) .

The other ideal gases (Bose-Einstein gas above the
condensation point, Fermi-Dirac gas) have in principle
the possibility of infinite-range momentum. correlations,
because the same quantum state which is responsible
for the long-range correlation effects in the condensed
Bose gas exists in these other gases and can be occupied
by particles of the gas. However, in the other ideal
gases this quantum state, as well as all the other very
long wavelength states, has such a small occupation
probability that no signi6cant correlation results from it.

When we turn from ideal gases (no interactions
between the particles) to real physical fluids, one
significant difference appears immediately: the inter-
actions between the particles make correlations of
infinite range (range as large as the container) im-
possible. For suppose the opposite were true; we could
then take a volume of Quid as large as the interior of
the sun, and would have to expect to 6nd individual
atoms with appreciably correlated momenta at opposite
ends of this volume, in thermal equilibrium; if this be
admitted as a possibility, let us make the container as
large as the interior of a red giant star, or as large as
the whole galaxy. It is clear that, no matter how weak
the interactions between the particles are, they must
eventually wash out correlation effects between very
distant atoms of the Quid.

As a rough 6rst approximation, applicable to dilute
gases, we may assume that an upper limit to the
correlation distance A is given by a few times the mean
free path of a particle. That is, we assume that two
particles which are many mean free paths away from

each other have statistically uncorrelated momenta.
Of course, this upper limit may be much too high (as
is shown by the example of classical statistical me-
chanics, where A=O no matter how large the mean free
path) and is not applicable to liquids, since the mean
free path is not a useful concept in the liquid state.
An upper limit to A for liquid helium will be established
by special arguments in a subsequent paper. For the
moment, we need not estimate the value of A. ; all we
need is that a correlation distance A. exisfs (i.e., is
independent of the volume of the container) for any
physical Quid. .

There is then a significant qualitative difference
between real Quids, no matter how weakly the particles
interact with each other, and ideal, noninteracting
gases. Real Quids always possess a correlation length A,
and two particles in a real Quid are statistically uncor-
related when they are apart by a distance r))A; ideal
gases may show long range correlations, and the ideal
Bose-Einstein gas below its condensation point actually
does so.7

It should be pointed out that the correlation length
A. is a quantity defined in the thermodynamic equi-
librium state, not a transfer property. It is of course
well known that the mean free path is of great im-
portance in transfer phenomena; for example the Qow
of the Quid through a pipe of dimensions large compared
to the mean free path is qualitatively different from
the Qow through a narrow pipe of diameter less than
the mean free path (Knudsen regime). We are nof
concerned with this, but are pointing out qualitative
differences between a "Knudsen gas" and a normal gas
i rl, thermodynamic eqnilibrilm.

The ideal Bose-Einstein gas below its condensation
point has a nonclassical moment of inertia'; we know
from experience that most ordinary Quids have the
classical moment of inertia. The discussion above has
shown that there exists another property of Quids, the
correlation length, which distinguishes the ideal Bose-
Einstein gas below condensation from all other Quids.
It is reasonable, therefore, to suppose that there is a
connection between the moment of inertia and the
correlation length. We shall show in the subsequent

6 A single mean free path may not be enough, since significant
momentum correlations might be maintained as the result of
small chains of collisions. In principle, the correlation coeScient
never becomes identically zero; however, the residual correlation
coe%cient at large distances decreases very rapidly with the
distance (presumably exponentially) and therefore becomes negli-
gible very quickly.' The dangers of ignoring the in6nite correlation length can be
seen for example in the paper of P. R. Zilsel, Phys. Rev. 92, j.106
(1953).Zilsel s,ttempts to impose an external condition (prescribed
value of the total linear momentum I') on a part of the volume of
a container filled with an ideal Bose-Einstein gas below its
condensation point. He then obtains results inconsistent with
Galilean invariance (see Sec. 2 of this paper). The existence of a
correlation length h. in a real Bose-Einstein Quid implies important
qualitative changes in the nature of the Bose-Einstein conden-
sation phenomenon itself. However these qualitative changes are
not of experimental importance provided the correlation length A
is much larger than the mean distance between particles in the
Quid.
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mathematical sections that this is indeed the case. To
be precise, let I be the actual moment of inertia defined

by (3.9), and let Ip be the classical moment of inertia,
~%3M' for a cylindrical bucket of radius E. We shall
show that'

I= Ipt 1+order(AS/V) j, (5.1)

where S is the surface area of the container and V is
its volume. If the Quid is normal, i.e., possesses a
definite correlation length A, the correction term can
be made arbitrarily small simply by increasing all
linear dimensions of the container. But in the ideal
Bose-Einstein gas below its condensation point, A. is of
the same order as the linear dimensions of the container,
and the correction term remains important no matter
how big we make the container.

In the later application, we shall need a somewhat
stronger form of (5.1) for the special case that the
container has the form of a cylinder of radius R and
height D. We shall show in Appendix A that for such a
cylinder the height D is unimportant, and hence

I=Ip(1+order (A/8) j. (5 2)

' This theorem is correct, and will be proved to be so, on the
assumption that the particles have no intrinsic spin (which is
true for helium atoms). If the particles do have intrinsic spin,
this spin may contribute to the total angular momentum of the
rotating Quid, as a result of spin-orbit coupling. A more detailed
consideration shows that this contribution is of order co' for all
systems except perhaps ferromagnets; a contribution of order co'

to the angular momentum is of no importance for the moment of
inertia, Eq. (3.8). More important, however, is the fact that the
angular momentum contributed by the spins is at most ask,
where N is the number of particles. (This value is obtained when
all spins are lined up parallel to each other. ) As the radius of the
bucket is increased, the orbital contribution to the angular
momentum is proportional to XR', hence for large enough buckets
the spin contribution is always negligible compared to the orbital
contribution. Since the spins are of no importance for the final
result, we shall ignore spins from now on.

'This is the quantity W(ki, r&) defined in Sec. 6. The analogy
is not perfect because 8' can assume negative values. However,
the expectation value of any operator F which is a sum of single-

N
particle operators, Ii = Z F;, can:be expressed in terms of 8'.

i=1

The proof is relegated to an appendix because the
formalism is simpler if a/l linear dimensions of the
container, including the height, are large compared to
the correlation length.

Having described our program, we continue the
discussion of the correlation length. As soon as the
particles in the Quid interact with each other, it is
impossible to write the wave functions of the actual
Quid as products of single-particle wave functions.
Thus we can no longer talk of "occupation numbers" of
single-particle states, and the free energy of the Quid

cannot be written as a sum of contributions from
single-particle states. However, it is still possible to
de6ne a quantity analogous to a probability of finding
a particle at the point r with momentum equal to hk. p

It will be important in our subsequent mathematical

work to use plane waves as our basic set of functions.
Since the plane wave functions fail to satisfy the
correct boundary conditions at the walls of the con-
tainer, an error is made by this procedure, and this
error is of the order of X S/V, where X is the largest
de Broglie wavelength of importance in the partition
function, S is the surface area of the container, and V
is the volume of the container. This error estimate is
the ratio of the volume in which the error is made, to
the total volume. We shall now give arguments to prove
that X, the maximum de-Broglie wavelength of im-
portance, is less than the correlation distance h..

We have mentioned two sources of momentum corre-
lations in quantum statistical mechanics. One of these
was the requirement of symmetry or antisymmetry of
the wave functions. This requirement imposes momen-
tum correlations of particles within one de Broglie
wavelength of each other. Thus the correlation distance
A must be at least as large as the maximum de Broglie
wavelength of importance, i.e., X ~&A.. Of course, the
correlation distance A may be much larger than this in
special systems, but this does not concern us here.

Finally, we return to formula (2.14); since the
average (p, i )A„ is an intensive quantity the correlation
coefficient (p, tp, s)p„ is seen to be inversely proportional
to the number of particles in the system. In a Quid

with correlation length A, this dependence is easily
understood: when the two particles are farther apart
than A, their momenta are uncorrelated, and the contri-
bution to (p~ip~s)Ay vanishes. Thus the only regions of
the two-particle configuration space (ri, rs) which con-
tribute significantly to (p»p»)A„are such that

~
ri —rs~

(A. The contributing volume is therefore A'V rather
than V', and the correlation coeKcient (p~ip, s)A, is
proportional to As/V, i.e., inversely proportional to the
volume and hence also inversely proportional to the
number of particles X, in agreement with (2.14).

While (2.14) can be understood in terms of the
correlation length, we emphasize that (2.14) holds even
when no correlation length can be defined, for example,
(2.14) holds for the ideal Bose-Einstein gas below its
condensation point. The reason is that correlations,
even over large distances, between eery smal/ momenta

pi and ps make no effective contribution either to

(pl )A ol to (p,p,),„. Since long-range correlations are
important only for states with long de Broglie wave-
lengths, and hence with small momenta, (2.14) does
not depend for its validity upon the existence of a
finite correlation length, and conversely the validity of
(2.14) cannot be used to prove the existence of a finite
correlation length for any particular Quid.

6. AVERAGES OF ONE-PARTICLE AND
TWO-PARTICLE OPERATORS

In this section, we develop some general methods
necessary to carry through the proof of (4.7) in quantum
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statistical mechanics. These methods are not without and we use the short-hand notation
some interest apart from this particular problem. " (.K R) t-.(k +k + +k )] (6 7)et P be a sum of single-particle operators

F=g F,. (6.1)

Let II be the permutation which replaces 1 by s&,

2 by ss, , X by s~. Then the vector Rn is defined by

R = (i' i,i' s, ' ', i' ~). (6.8)
where each I', acts only on the coord'nates of the ith The permutation operator II applied to the plane wave
particle. We are interested in the expectation value of
F in thermal equilibrium:

Trace(F exp( —pH)]p=
Trace/exp (—PH) ]

Trace(F i exp( —PH)]=X (6.2)
TraceLexp( —pH)]

where the trace is to be taken over all symmetric wave
functions for Bose-Einstein statistics, over all anti-
symmetric wave functions for Fermi-Dirac statistics.

We shall attempt to simplify the evaluation of this
trace under the assgmPliom that there exists c correlation
distance A., of the kind discussed in Sec. 5. Let S be the
surface area of the volume V in which our system is
enclosed. We define the function G(k,r) by

G(k,r) = rsexp( —ik r)Fi exp(+ik r)

+complex conj. (6.3)

We assert that there exists a real function W(k') such
that

~dsri
Trace(Fi exp( —PH)]=+ G(ki, ri)W(kl )

+terms of order AS/V. (6.4)

The sum over ki is a sum over plane wave states in the
volume V; it can often be replaced by an integral over
ki space. The function 8' is the same for all operators
F, and it is therefore in some sense a probability density
for finding the wave vector k in an interval dsk. How-
ever, W is not necessarily positive.

The proof of (6.4) proceeds in several stages. First
of all, we have shown in Sec. 5 that the existence of a
correlation distance allows us to perform the trace by
summing over all plane wave functions.

Next we introduce notation. We let R stand for the
ordered set of coordinate vectors

R= (r, ,rs, . ,re),

and K for the ordered set of wave vectors

K=(k,k, ,k ),

(6 5)

(6.6)
"similar methods have been used elsewhere: E. P. Wigner,

Phys. Rev. 44, 31 (1931); J. E. Moyal, Proc. Cambridge Phil.
Soc. 45, 99 (1949); J. E. Mayer and W. Band, J. Chem. Phys.
15, 141 (1947); H. S. Green, Proc. Roy. Soc. (London) A194,
244 (1948); J. Chem. Phys. 19, 955 (1951). Our main interest
here is in the symmetry properties of the functions W and U
defined in this section, rather than in an explicit evaluation of
these functions.

II exp(iK R) =exp(iK R"). (6.9)

=-', (&!)—' p en TRACE(Fi exp( —pH)11

+II exp( —PH)Fi], (6.10)

where the sum extends over all possible permutations
II, and the symmetrized form is preferable to exhibit
manifest reality of the final quantities.

We now write down the trace in completely explicit
form. There is a sum over all plane wave states, i.e.,
over all sets of vectors ki, ks, , kiv. Furthermore,
there is an integration over 3S dimensional configura-
tion space to obtain the diagonal matrix elements for
the trace. Thus we get, using the Hermitean properties
of Pyq B) and II

~d3N).

TraceLFi exp( —PH)]=-', (Al'!) ' P en P
n KJ yN

&((LFi exp(iK R)]*exp( —PH) exp(iK Rn).
+Lexp( —PH) exp(iK Rn)]*Fi exp(iK R)). (6.11)

We define the function Gi(ki, ri) by the relation

Gi(ki, ri) =exp( —iK R)Fi exp(iK R)
=exp( —iki. ri)Fi exp(iki ri). (6.12)

The second form follows because the operator Ii~ acts
upon the coordinates of particle 1 only, by assumption.
We then get

~d3Ny
TraceLFi exp( —PH)]= s(&VI) "P en P

rr Kd

)&LGi*(ki,ri) exp( —iK R) exp( —PH)

)&exp(iK Rn)+compl. conj.]. (6.13)
"B.Kahn and G. E. Uhlenbeck, Physica 5, 399 (1938).

We define en to equal +1 for Bose-Einstein sta-
tistics, to equal (—1)" for Fermi-Dirac statistics.
Furthermore, we define the symbol TRACE to mean
a trace over all states, irrespective of symmetry; the
symbol Trace refers to a trace over symmetric (Bose-
Einstein statistics) or antisymmetric (Fermi-Dirac
statistics) states only. We then get"

Trace(F i exp( —pH)]
= (&!) ' P en TRACE(F & exp (—PH) II]
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We now observe that the integrations over r2, r3,~, r~ do not involve the function G~ at all. The
same holds true of the sums over ks, ks, . , k~, and
of the sum over permutations II. Thus all these oper-
ations can be performed once and for all, independently
of the form of G~, i.e., independently of the operator Ii &.

We define a function W(ki, ri) by

consider the function W(ki, ri+a) where a is a constant
vector. In the definition (6.14) of W, we introduce new
variables of integration: r2' ——r2 —a, r3' ——r3—a,
r&' ——r&—a. Since we have imposed periodic boundary
conditions, we do not need to change the limits of
integration. The function exp( —iK R) is then changed
into

exp —i P k;.a exp( —iK. R),

Xexp( —iK. R) exp( —PH) exp(+iK R"). (6.14)

This is a definite function of ki and ri, nof a formal
quantity which still involves operators acting on r&.

For exp( —gH) exp(iK R") is a definite function of
the variables ri, r~, ~ ~ ~, r~, and this is multiplied by
exp( —iK R) and integrated over rs, , riv, thereby
yielding a definite function of ri. W(ki, ri) is very hard
to evaluate explicitly; but we shall not need to do so
in this paper.

We also observe that we have rot replaced sums over
wave vectors k by integrals over a continuous k-space.
It is well known that this procedure leads to difficulties
when the particles in the system can form bound states,
and results in an incorrect omission of the contributions
of the bound states to the trace. But as long as we keep
to sums over discrete wave vectors k, we are summing
over a complete set of functions, and no states are
omitted.

With this definition, we get

pd'r~
TraceLFi exp( —PH) j= s 2 ' LGi*(ki ri) W(ki rl)

p

+W*(ki,ri)Gi(kiri) j. (6.15)

%e now proceed to show that, to the approximation
involved in neglecting terms of order AS/V, the function
W(ki, ri) is independent of ri, depends on ki only
through k»', and is real.

To show this, we observe that the existence of the
correlation distance A allows us, in the calculation of lV,
(6.14), to replace the true volume first of all by a cube
of the same total volume, and then to replace the correct
boundary conditions at the surfaces of the cube by the
condition of periodicity of all wave functions. Both
operations introduce errors of order AS/V, and are
therefore allowed to us.

We now show that W(ki, ri) is independent of r i in the
periodicity cube, provided only that the Hamiltonian
operator H is invariant under all translations. "Let.us

'~ For our later use of these theorems, this condition is stronger
than necessary, and is not always satisfied. For example, the
Hamiltonian of water in a bucket under the action of gravity is
not invariant under translations parallel to the force of gravity.
We shall need only invariance under translations perpendicular
to the axis of rotation of the bucket, and hence can allow W(k~, r~)
to depend upon si, but not upon xI or y1. The modifications of
the proof introduced by the possibility of these weaker conditions
g,re rather trivial, and we shall indicate them in the Appendix.

and the function exp(+iK R") is changed into

exp +i p k,"a exp(+iK Ru).
j=1

The additional factors are just constants as-far as the
integrations over r2, r3, , r~ are concerned, and also
as far as the operator exp( —PH) is concerned. Thus
these factors cancel, and we conclude that W(ki, ri) is
independent of ri. Furthermore, 8' is a scalar function
of the vector ki only (it is independent of ri), and this
means it must be a function of k&' only. "

Finally, we observe that an additional integration of
(6.14) over ri makes the integral in (6.14) into an
integration over the full 3S-dimensional configuration
space. We conclude from the Hermitian property of
the operator exp( —PH) and of the operator Pu euii
that

d +lW(kl rl) d aiW (kl, rl) ~

Lj

(6.16)

Since W' is independent of ri, we conclude that W is a
real function of k&'. This finishes the proof of the
statements made in connection with Eq. (6.4).

We now turn to expectation values of operators
involving the coordinates of tmo particles. Let F be an
operator of type

(6.17)

where Ii;; involves the coordinates of particles i and j
only. We have

Trace[F exp( —f)H)]
=X(jV—1) TracePFis exp( —PH) j. (6.18)

"The reader may object on one of two grounds: (a) this is so
trivial it needs no proof; (b) the proof is incorrect since the first
step, i.e., the replacement of the actual volume by a cube of the
same volume content, already assumed that 8' was independent
of ri, i.e., we have assumed at the start what we tried to prove.
Objection (a) can be countered by observing that it is not obvious
a priori that W(ki, ri) might not be complex with a phase factor
exp(ik& r&); this has been excluded by our proof. Objection (b)
is incorrect: the correlation distance h. assures us that 5'(RI,ri) is
a "local" property, i.e., W depends only on conditions within a
neighborhood of size A around the point ri, but a local property
need not be independent of the locality. The replacement of the
actual volume by a cube is possible because 8" is a local property,
and does rot presume that 8' is ingepqgdqnt of position.
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U(kg, kg, rg, r2)

=(&.) '2
II k3, k4, ~ ~ ~, kg

Pd fgPf4' ' 'd f~

&&exp( —iK R) exp( —PEI) exp(+iK R"). (6.20)

Comparison of (6.14) and (6.20) gives the relation

pd x2
W(k, ,r,) =P U(k&,k, ,r, ,r,).

p
(6.21)

By writing down the trace in (6.18) explicitly, we see
that

Trace[F» exp( —PH)$
f d fgPf2

(G*U+ U*G). (6.22)
k1 kgb V2

We now establish certain properties of the function
U which we shall need in the next section. First of all,
the definition of U, (6.20), together with the assumption
of a correlation distance A independent of the volume
of the container, allows us to assert that U is invariant
under translations of r& and r& simultaneously. The
detailed argument is exactly the same as for t/t/' and
needs no repetition. Next, by our fundamental assump-
tion of a correlation distance A, U becomes separable
if the distance

~
r~—r2~ exceeds A. That is

U(k~, k~, r~,r2) =W(kP)IV(k2') for ( r~ —r2~))A. (6.23)

The fact that the factors are just W(kP) follows from
separability together with Eq. (6.21). From the trans-
lation symmetry we conclude that

U(k„k„rg)r~) = U(kg)k, )r„)
[except near the boundariesj. (6.24)

When r~ and r~ are well separated, (6.23) applies and
U is real since W is real. When

~
r»~ is of order h. or

smaller, U need not be real. However, U has additional
symmetries as a result of being a "local" property: U
is invariant under rotations of the set of vectors
k&, k2, r» simultaneously, and it, is also invariant under
the inversion operation:

U(—ky, —k2, —ry2) = U(k],k2,r»). (6.25)

This 6nishes our general analysis of expectation
values of one- and two-particle operators. A word of
caution is perhaps in order. The theorems may look
more impressive than they really are. For most practical

We define the function G(k~,k2, r~, r2) by an equation
analogous to (6.12):

G(k&,k~, r~,r~) = exp( —iK R)F~2 exp(iK R)
=exp[ i(kl ' rl+k2 ' 12)]F12

&&exp[+i(k~ r~+k2 r2) j, (6.19)

and a function U(k&, k2, r&,r&) by an equation analogous
to (6.14):

problems we need to know the temperature dependence
of physical quantities in thermal equilibrium. This
temperature dependence is contained in the functions
8" and U, and the symmetry properties of TV and U
give absolutely no clue to the temperature dependence
of either. However, for our special purpose these
symmetry properties are enough: we wish to prove a
theorem true at all temperatures [Eq. (1.2)j, and
hence the proof need not involve the temperature
explicitly.

V. MOMENT OP INERTIA IN QUANTUM
STATISTICAL MECHANICS

Since the classical proof given in Sec. 4 is based upon
a generalization of the equipartition theorem, and the
equipartition theorem fails to hold in quantum sta-
tistical mechanics, our method of proof must be altered.
We shall establish the following relation between the
average value of I.' and the mean square total linear
momentum (in the x-direction, say):
(L') .=((x '+y '))"9') ~

X[1+terms of order(AS/V)]. (7.1)

The additional terms are not evaluated but tend to
zero as the volume is made in6nitely large in such a
way that the ratio of surface area to volume becomes
vanishingly small. "The proof depends upon the "cor-
relation distance" A introduced in Sec. 5, and the surface
terms are of relative order AS/V where S is the surface
area and V is the volume.

Once relation (7.1) is established, the result we want
follows from (2.11), i.e., from the equipartition theorem
for the center-of-gravity motion; this latter has been
shown to hold in quantum statistical mechanics as
well as in classical statistical mechanics.

Let us therefore proceed to prove (7.1). We write

/;=Pp;/0= i(x,B/—By, y,B/Bx—;), (7.2)

and we use the permutation symmetry in order to write

Tr aec(L'e ~~) =PA' Trace(l 'e e~)

+$(X—1)O' Trace(l~l2e e~) (7.3).
The traces are understood to be over all symmetric

wave functions for Bose-Einstein statistics, over all
antisymmetric wave functions for Fermi-Dirac sta-
tistics. We now use the results of the preceding section.
We have from (6.4):
Trace[lP exp( —PH))

— G(kq, r~) W(kP)+terms of order AS/V

I
d'r~

(xPk„P+yPk, P—2xgygkggk„g) W(kP)
V

+order AS/ V, (7.4)
"We should note that this condition excludes the possibility of

making a cylindrical volume ininitely large by increasing the
height of the cylipdt;t. &&t;bout increasing its radius.
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where the second line follows from the definition (6.3) over lr vectors, and get zero:
of the function G. We introduce the notations

(x2) —V 1 t x2d3y (y2) —V 1 y2d3y

ej

(7 3)

lk 2U(ill ir2 rl r2)
k1, k2

=(Q k„lW(kl')) (Q k22W(k2')) = 0
k2

~rl r2~ &A. (7.12)
(xy)A,

——V—') xyd3r.

It should be noted that these averages are geometrical
averages, not averages over canonical ensembles. The
geometrical averages arise because 8" is independent
of position. With this notation we have

TraceLlP exp (—PH)] =PP(x')»k„P+(y')»k, P

—2(xy)A k lk l]W(kp). (7.6)

We now introduce, in (7.11), the difference vector
r~2 ——r2 —r~ as a variable of integration. Because of
(7.12), large values of r12 make no contribution, hence
we can extend the integration over the variable r~2 over
a volume V centered at r12——0 (at rl ——r2), rather than
over the correct volume (which depends on rl); this
procedure is correct except within a distance A of the
walls, and hence the error made is of order AS/U. We
thus write for the quantity A, (7.11&:

We now use the fact that S' depends on k' only:

Q k.lk„lW(kP) =0, (7 7) X (xl +xlx12)kylky2U(irlqir2p12). (7.13)

P k,PW(kP)=Q k„PW(kP)

=5 ' TraceLP~P exp( —PH)), (7.8)

where the last part of Eq. (7.8) is true up to surface
terms of order AS/V. We therefore get

Nk' TracePP exp( —PH)] =N((x'+y'))A.

)&Trace[P, P exp( —PH)]+Order AS/V. (7.9)

If this were classical mechanics, the trace of P,P
would be determined by the equipartition theorem,
and this would be the end of the proof. However, in
quantum statistical mechanics the cross term Lthe last
term of Eq. (7.3)] does not vanish, and must be taken
into account explicitly. To do so, we use Eq. (6.22)
and the properties of the function U(kl, k2,rl, r2) which
were established in the preceding section. According to
the definition of G(kl, k2, rl, r2), Eq. (6.19), we have for
the operator Pg2 ——lgl2..

G(kl, k2,rl, r2) =xlx2k„lk„2+yly2k. lk.2

—xly2k„lk, 2
—ylx2k lk 2. (7.10)

Since (7.10) is already real, Eq. (6.22) shows that
only the real part of U contributes.

Consider now the first term of (7.10); its contribution
1s

t'd t'ld f2
xlx2k„lk„2U(kl, k2, rl, r2)

—=&. (7.11)
k1, k20

In order to simplify this expression, we 6rst use the
separability property (6.23). Consider values of rl and
r2 such that (rl —r2()A; we then perform the sum

I I
d3rld3r2

A = p, xlx2kylky2U(kl, k2, rl, r2)
U2

(x )Av Q kylky2U(~l)ir2yr12)
V

=(x')A, A,
' TraceLp»p„2 exp( —pH)]

=-(x')A, A
' TraceLp, lp, 2 exp( —pH)], (7.14)

where the last step is a result of rotational invariance.
A similar reduction carried out on the second term

of (7.10) gives the same as (7.14) but with (x')» replaced
b3 (y')A

Finally, the last two terms of (7.10) make no contri-
bution. Consider the third terni of (7.10). We first
replace x&y2 by x&y& and use the inversion symmetry of
U to show that the correction vanishes. Next we use
translation symmetry in order to write:

f ('d rid t'2

xlylk„lk, 2U(kl)k2, r12)
k1 k2$ g U2

I'd r12
(xy)A Q ' k 1k*2U(kl ir2 rl2) ~

U

We assert that the second term in the parenthesis
gives zero upon integration. This follows from the
inversion symmetry of U, Eq. (6.25); for consider the
contribution made by —hl, —k2, —r». the factor xl2
changes sign, the factor k„~k„2 is unchanged, and so is
U. Thus, in the integral over r~2 and the sums over k~
and k2, we get pairwise cancellation of terms.

Thus we have
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To show that this is zero, we perform a simultaneous
rotation of the vectors ki, kg, and ri~ around the
x-direction, through 180 degrees. The factor k„~ changes
sign, the factor k,2 is unchanged, and U is also un-
changed. Since the operation "sum over ki, k2 and
integrate over r~2" is invariant under such a rotation
oi dummy variables, we conclude that the result
vanishes.

Thus we 6nally have, up to terms of relative order
hS/l',

E(E 1)O' —TraceLlil2 exp( —PH) )=E(E—1)

X((x'+y'))A, TraceLp»p» exp( —PH)]. (7.15)

Combining (7.3), (7.9), and (7.15), we obtain the
desired result (7.1). This concludes our proof.

It should be noted that the proof given here applies
to systems composed of identical particles. The exten-
sion to systems containing particles of several types is
trivial and we shall not give it here. The crucial condi-
tion is the existence of a correlation length A. which is
independent of the volume of the container. The
identity of the particles and the type of statistics
obeyed by the particles is unessential; assuming parti-
cles of one kind only simplifies the mechanics of writing
down the proof, and this is why we made this assump-
tion.

8. CONCLUSION

We have now shown that the moment of inertia of a
system in thermal equilibrium is equal to the usually
computed quantity, both in classical statistical me-
chanics and in quantum statistical mechanics. There
is, however, a considerable difference between the
conditions of applicability of the two proofs. The
classical proof is applicable to an arbitrary system in
thermal equilibrium, with the only proviso being that
the rotating motion must allow thermal equilibrium
also, i.e., that the potential energy V of the system
(excluding wall forces) is invariant under rotations
about the axis which is being used as an axis of rotation.

The quantum mechanical proof, on the other hand,
depended crucially upon the existence of a "correlation
distance" A. between particles with correlated momen-
tum vectors. The reader may feel that this restriction
is not essential, and is merely necessary for our partic-
ular proof. This is not so: there exists a system (the
ideal Bose-Einstein gas below its condensation point)
for which the moment of inertia I, defined by (3.9), is
not equal to the usual value (1.2).' The ideal Bose-
Einstein gas below the condensation point is character-
ized by a correlation distance equal to the linear
dimensions of the container. This is so because a
macroscopic number of particles are condensed into a
state with wavelength equal to the dimensions of the
container. Thus not only have we proved the theorem
about the moment of inertia for 6nite A, but we can
also produce a counter-example to show that no similar

proof is possible if h. can become infinite (i.e., as large
as the container).

There are peculiar systems other than the ideal
Bose-Einstein gas in which the correlation distance A

is comparable to the linear dimensions of the container.
For example, consider a pipe in the shape of a torus,
filled with water, and assume that the water is flowing
steadily in a clockwise direction. Then the momenta
of particles in different parts of the pipe are correlated
by the drift motion, and A is as large as the linear
dimensions of the torus. Such a system is excluded for
our purposes by the fact that it is not in thermal
equilibrium if the walls of the pipe are at rest. We
recall that the definition (3.9) of the moment of inertia
involves averages over the thermal equilibrium distri-
bution in a container at rest.

However, there are also some equilibrium systems
with large correlation distances. For example, consider
a container partially filled with water, in the complete
absence of a gravitational field. This is a two-phase
system, consisting of water and water vapor. I.et us
assume that the walls of the container are perfectly
reflecting, so that the water does not adhere to the
walls. In thermal equilibrium we then have one very
large ball of water, with volume proportional to the
volume of the container, "and this ball of water executes
Brownian motion inside the container. This Brownian
motion has a kinetic energy equal to 3kT/2, and thus
becomes slower and slower as the size of the system is
increased. Nevertheless, there is then a correlation
between momenta of particles anywhere within the
ball of water, and the radius of the ball is proportional
to the linear dimensions of the container. It is clear,
also, that this system has very peculiar properties
when it is set into rotation. Already at very low rota-
tional velocities, the water ball breaks up and a sheath
of water forms next to the walls, as a consequence of
the centrifugal force. We have neglected the centrifugal
force throughout (since we have always restricted
ourselves to terms of order co, and have ignored terms
of order oP), and thus our whole analysis becomes
unphysical for this case.

This is a fairly general property of many-phase
systems in which the diGerent phases can be separated
in space by the centrifugal force. However we are
primarily interested in applying our theorem to liquid
helium, which is a single-phase system in which such
things cannot happen.

These exceptional systems show that one must be
careful to establish, in any particular case, that the
conditions of validity of our theorem are satished. That
is, one must show that a 6nite correlation distance A,
independent of the volume of the container, does indeed
exist. We shall do so for liquid helium, and we shall
discuss the consequences of this theorem for the theory

"It is understood, of course, that the number of particles E
is increased whenever the volume is increased, in such a way
that the number density X/V stays constant.
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of liquid helium, in the following paper. Our theorem
also has some interesting applications for the theory of
superconductivity, and these will be discussed sepa-
rately.
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R,~(K,R) =g sin(k„', )I., exp(.g.g)

(K,R) exp( ifi'rl)P1

exp(zeal

rl)

=@(K,R)Gi(f, ,r,). (A.5)

APPENDIX: THE ROTATING CYLINDER

So far we have assumed that all linear dimensions of
the container are large compared to the correlation
length A. In applying these considerations to liquid
helium, we shall need to consider a situation in which
the "bucket" is a very Qat cylinder, of radius E)&A
but height D of the same order as A. It is intuitively
obvious that the height of the cylinder is of no im-

portance in thermal equilibrium, but it seems preferable
to show formally that the proof given in Secs. 6 and 7
can be modified so as to allow for arbitrary values of D,
and then leads to the result

yN —l

)&e*(K,R) exp( —PII)e(K, R") (A.6)

The function Gi introduced by (A.5) is the analog
of the three-dimensional Gi(ki, ri) defined by (6.12).
With this definition of Gi, (6.13) is again correct (with
the obvious replacement of exp(iK R) by @(K,R)
throughout). But in order to get a useful form, we now
perform not only all the sums and integrations indicated
in (6.14), but also a sum over k, i and an integral over
sl. The two-dimensional analog of the function 0',
(6.14) is

&dsl Pd r2' ' 'd rN
W(fi, ri)=(1V!) 'Q pn Q

&*i 4, . ..&x~ D &

I=IpL1+order (A/R)]. (A.1)
(6.15) is then replaced by

jt (k,r) = expLi(k, x+k„y)] sin(k, s), (A.2)

where k, =nw/D, e integral. These functions obey the
boundary conditions at a=0 and a=D, but violate the
boundary condition at r=E. This latter violation is
not serious if E))h., and leads to errors of the order of
A/R.

The (unsymmetrized) product wave functions for
the E-particle system are defined by

(A.3)

The first modification is that we cannot use plane
wave states of form exp/i(k x+k„y+k,s)], since the
violation of the boundary conditions at a =0 and s= D
(the lower and upper plate of the cylinder, respectively)
has serious consequences if D&A. However, we can
use states of the form

pd2rl
=

2 2 I
LGi*(&i ri) W(&i,&i)

~+2

+Gi(&i)ri)W*(&i)ri)] (A.&)

The subsequent proof that W(fi, ti) is invariant
under translations of the two-dimensional vector tl,
depends on fi only through fi'=k, i'+k„P, and is real,
goes through without difhculty. The function G(fi, ri)
is then defined to be the real part of Gi(fi, ri), and
Eq. (6.4) is replaced by

TraceLFi exp( —/II)]
fd fl

G(fi, ri)W(fP)L1+order(A/R)]. (A.8)
j.', ~R'

+(K,R) =exp(ig Q)g sin(k„z;). (A.4)

where I is the ordered ensemble of the X vectors k;,
and R the ordered ensemble of the S vectors r;, as
before. In order to continue, we shall need notation for
the projections of all these vectors on the x-y plane.
We shall use Gothic letters for this purpose, e.g., the
symbol tl is the projection on the x-y plane of the
three-dimensional vector I'l,. i.e., tl has components
(xi,y&,0). We then write (A.3) in the form

The modification of the analysis of expectation values
of two particle operators is completely similar. We
replace vectors by their x-y plane projections systemati-
cally, and integrate over s&, z2 and sum over k, i, jI|:,2
before defining the two-dimensional analog of the
function U, Eq. (6.20). The separability (6.23), trans-
lational invariance (6.24), and inversion invariance
(6.25) have direct two-dimensional analogs. There is
also rotation invariance under joint rotations of fl, f2,
and tl2 about the s-direction. However, one invariance
property is no longer possible: we cannot make a
rotation by 180 degrees around the x-axis. Such a
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rotation leaves x-components invariant, and changes y-
and s-components into their negatives. Since s-compo-
nents are involved, there is no direct two-dimensional
analog. However, we did not really need the change of
sign of s-components for the proof. The two-dimensional
symmetry operation which is needed is a mirroring in
the x-s plane, which leaves x-components invariant,
and changes y-components into their negatives. The

two-dimensional U-function, U(ft, fs,rts), is invariant
under this mirror operation.

From hereon the proof given in Sec. 7 goes through
without change (except for the replacement of the 180
degree rotation about x by the mirroring operation).
We thus obtain the desired result (A.1), in which the
height of the cylinder does not enter into the estimate
of error.
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We show that the result of the preceding paper is directly applicable to liquid helium, i.e., no superQuid
state can exist in liquid helium under conditions of thermodynamic equilibrium. The observed superQuid
properties of liquid helium must therefore be due to a nonequilibrium (metastable) superQuid state. Previous
theoretical arguments for equilibrium superQuidity are examined, and an experimental test of nonequi-
librium superQuidity is suggested.

1. INTRODUCTION

IQUID helium below the X point has superfluid
& properties, and many widely diferent theories

have been advanced to account for this behavior. There
is practically universal agreement in the theoretical
literature, however, that the superQuid state of liquid
helium is a state of thermal equilibrium. ' The position
is stated very clearly by Zilsel2: "The superQow is truly
reversible; it is maintained not by the absence of colli-

sions, but —under the given conditions —is the thermo-

dynamic equilibrium state established by the colli-

sions. "Or, as I.andau' puts it: "It is most essential that
there is no friction between these two liquids moving

through each other. . . . We get this relative motion
when considering the statistical equilibrium in a uni-

formly rotating vessel. But if there can be some sort of
relative motion in the state of statistical equilibrium, it
means that it cannot be accompanied by friction. "
I ondon4 remarks that this point is still open to question
as far as experimental confirmation is concerned, but

*Also supported by the Nuclear Research Foundation within
the University of Sydney.

~ The nearest we could Gnd to the contrary is in a paper by
N. F. Mott, Phil. Mag. 40, 61 (1949). Mott 6rst reviews argu-
ments for an energy gap between the ground state and all excited
states of an interacting Bose-Einstein gas, and then goes on to
discuss superQuidity in terms of a metastable state. However, if
there really were an energy gap, the superQuid state would be
thermodynamically stable. Thus Mott's discussion of the rotating
toroid is inconsistent with his earlier arguInents for an energy gap.

s P. R. Zilsel, Phys. Rev. 92, 1106 (1953).
s L. Landau, J. Phys. (U.S.S.R.) 5, 71 (1941).
4F. London, Superguids (John Wiley and Sons, Inc., New

York, 1954), Vole 2.

considers the evidence for truly reversible (i.e., equi-
librium) superflow extremely strong.

We have shown' that the ideal Bose-Einstein gas
below its transition point does indeed have a peculiar
relationship between the thermal equilibrium value
L (co) of the angular momentum and the angular ve-
locity co of the container. In particular, the moment of
inertia I, defined by

I= lim(BI /Bco)

is less than the classical value, in spite of the fact that
the system is in thermal equilibrium. However, a more
detailed discussion showed' that the system would

appear to be "infraAuid" in actual experiments, because
the experiments average over rather wide ranges of the
angular velocity co. It was proposed that the weakly
interacting Bose-Einstein gas might serve as a model
of a eoeeqgiHbrigm superQuid, that is, under certain
reasonable assumptions about collision cross sections,
the superRuid state would be metastable with a life-

time longer than the times used in the relevant experi-
ments. This idea has been elaborated since by Klemens. '

The investigation of the behavior of the ideal Bose-
Einstein gas suggested strongly that the superAuid

state of liquid helium is not an equilibrium state, that
it is maintained by the absence (or rather, the scarcity)
of collisions, rather than being the thermodynamic
equilibrium state established by the collisions. How-

' J. M. Blatt and S. T. Butler, this issue /Phys. Rev. 100, 476
(1955)g. See also Phys. Rev. 96, 1149 (1954).' P. G. Klemens (to be published).


