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Superfiuidity of an Ideal Bose-Einstein Gas
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An equilibrium superQuid is defined as a substance whose moment of inertia in thermal equilibrium is less
than the classical value. The-ideal Bose-Einstein gas below its transition temperature is shown to be an
equilibrium superQuid. However, a more detailed analysis of the relation between angular momentum and
angular velocity shows that experiments carried out with practical angular momenta and velocities would
give an abnormally large apparent moment of inertia in thermal equilibrium, i.e., the gas would appear to
be an "infraQuid. " Nevertheless, a weakly interacting Bose-Einstein gas can be used as a model of a super-
Quid, if the superQuid state is assumed to be metastable rather than the thermodynamic equilibrium state.

1. INTRODUCTION

ONDON' first proposed that the peculiar phase
~ transition P. point) in liquid helium at 2.186'K

is essentially the same as the condensation phenomenon
exhibited by an ideal Bose-Einstein gas, ' ' only slightly
disturbed by the interactions between the particles. It
is the purpose of this paper to study the properties of
an ideal Bose-Einstein gas below the X point when the
vessel in which the gas is contained is subjected to a
uniform rotation. This "rotating bucket" experiment
was first discussed by Landau4 on the basis of his theory
of the superQuidity of liquid helium. Landau predicted
that liquid helium would show an abnormal relation
between angular momentum I. and angular velocity cv

in stutisticaL eglilibrigm. The moment of inertia I
=BL/Boi would be less than its classical value ls. Sub-
sequent experimental work by Andronikashvili' seemed
to bear out this prediction.

We shall define the equilibrium moment of inertia of
a substance as

'r)L((o)I=lim

(1) The initial slope of the curve of L ss o~, evaluated
at co=0, is less than the classical value Ip. This is our
requirement.

(2) L maintains this nonclassical slope for a finite
range of values of the circumferential velocity ~=Ra,.
however, this range may become smaller and smaller as
the radius R of the vessel increases. This is the sugges-
tion of London' who expects an upper limit to superQuid
flow of order it= Rem&A/MR.

(3) L maintains the nonclassical slope for values of
the circumferential velocity less than some "critical
velocity, " this latter being independent of the radius
of the vessel. This (most stringent) requirement is
assumed to be satisfied in the usual two-Quid model of
liquid helium.

This paper proves that the ideal Bose-Einstein gas
below its condensation point is an equilibrium super-
Ruid in the sense of the first and second requirements
above, but does not satisfy the third requirement. The
nonclassical slope of I is maintained until the angular
velocity co reaches the value co& given by

tot =4.455/MR'. (1.3)
where I (cu) is the eqsiilibrigm value of the angular
momentum of the substance in a container rotating
uniformly with angular velocity u. We shall further
define an equilibrium superfflid as a substance for
which I is less than the classical moment of inertia Ip,
the latter being computed in the usual way; in a cylin-
drical vessel of radius R, filled with E particles each of
massif, Ip is given by

Thereafter, however, the picture changes suddenly.
At to=a&i, the angular momentum L(oi) has a discon-
tinuity, due to the fact that the condensed particles
shift suddenly from the state with angular momentum
quantum number m =0 to the state with m = 1.Thermo-
dynamically, this is a phase transition of the first kind,
with a latent heat. Similar phase transitions occur at
higher values of co. We shall show that a conventional
measurement of the moment of inertia of an ideal Bose-
Einstein gas in thermal equilibrium would yield an

veraged value I,«which is larger than the classical
alue Ip, i.e., the gas would appear to be an "infra-
uid" rather than a superQuid. Thus, although the ideal
ose-Einstein gas is an equilibrium superRuid in the

ense of London, ' it fails to exhibit the kind of equi-
ibrium superQuidity postulated by Landau4 and Tisza. '

(1.2)Ip= ~E3fE'.
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There are 3 different ways of defining equilibrium a
superQuidity, in increasing order of stringency of the v
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Nevertheless, the Bose-Einstein gas can be used as
a model of a superRuid if we drop the requirement of
thermal equilibrium; the nonequilibrium superQuid be-
havior which results is highly suggestive, and we be-
lieve contains the essence of the superQuid properties
observed in actual liquid helium.

trace (2 6)

of a single particle in the container (rather than over
quantum states of the full cV-particle system). The
chemical potential p is then defined by the relation:

Ho=2 PP/2M=2 ho;. (2.1)

In order to discuss thermal equilibrium of the gas
inside a rotating container, it is necessary' to use a
system of coordinates rotating along with the container.
The operator for the s component of the angular mo-
mentum of particle number i is

( 8 8 )
E;= i'/ —x, —y,

4 ay; ag;)'
(2.2)

where x;, y;, 2i are the coordinates of particle i meas-
ured in the rotating frame of reference. It can be shown,
however, ' that the expectation value of /i is the angular
momentum of particle i with respect to the stationary
frame of reference. The s-component of the total angular
momentum of all the particles will be denoted by L:

L=P f;. (2.3)

The canonical transformation to the rotating system of
coordinates leads to the new Hamiltonian

H'= E(&o;—oif;) =Ho —toL, . (2.4)

2. MOMENT OF INERTIA OF AN IDEAL
BOSE-EINSTEIN GAS

The Hamiltonian of an ideal Bose-Einstein gas in a
stationary container is

where E is the total number of particles. By reflection
symmetry (8' = —8) ii is a symmetric function of co. The
equilibrium value of I., (2.5) is then given by

1I (M) =trace f
exp[/ (ho —tel —p) —1

(2 &)

In a noncylindrical container, ho and l fail to com-
mute, and so do Ho and L for the E-particle system.
In the 1V-particle formulation (2.5) the error made by
assuming that Ho and L commute is of order S ' and
hence unimportant. The corresponding error in the
one-particle formulation (2.7) is very significant for
temperatures below the condensation point of the
Bose-Einstein gas. Since these complications add noth-
ing to the argument, we shall consider cylindrically
symmetric containers.

We label the common eigenstates of ho and l by the
two indices m and y, where Am is the eigenvalue of /

and y stands for the two additional quantum numbers
necessary to specify the quantum state uniquely. The
eigenvalue of ho in the quantum state (nz, p) will be
called c ~, the lowest e ~ for a given value of m will

be called e 0.

We first evaluate the initial slope of I as a function
of &o; that is, we differentiate (2.7) with respect to to

and then set co=0. In the range of cv for which the
differentiation is permitted, the chemical potential p, is
also a differentiable function of co, furthermore, since p
is an even function of o~, the derivative Bp/Bto vanishes
at m=0. We therefore obtain the following expression
for the moment of inertia I:

Trace[1. exp( —PH') $I (oi) =
Trace[exp (—PH') j (2.5)

where P= (kT) ', and the trace is to be taken over all
permissible quantum states of the T-particle system
(all states with symmetric wave functions for Bose-
Einstein statistics).

Since there are no interactions between the particles,
the calculation of L can be simplified. We define the
symbol "trace" to mean a trace over all quantum states

' For detailed arguments see the following paper, Blatt, Butler,
and Schafroth, Phys. Rev. 100, 481 (1955).

This Hamiltonian determines the properties of the gas
in statistical equilibrium within the rotating container,
in the usual way. We shall be particularly interested in
the statistical average value of L, given by

exp[I (ho —po) j

(exp(/�

(ho —po) g
—1)'

exp[f3 (e- —~o)j
=O'P Q Q I' (2 8)

v (exp[8(e,—po)) —1)'

The sum in (2.8) is rather awkward to handle since
e ~ is a complicated expression for a cylindrical con-
tainer. However, we can simplify the evaluation of
(2.8) tremendously provided that the main contribution
to the trace comes from quantum states with de Broglie
wavelengths much smaller than the dimensions of the
bucket. This is obviously so above the Bose-Einstein
condensation point; it is also true below the condensa-
tion point, because the ground state of the single par-
ticle spectrum is the state Cop, which has m=0 and
therefore contributes nothing to (2.8). If the de Broglie
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wavelength is small compared to the linear dimensions
of the bucket, the boundary condition /= 0 at the wall
of the container is unimportant. We can work with
plane wave functions exp(ip r/A) which form a com-
plete set, but fail to satisfy the boundary condition.
The error is of order X/2 where X is the de Broglie
wavelength and 2 is the linear dimension of the con-
tainer. We then get

exp' (p'/2M —P o)]
I=A 2'(liI i'il) (2.9)

{exp+ (p'/2M —go)]—1}'

where the prime on the sum indicates that very small
values of p (h/p~Z) are to be excluded. The diagonal
matrix element of the operator P in a plane wave state
is given by (V= volume of the container)

= (x')p'+(y'&p-' 2(xy)p.—p' (2 10)

The volume integral in (2.10) is over the interior of
the container. For a cylindrical container of radius E
we get

(2 11)

However, this part of our argument applies to a con-
tainer of arbitrary shape. The shape of the container
becomes important only when we consider quantum
states with de Broglie wavelengths comparable to the
linear dimensions of the container.

We substitute (2.10) into (2.9) and replace the sum
over quantum states p by an integral in the conventional
way. Consider the term proportional to (x'); this term
can be transformed by an integration by parts:

f 0—pv(2~)-'(x') d'pp„(M/p)
gp„

&({exp+(p'/2M —po)] —1} '=M(x')V(2s. ) 3~ d'p

X {exp'(p'/2M —po)]—1} ' (2 12)

As a result of the factor p' in the volume element d'p,
states with very small values of p make no significant
contribution to the last integral, even if p, 0 is very close
to zero. Thus the integral correctly represents the
primed sum (2.9).

Above the condensation point, the second integral
in (2.12) represents the trace (2.6), i.e., we get the
expected result for the moment of inertia:

I=Io——cVM(x'+y') T)T),. (2.13)

Below the condensation point, however, we get a
diferent result: the integral in (2.12) still represents
the primed sum (2.9), and hence the trace (2.8); but it
is no longer simply related to the trace (2.6), because
the ground state Cop contributes appreciably to( 2.6)
but is excluded from (2.12). The integral on the right
side of (2.12) represents the number of noncondensed

particles, Ã'. The well-known expression for E' is

E'= cV (T/T), )&, (2.14)

3. ANGULAR MOMENTUM OF AN IDEAL
BOSE-EINSTEIN GAS

The definition (1.1) of the moment of inertia I in
thermal equilibrium is reasonable from a theoretical
point of view. Experimentally, however, the angular
velocity ~ cannot be made smaller than some minimum
value, determined by the sensitivity of the measuring
equipment. Thus the experimentalist determines not
the derivative BL/B~ but rather a difference quotient

I,ii AL/Acv—— (3.1)

We now propose to study the angular momentum
L(&u) of the ideal Bose-Einstein gas in thermal equi-
librium as a function of the angular velocity m, rather
than merely the derivative BL/Bco at co=0. This will
enable us to find the quantity I,ii, of (3.1).

According to (2.7), L(cv) is given by

00 Sm
L(~)=Z 2 (3.2)

v ~ exp//(e„„—A(um —p)]—1

Let us now see what happens as co is increased slowly
from zero. Initially, the macroscopic number of par-
ticles in state Cop does not contribute to (3.2), since
m=O for these particles. Thus initially L is a linear
function of &u with the nonclassical slope (2.15).

However, this behavior does not persist. As u in-
creases smoothly, a point is reached at which the lowest
energy level with ms=1, i.e., e&0, fulfills the equation

610 AM —600 ~ (3.3)

At this value of co the thermal equilibrium distribution
changes abruptly. A macroscopic number of particles

and hence the moment of inertia of the ideal Bose-
Finstein gas below the condensation point is

I=1V'M(x'+y')= (T/T&, )'*Io. (2.15)

This concludes the proof that the ideal Bose-Einstein
gas ie thermal equilibrium has a moment of inertia less
than the classically expected value, i.e., the ideal Bose-
Einstein gas is an equilibrium superRuid. As far as we
know, this is the only system known which exhibits
equilibrium superfiuidity.

There have been many attempts in the literature to
derive equilibrium superQuidity from the assumption
of an energy gap between the ground state of the S-
particle system and some or all of the excited states.
For example, Landau' assumes that the only states
contiguous to the ground state in energy are phonon
states in which the circulation vector V')&v vanishes.
However, no one has been able to demonstrate the
existence of such an energy gap from first principles.
Thus the only system known at present to be an equi-
librium superAuid does not have an. energy gap.
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shifts from state Epp to state ~]p. Correspondingly, there
occurs a finite jump in the value of the equilibrium
angular momentum I; the discontinuity in I is equal
to Epk where Ep=E —E' is the number of condensed
particles. There is also a discontinuous shift in the
internal energy of the system.

Thus, thermodynamically speaking, we have a phase
trartsition of the erst kind. ' The chemical potential ts is
continuous with discontinuous derivative cits/c)cp; the
same is true of the free energy. The internal energy and
the angular momentum have discontinuities, and there
is therefore a latent heat.

Let us determine the value of co at which the transi-
tion occurs. The energy e p of the lowest state with
angular momentum quantum number m is given by

e„p=A'x„'/23IIR' (3.4)

where x„ is the first zero of the Bessel function J„(x).
We therefore get

cpi ——(sip ep p)/A—=4.45A/ME'. (3.5)

An upper limit to the angular velocities at which
equilibrium superQuidity can occur, of precisely this
order of magnitude, was predicted on qualitative
grounds by London. ' Thus the ideal Bose-Einstein gas
is a model of an equilibrium superAuid in London's
sense, as well as in the sense of our definition (which
refers only to the initial slope of L as a function of cp).
However, not too much stress should be laid on this
point, since the ideal Bose-Einstein gas is a very artifi-
cial system, and we shall see (in subsequent papers)
that real physical systems do not show equilibrium
superQuidity, no matter how small the angular velocity.

Consider a vessel of radius 1 cm and height 1 cm
filled with an ideal gas of particles, each of mass equal
to the mass of a helium atom. Then ~i is of the order of
10 ' radian/sec, and the discontinuity in L is of the
order of 10 4 erg-sec. It is clear that these values are
much too small for most experimental work.

The phase transition at co= co» is not the only one, but
is the first of an infinite sequence. The next phase
transition occurs when the lowest level with m=2
becomes the center of condensation, i.e., when

FIG. 1. Thermal equilibrium value of the angular momentum
of an ideal Bose gas in a rotating container, vs the angular velocity
of the container. The portion of the curve near co=0 has a slope
less than the classically expected value, corresponding to super-
Quid behavior. Asymptotically, for large co, the mean slope becomes
larger than the classically expected value, corresponding to
"infra-Quid" behavior, i.e., an abnormally high moment of in-
ertia. The sharp breaks in the curve are thermodynamic. transi-
tions of the first kind, due to a macroscopic number of particles
shifting from one quantum state to another. If this change-over
takes a time much longer than the time in which the experiment
is carried out, the angular momentum is given by the dashed
curve, and exhibits superQuid behavior throughout.

x„=sit+1.856srt&+0 (srt
—

&),

and the definition

(3.'7)

to get the following value for the angular velocity at
which the mth phase transition occurs:

first zero x of J (x). We use the asymptotic formula'p

Gap
—2AM = Gyp

—L7. (3.6) cp = (stt+2.474stt& ——,'+order srt '*) (A/Mg') (3 9)

In order to estimate the value of ~ at which the mth
phase transition occurs, we need an estimate for the

'An objection may be raised against this terminology on the
grounds that the critical value of cy, (3.3) and (3.4), depends on
the radius R of the vessel, and approaches 0 as the radius of the
vessel is increased. Phase transitions have a meaning only in the
limit as the number of particles in the system approaches infinity,
and this means a vessel of infinite volume, other things being
equal. However, the volume of the vessel can be increased in-
definitely without changing the radius R, merely by increasing
the height. More physically, we can estimate the range Ace of
angular velocities over which the transition occurs for a vessel
of fmite height. For a typical vessel (radius=height=1 cm) a&a
is of order 10 radian/sec compared to a critical value cubi of order
10 ' radian/sec. Thus the transition is already almost perfectly
shy, rp.

At each critical point co the angular momentum I
increases suddenly by Spk, where Ep is the number of
condensed particles. "The over-all curve of I against or

is shown in Fig. 1.
"G. N. Watson, Besset FNstctsons (Cambridge University Press,

London, 1948), p. 516."Strictly speaking, No is itself a function of co, since the number
of particles which can be accommodated in the normal Quid part
of the Bose-Einstein distribution changes as a result of the cen-
trifugal force. This effect, however, can be shown to be quite
negligible mathematically; the physical reason is that for typical
containers (radius=1 cm) filled with particles of the mass of a
helium atom, and rotating with angular velocities of the order of
1 rad/sec, the kinetic energy due to the rotating motion, of order
MR'cap, is many orders of magnitude less than ttT (T being of
order 1'K).
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For a vessel of reasonable dimensions these phase
transitions are very closely spaced. Hence, even if we

'

had an ideal Bose-Einstein gas at our disposal, and
even if thermal equilibrium could be established quickly
enough to allow normal experiments to proceed, these
phase transitions would be missed. The experimentally
observed moment of inertia would be the difference
quotient AL/D~, (3.1) evaluated over a range A~ large
compared to cu&, (3.5). Since L increases suddenly by
BOA each time a new transition point co is reached, the
contribution of these jumps to the mean slope AI/d, ~ is

Tpk
=A sMR'(1 —0.825m ~+ ). (3.10)

m m-1

For a vessel of radius 1 cm rotating with a&=1 rad/sec,
and filled with. particles of mass equal to that of a
helium atom, the value of m is of order 104, and hence
the correction term in (3.10) is of order 2)&10 ' of the
main term. The observed moment of inertia is obtained

by adding to (3.10) the contribution of the normal fluid

part of the Bose-Einstein distribution, i.e., (2.15). The
total is

1VsqI tt ——(21Vp+E')-'MR'=
i 1+—iIo. (3 11)xi

Thus, the ideal Bose-Einstein gas is not a normal Quid

even if one averages over the phase transitions; rather,
it now appears to be an "infraQuid, "with a moment of
inertia larger than the classical one, in the ratio
1+(Xs/E)."

The origin of this infraQuid behavior is easy to under-
stand: the wave function of the condensed particles is
proportional to J (x r/R), and since x is the first zero
of I (s), this function is concentrated near the outside
of the container. Unlike the normal Quid particles whose

energy kT is much larger than the kinetic energy of the
rotating motion, the condensed particles are pushed
out immediately by the centrifugal force. Thus they
contribute a moment of inertia MR' per par'ticle,
whereas the normal Quid component, with its uniform
distribution in space, contributes —,MR' per particle to
the total moment of inertia. Of course, at extremely
high angular velocities even the normal Quid component
is pushed out toward the rim of the bucket, and the
limiting value of the over-all moment of inertia per
particle is ME. . However, the ideal Bose-Einstein gas
below the condensation point contains a non-negligible
number of particles which are pushed out towards the
rim practically immediately by the centrifugal force,
long before the normal centrifugal effects are felt.
Thus "infraQuidity" is not merely a particularly strong
centrifugal eGect understandable on a classical basis,
but is a distinct quantum-mechanical eGect of the Bose-
Einstein statistics.

'2 The contrary statement in our earlier Letter to the Editor
[j'. M. Blatt and S. T. Butler, Phys. Rev. 96, 1141 (1954)g was
due to our having overlooked a fact;or g.

4. IDEAL BOSE-EINSTEIN GAS AS A MODEL OF A
NONEQUILIBRIUM SUPERFLUID

The preceding section has shown that the ideal Bose-
Einstein gas, in spite of its nonclassical moment of
inertia I, is not an adequate model of an equilibrium
superQuid. Unless abnormally small angular velocities
are used (their size depending upon the radius of the
bucket) the ideal Bose-Einstein gas would show equi-
librium infraQuidity, not superQuidity.

However, the calculation is instructive in that it
gives us a clue to the nature of a possible eoeeqlilibrilm
superQuid state. I.et us suppose that equilibrium is
reached quickly for the highly excited states (excitation
energy of order kT) but that the phase transitions dis-
cussed in Sec. 3, in which macroscopic numbers of par-
ticles shift from one very low-lying state to another,
take a very long time to complete, a time much longer
than the duration of usual experiments. Under these
conditions, we get superQuid behavior of the ideal
Bose-Einstein gas below its transition point. This
nonequilibrium value of L as a function of or is shown
in Fig. 1 by the dashed line.

In this sense, therefore, the ideal Bose-Einstein gas
can be used as a model of a superQuid: there is normal
Quid behavior above the transition point, then a thermo-
dynamic transition to a state in which superQuidity can
show itself as a transport (nonequilibrium) phe-
nomenon. Of course, the assumption of no interaction
between the particles is not adequate to encompass
transport phenomena; the concept of a mean free path
has to be introduced, and the relaxation times for vari-
ous kinds of momentum transfer must be studied in
detail. Such a theory has been developed, following the
suggestions made here, by Klemens. "

The results of this analysis of the ideal Bose-Einstein
gas suggest strorigly that the superQuid phenomena
observed in actual liquid helium are also nonequilibrium
phenomena; that the superQuid state is only metastable,
not thermodynamically stable. The proof that this is
indeed the case will be given in subsequent papers.
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