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Superconductivity of a Charged Ideal Bose Gas
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It is shown that an ideal gas of charged bosons exhibits the essential equilibrium features of a supercon-
ductor. The onset of Bose-Einstein condensation marks the transition temperature T,. Below T, a Meissner-
Ochsenfeld effect is exhibited which is described in a very good approximation by London's equation.

The singular nature of.the condensed ideal Bose gas exhibits itself in a space dependence of the London
constant X, determined by the boundary conditions on the wave function. It is shown that the electrostatic
repulsion between the bosons compensates this effect and leads to a spatially constant X, independently of the
boundary conditions.

The critical held P, (T) is determined and found to be related to the penetration depth d(T) by

Ef,=Ac/2ed'

(e being the boson charge).
The B{EI) law is different from the one usually assumed for actual superconductors. Corresponding

changes occur in the thermodynamical relation.
A comparison with superconducting metals is made. The main conclusion is that if superconductivity in

metals is due to the concurrence of bosons, then the number of these bosons must be strongly temperature-
dependent below T,.

1. INTRODUCTION

S0 far, no molecular theory of superconductivity has
been found. . The most successful attempts in this

direction have been made by Froehlich and Bardeen' on
the assumption that the occurrence of this phenomenon
is due to the interaction of the conduction electrons
with lattice vibrations. This assumption led to reason-
able estimates of the energy values involved and was
thus able to explain the isotope eGect. ' However, it has
so far not been possible to show that a strong enough
lattice-electron interaction can account for the charac-
teristic equilibrium phenomena of superconductivity,
namely the phase transition and the Meissner-Ochsenfeld
eGect. In the weak-coupling approximation employed
by Froehlich' these eGects certainly do not occur. '

The e6ects of the lattice-electron interaction in any
other than the weak-coupling approximation are very
complex, and it is dificult to foresee which will be the
characteristic feature responsible for a transition to the
superconducting state. This holds especially because
until recently no simple physical model was known
which exhibits the equilibrium properties of a supercon-
ductor and which could serve as a lead in the search for
the real phenomenon.

Such a model has recently been pointed out by the
author4: it is the ideal gas of charged bosons. The pur-
pose of this paper is to prove this assertion and to
discuss the detailed properties of this model.

The fact that an ideal Bose gas exhibits a thermo-

dynamic transition point of the second kind' is well
known' and need not be dealt with here. The transition
temperature 7, is given by

A2 e --:

kT, = 4m
2m i-(s)

where m is the mass of the bosons, e their density, k the
Boltzmann constant and

(1.2)

is the Riernann i function.
In coritrast to real superconductors, the specific heat.

is continuous through the transition temperature, and
only its derivative exhibits a jump. (Such a transition is
often called "of the third kind. ")

At temperature T ~ T, a finite fraction e, of the total
boson density e is condensed in the ground state, the
remaining part e =z —e, forms a normal Bose gas with
chemical potential p, =0.' The densities in the two phases
are given by

e„=m(T/T. ) l,

.= L1—(2'l&.)']
An indication that at the condensation point an ideal

charged Bose gas becomes superconducting is found in
computing its magnetic susceptibility. The magnetic

* Also supported by the Nuclear Research Foundation within ' We call any transition without latent heat "of the second
the University of Sydney. kind. "

' H. Froehlich, Phys. Rev. 79, 845 (1950); J. Bardeen, Revs. ' A. Einstein, Ber. Berl. Akad. 261 (1924); 3 (1925);F. London,
Modern Phys. 23, 261 (1951),and references given there. Phys. Rev. 54, 947 (1938);B.Kahn and G. E. Uhlenbeck, Physics'E. Maxwell, Phys. Rev. 78, 477 (1950); 79, 173 (1950); 5, 399 (1938).
Reynolds, Serin, Wright, and Nesbitt, Phys. Rev. 78, 487 (1950); These statements hold in the limit of in6nitely large volume G,
Serin, Reynolds, and Nesbitt, Phys. Rev. 78, 813 (1950). i.e., neglecting G ' compared to m. For 6nite volumes, y is of the' M. R. Schafroth, Helv. Phys. Acta 24, 645 (1951). order G ', depending on the shape of the volume, and there is no' M. R. Schafroth, Phys. Rev. 96, 1149 (1954). sharp transition.
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susceptibility is de6ned by In terms of the Fourier transforms Li.e., the coeKcients
in an expansion in terms of (1.8)j, this becomes

where H is the applied field; what is actually computed,
however, is a quantity p' de6ned by

4(q)= ZE» (q)~ (q).
v=1

Gauge invariance requires'

(1.10)

where H' is the "acting" 6eld. The relation between B
and B' requires special attention; this point will be
discussed in Sec. 5.

For an ideal charged Bose gas, g' tends to —~ on
approaching condensation. Quite generally, for an ideal

gas, p' is given by

(1 5)

Normal diamagnetism corresponds to a E(q') regular
for small values of q:

(1 12)

(c is the velocity of light). A pole at q=0 gives a
Meissner-Ochsenfeld effect; in particular, the form

where ps ——eh/2mc is Bohr's magneton e=A'/V the
density of particles, and (E ')A„ is the average of the
reciprocal kinetic energy of a particle over the distribu-
tion function. For a Bose gas this is

E(q') = 1/Xcq'

is equivalent to the London' equation

—Xc curli= H.

(1.13)

(1.14)

The main result of this paper is that the ideal Bosef,
( ~ ( )~ ), ( )

gas below its condensation point obeys London's equa-

4 s~s J
P " '

tion (1.14) with
(1.15)

curlH= (4s/c)i (1.7)

must then lead to an expulsion of the field from the
system.

It is advantageous to expand the magnetic field in
terms of a complete orthonormal set of functions ap-
propriate to the shape of the volume under study. For a
cubical box of volume G with periodical boundary con-
ditions, which is the easiest volume to work with, these
eigenfunctions are plane waves

$,(x)=G & exp(iq x).

We restrict ourselves to weak 6elds, so that the relation
between field and induced current can be taken as linear.
In view of the translational symmetry of the particular
volume chosen, this relation between current density
i(x) and vector potential A(x) takes the simple general
form

3

i„(x)= P ~t d'x'E„„(x—x')A„(x').
v=1 g

(1.9)

See reference 3, appendix; see also Sec. 2 of the present paper.

$n= 1/kT; p, = chemical potential (li(0)j.For small
~
p ~

this is of the order
~ p ~

'*; on approaching condensation,
@~0and therefore X'~~ . (For a finite volume, li and X'

become volume- and shape-dependent, and (1.5) is no
longer valid. )

To establish the Meissner-Ochsenfeld effect, however
more is needed. The current density induced by an
iehomogeeeols magnetic 6eld has to be studied. The
ensuing relation between current and field together with
Maxwell's equation

where I, is the density of condensed particles (1.4).
This holds except for additional terms in E(q') pro-
portional to ~q~

' which are, however, practically
negligible in all cases.

Special attention has to be devoted to the inQuence of
the boundary condition on the boson wave functions.
The calculations in Secs. 2 and 3 are devoted to the
simplest case of a cube with periodical boundary condi-
tion. As, however, the occurrence of the Meissner-
Ochsenfeld effect is due to the condensed bosons, i.e., to
a 6nite fraction of the total particle density occupying a
state which extends over the whole volume, there is no
reason to assume that the relation between current
density and 6eld is independent of the boundary condi-
tion. A simplified calculation is carried through in Sec.
4; it takes into account only the contribution of the
condensed bosons, relying on the discussion in Sec. 3
that the noncondensed particles do not contribute
significantly. The result is that indeed the London equa-
tion (1.14) has to be replaced in general by

—c curl () i) =H,

X
—'= (e'/m)e, (x),

where now e, (x), the local density of bosons, is in general
a function of position, depending upon the boundary
condition. For a cube of volume G=L3 with perfectly
reQecting walls,

8 m-x m-y xz
e.(x) =n, '.—sin' —sin' —sin' —,

G L L L
s F. London, Ssperglids I Uohn Wiley and Sons, Inc. , New

York, 1950).
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where m, ' is the average density of condensed bosons.
This marked dependence of the Meissner-Ochsenfeld
effect on the boundary conditions reflects the fact that
the ideal Bose gas without any interactions whatsoever
is a highly idealized system. However, it will be shown
in Sec. 4 that this arbitrariness can be removed by
including, in a self-consistent way, the Coulomb inter-
action between the bosons. In this case, the London
equation (1.14) is restored.

What the relation of the present model to the future
theory of superconductivity will be, is hard to foresee. It
seems, however, unlikely that there should be no close
relation between the two, especially in view of the fact
that the Bose-Einstein condensation of a boson gas-
which gives the transition to the superconducting state
of the model —is a very singular and unique phenomenon
which is responsible also for the other spectacular low-
temperature phenomenon: superfluidity. " It seems
therefore reasonable to expect superconductivity in
metals to be due to the occurrence of charge-carrying
bosons in the metal. The author has recently suggested"
that these "bosons" might be resonant two-electron
states. A crude theory of chemical equilibrium between
these "bosons" and free electrons then gives results
which agree qualitatively (although not quantitatively)
with the observed behavior. No detailed discussion of
this suggestion, however, will be given in this paper.

2. INDUCED CURRENT DENSITY

In order to calculate the current density induced by
a weak inhomogeneous magnetic fmld in a charged ideal
gas, we use perturbation theory on the distribution
function as developed earlier. ' "As we are considering
inhomogeneous fields, perturbation theory on the mag-
netic 6eld is here permitted, in contrast to the case of
homogeneous fields, where arbitrarily small 6elds pro-
duce qualitative changes in the wave functions of the
electrons, as soon as the volume is big enough. Also,
perturbation theory on the distribution function does
not suer from the limitations of perturbation theory on
the energy levels in the case of complete or near
degeneracies. ""

A function Fp(h. p+ sA.t) of an operator A—=t4+ &At is
expanded in powers of ~ in the representation in which
Ao is diagonal

where
Fs(X.)—Fp(X )

F,() .,Z.) =
X —X

(2.3)

We take Ao to be the Hamiltonian of a free particle

A p =H p
—(1/2r——ts) p', (2 4)

and eA. ~ to be the perturbation due to a magnetic field

{p A(x)+A(x) p}+O(A'), (2.5)
282c

Fs(H) = Le &"-»—1)-' (2 6)

(u= 1/kT, ts(0 chemical potential).
The average current density in thermal equilibrium is

then, up to terms linear in the magnetic Geld"

8
i(x)= —— —E (p A(q))p

@ac G ua
(p+«/2)' (p —«/2)'

&&exp( —iq. x) Ft
2m 2m

e' 1 (p')—A(x)g Fp( ). (2.7)
mc G ~ (2m)

Here A(q) is the Fourier transform of A(x):

A(x) =Q A(q) exp( —iq x). (2 g)

Simplifying (2.I) using

i =zv,
(p'y
&2m)

we get
e' E

i„(x)= ———A„(x)
mc 6

(2.9)

where

8———P P I„„(q)A„(q)exp( —iq x) (2.10)
cG v-z

where A(x) is the vector potential of the magnetic field
in an arbitrary gauge. Fs(H) (H= Hs+H ) is the distri-
bution function, i.e., for a Bose gas

by
A, (N)=) „[n), (2.1) P.P t'(p q/2)'i

I,. q = Fo
~ (p q) 4 2m )

(n(F, (A,+W,) ~~)=8„~,() „)
+e(&~A, ~~)F,() „,) „)yO(es),

"F. London, Phys. Rev. 54, 947 (1938);S.T. Butler and M. H.
Friedman, Phys. Rev. 98, 287 (1955); J. M. Blatt and S. T.
Butler, Phys. Rev. 96, 1149 (1954).

"M. R. Schafroth, Phys. Rev. 96, 1442 (1954); see also C. J.
Gorter, Progress in I.ow Temperature Physics (Interscience Pub-
lishers, Inc., ¹wYork, 1955), Vol. I.

' M. J. Buckingham and M. R. Schafroth, Proc. Phys. Soc.
(London) A67, 828 (1954)."R.Peierls, Z. Physik 80, 763 (1933).

f (p q/2)'l I, (2»)
2srs ) .

and where use has been made of (2.3).
In order to evaluate I„„(q)we exploit the fact that it

depends only on the vector q, so that it must have the

'4We put A=1 throughout this section for convenience of
notation.
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form

Then:
I..(q) = a(q') q.q.+b(q') q'~".

g I„„=(a+3b)q'—=Ip,

Q I„„q„q„=(a+b)q'= I&,—
(2.13)

p'
Ioo=2 2 F

p 2m (2m)

which in turn, replacing sums by integrals, yields

where the dash indicates differentiation with respect to
(2.12) the energy E=p'/2m. The first term gives

where now

(a+«/2)'
Io=p Fo

p (pq) 2m

(p+«/2)'
I~=K(p q) Fo

(p—q/2)'
~o

25$

(1 —q/2)'
Po

(2.14)

1', t'1' l
Ioo= 2 i' d'p Fo

I

(2s)' ~ 2m &2m)

and by integration by parts

g ~co

2 (2m)
**dEE~Fp'(E)

4n'

Ij gives by straightforward evaluation

( «l (P'lI =2 I 1
——

Iq
—

I
1+- Iq FoI I

p I, 2) ( 2) (2m)
t'P')
&2m)

Ioo= —3$.

The remaining terms in (2.18) give similarly

(2.19)

(p'&I„=— 3(2m)~ dEE:Fo(E)= 3P F,—
I

4~' " p o &2m)
or

or I = —pe (2.15)
I' &' l

Iop= 2 I I FoI I
= I4 (E )A„(2.20)

12m . &2m) (2m)
Using this, one finds from (2.12) and (2.13)

q„q, )I,.(q) = l (Io+&) I &,.— I

——q,q.,
q

(
E(q') =

24ns2c G

e' X E—')„„
+o(q'), (2.21)

and upon inserting into (2.10)

g2

i„(x)=———g P A„(q) exp( —iq x)
wcG

X-', (Ip+3X) I b„,— I, (2.16)
t' Aq l

q' )
which exhibits gauge invariance explicitly. Comparison
with (1.10) and (1.11) shows

i.e., we get the usual diamagnetism (1.5) of a gas of
charged particles, but no Meissner eGect.

(2) For a condensed Bose-gas, however, the distribu-
tion function is no longer regular at p2= 0 and, therefore,
the above procedure does not apply. The ground state is
highly occupied (by S, particles) and has to be treated
separately', for the other states one can use the usual
Bose distribution with p, =0; replacement of sums by
integrals is justi6ed.

We write
e' 1 Io+3E

&(q') =
2rnc G q2

(2.17) (1 —«/2)' (P+«/2)' ( P' i
FpI I. (2.22)

&2m)
Ip—

(p —«/2)' (p+«/2)'
d3I|

(2~)' " -(0—q/2) q (p+«/2)«-

~ -(1 —q/2) q (p q/2) q-

(1) For a noncondensed Bose gas (as well as for a The noncondensed particles contribute
Fermi gas) the distribution function is regular at p'=0
so that for small

I qI we may expand the summand in

(2.14) in powers of q. We thus write Ion=

( (0+q/2)') ((p—q/2)')
FI I

—FI I) X expl ~
I
—1 (223)i2)

, t' &' ) & « «' „( &' l
F / + F II

m (2m) m 8m &2m)
Care has to be taken here because, in transforming Ip

from the original form (2.14) to (2.22), singularities in

o'q1 p
the two terms under the sum which compensated in

+&I
I
F,«ij~ I+O( 4) (2 18) (2.14) have been separated, so that (2.23) contains

(2m) ~2m) singularities. A prescription for integrating over these
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singularities must therefore be given which ensures the vanishes at absolute zero so that for T=o London's
equivalence of (2.14) and (2.23). It can be seen that it is equation holds exactly. At finite temperatures, E„(q )
a correct prescription in this sense to take the principal can be written"
value in the integration over the angles in (2.23). e' 1 (2nzkT)-* ( Aq

Performing the integration over the angles in (2.23) E„(q')= kl (2.27)
2nzc 4n' li'q' (2(2mkT) &)

where

Ip„=4~
(2x)' p

p(,
dp -I p'

. q( 4)
g g —S

k(s) —= i dx —(x'—s') log
2e x+s

(2.28)
e g

p —q/2 ( p'q
Xlog —2P' .xpl n

p+q/2 E 2')
It is shown in Appendix I that the expansion of k(s)

for small lsl is

with q=
I ql.

The number of noncondensed bosons is k(s) =—s+ i-(-', )s'+O(s').
4 3

(2.29)

Ii
iV„=—N —N, =P expl n

I
1

p~p E 2m)

The second and higher terms in this expansion give
simply a normal diamagnetism (1.12), whereas the first
term still yields a pole of E„(q') at q=0:

so that

G t." ( p' q=4~ dpp' expl n
I
—1

(2n)'~p & 2')
e' 2mkT

E-(q') =—— +o(1).
32 pic Sg

(2.30)

Ip„+3N =4~
(2n)' " p

p(,dp-I p'—
I

qE 4J

p q/2—
Xlog +p'

p+q/2

(
exp

l
n

I
—1 . (2.24)

i 2m)

Ip,+3N, = 2N, . (2.25)

Thus finally, inserting (2.24) and (2.25) into (2.17) we

get

E(q') =E,(q')+E„(q'),

e2%, 1
E.(q') =———,,

nSC G q2

e 1 1 (' p( qE.(q')= — — dp -I p'
mc4n'q' "p q4 4)

p —q/2
Xlog +P' expl n

p+q/2 E 2m)

(2.26)

It is seen that the integral in the second term vanishes
for q

—+0, so that E,(q') cannot be compensated by
E„(q'). E,(q'), the contribution from the condensed
bosons, has exactly the form (1.13) of London's equa-
tion. E„(q') stems from the uncondensed particles and

The contribution from the condensed particles is,
from (2.22), for p=0:

Ip, =-r„
and

Thus finally, from (2.26) and (2.30):

e' cV, 1 1 2mkT
E(q') =———+— +O(1) . (2.31)

mc 6 q2 32 52q

3. DISCUSSION OF THE KERNEL K(q')

As pointed out earlier, the form (2.31) of E(q') shows
that the relation between field and induced current does
not take the simple Lond. on form (1.13), but it is rather
an integral relationship. It will be shown, however, that
E„(q') is in general negligible as compared to E,(q'),
i.e., that London's equation holds with a very good
accuracy for the condensed Bose gas.

One has to judge the relative importance of the two
terms in (2.31) for values of q d ', where d is the
penetration depth. We take for d the value given by the
London term E,(q') alone, which is correct as long as
E„(q') is indeed negligible, i.e., we write'

d = (mc'/4~n, e') & (3 1)

e' (2nikT)'

256mc'0 Ii' ) (3.2)

Using (1.4) this yields:
e2

1—(T/T, ) i&&

16D (-;)y' mc'
(3.3)

This shows that the deviation of the magnetic behavior
of a Bose gas from the pure London equation is negli-
gible as long as the mean distance between bosons

'5 We reinsert here for convenience the constant A which was put= 1 before.

E„(q') is then negligible compared to E,(q') as long as
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(n II) is large compared to the "classical boson radius"
e'/msc2. Fitting, e.g. , n through (1.1) to a transition
temperature of a few degrees Kelvin and taking 'the
mass and charge of the bosons to be of the order of.:the
mass and charge of electrons, the right-hand side of
(3.3) is of the order 10 '.

We therefore conclude that for all practical purposes
the condensed Bose gas obeys London's equation

with

—)I,c curli= H,

X
—'= (e'/m) n„

(3.4)

(35)

ri„being the number of condensed bosons per unit
volume.

The penetration depth d is given by (3.1), and its
temperature dependence is

with
o=do[1 —(T/T. )l] (3.6)

do= (mc'/4~e'n)' (3 7)

e being the total boson density.
In the temperature region in which (3.3) is violated

the penetration depth becomes larger than the value
(3.6). It can be shown that the definition of the penetra-
tion depth given, e.g., by Pippard" is equivalent to the
following definition in terms of f(q) =q'E(q'):

tential A in a gauge where

divA=0, (4.1)
and on the surface

This entails
~normal (4.2)

A, =A„=O; A, =A(x). (4.3)

If we now neglect the contributions of the noncon-
densed bosons, our problem reduces to calculating the
first-order perturbation induced by a vector potential
(4.3) in the current density carried by the ground state.

The states of the system are given by

f~ra2n(x) = (1/L)e""'"+"'io (x) (4.4)

two(x) = (1/L) ~o(*),

and the local density of condensed bosons is

(4.5)

where k;=(2~/L)s;, s; being integers, and qr„(x) are
normalized one-dimensional free-particle wave functions
in the interval 0&x&L. They are determined by
boundary conditions at x=0 and x= L. As it is just the
eGect of these boundary conditions that we are inter-
ested in, we are going to leave them open for the time
being.

The ground-state wave function is

2 t
" (4m/c) f(0)

dg
q'+ (4~/c) f(q)

(3.8)

n, (x) =Ln, oi ioo(x) i',

n, '=L ' d'xn, (x).
(4 6)

This shows that the 1/q-term as well as a normal
diamagnetism [(1.12) with x'(0) tend to increase the
penetration depth. One finds from (3.8) that, as T +T„—
d actually becomes infinite like

{(1—T/T, ) log (1—T/T, )}—',

instead of the behavior (1—T/T, ) '* which arises out of
(3.6).

4. INFLUENCE OF THE BOUNDARY CONDITION

The complete analysis carried out in Sec. 2 for the
cubical volume with periodical boundary conditions
becomes very cumbersome if applied to other volumes.
We are therefore going to use a simplified approach to
study the dependence on the boundary conditions. A
convenient volume to use is a cube of volume L' with
walls at x=O and x=L; in the y- and s-directions we
shall apply periodical boundary conditions. This vol-
ume, though still artificial, allows a study of the eGect of
walls in a simple way without introducing spurious
complications due to corners, etc. In addition, we
restrict ourselves to an inhomogeneous magnetic field
depending on x alone; from divB=O it follows that, if
we exclude a homogeneous component parallel to x, 8
must be parallel to the wall; we take 8 to lie in the
y-direction. B can then be described by a vector po-

"A. B. Pippard, Proc. Roy. Soc. (London) A216, 347 (1953).

The perturbation operation in the Hamiltonian due to
the field (4.3) is

ek 8
H'= ——(1/i)A (x)—.

tl$C Bs
(4.7)

The matrix element which determines the perturbation
of the ground-state wave function is

(u,u, ni a (000), (4.8)

and this is idemHcally sero, irrespective of the form of
iso(x), i.e., for all kinds of boundary conditions at the
walls.

The current density

ek (r)g* r)P) e'
i(x)=n, '

~
P—it*—

)
——A(x)(g(x) [', (4.9)'

L2m' i ax ix) mc

therefore becomes, using (4.6)

i(x) = —(e'/mc) A(x)n, (x), (4.10)

which obeys (1.14') and (1.15').
This is exactly the way in which London' predicted

superconductivity to arise: A long-range order (due here
to the nature of the condensed state) prevents the wave
function of the superconducting particles from adapting
itself to the magnetic field. It must, however, be noted
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(a) For perfectly reflecting walls,

4 (0)=4 (L) =0,
we have

(4.11)

that such an argument is valid only if the expression
(4.9) for the current density holds, which will in general
not be true if the long-range order is due to some
interactions. It has, for example, been shown very
generally for weak-coupling interactions that any such
tendency of the wave function to "stiffen" in that way
will be countered by extra terms in the current density
which nullify the eGect. ' "In the Bose gas, however, the
long-range order is a purely statistical efI'ect, so that
(4.9) holds; and therefore I.ondon's argument goes
through,

We now specify boundary conditions:

d2V
+47re'e, '(L

~
pp(x)

~

'—1)=0.
d 2

(4.19)

In (4.19), p, =e'APL~ y~' is the charge density of the
condensed bosons, whereas p„=—e'n, is the charge
density of the uniform background and of the non-
condensed particles. ' E is the energy shift of the state
ip(x) due to the Coulomb interaction; it is linked with
the normalization condition

tracted to make the whole system electrically neutral.
The self-consistent equations for the wave function p of
the condensed state and the potential V(x) are

d p
+LV(x)—Ejy(x) =0, (4.18)

2m dx'

pp(x) = (2/L)' sin(wx/L),

e,. (x) = ep'(2/L) sin'(m. x/L).

(4.12)

(4.13)

L

dxi ip(x) i'=1, (4.20)

Inserted into (4.10), this gives a law of penetration
which depends on the size of the container, in disagree-
ment with experimental facts.

(b) The boundary condition

(W)
&ax&, p (ax),=,

or the periodicity condition

P(0) =P(L),

48x) &—p (clx) z L—

(4.14)

(4.15)

on the other hand yield

q p(x) =L;i,
ts, (x)=n, ',

(4.16)

(4.17)

i.e., the London equation (1.14) holds.
As mentioned in the introduction, this strong depend-

ence of the results on the boundary conditions is due to
the fact that the ideal Bose gas with no interaction
whatsoever between particles is physically quite un-
realistic. It will, however, still provide a useful model of
a superconductor if one chooses artificially the boundary
condition (4.14) which yields a uniform local density
e, (x) of condensed particles for any shape of the
volume.

By a qualitative argument we shall now show that
this is, indeed, the proper procedure if one takes into
account the Coulomb repulsion between particles.

In order to include the Coulomb interaction between
bosons in a self-consistent way, we shall treat the
particles as moving in a potential U(x). V(x) is related
by Poisson's equation to the local charge density of the
bosons; a uniform background charge has to be sub-

"M. R. Schafroth, Nuovo cimento 9, 291 (1952).

since the system (4.18), (4.19) is nonlinear.
The system (4.18), (4.19) has to be solved subject to

the boundary conditions

p (0)= p(L)=0,
(4.21)

V(0) = V(L) =0,

and the normalization condition (4.20). We are only
interested in the ground-state solution, i.e., the one for
which y(x) has no nodes. This excludes an oscillatory
behavior of y(x) and therefore, through (4.19), of V(x).
Furthermore, tp(x) cannot be appreciably different from
its average value I & over large regions (i.e., regions
comparable to L), since this would lead to a building-up
of V(x) through (4.19), which in turn contradicts
(4.18).We therefore expect y(x) to be practically equal
to I. ' throughout most of the range 0(x&J, with a
small region near the boundaries where it drops to its
boundary value zero. We are now going to estimate this
region near the boundary and show that the picture of
the solution we thus get is indeed consistent.

We therefore put

q(x)=L ', X(x(L—X,
(4.22)

V(x) = Vp.

(4.22) is consistent with (4.18), (4.19) if we put 8= Vp',

Vp is, therefore, just the energy shift of the ground. -state
due to the Coulomb repulsion.

The normalization condition (4.21) now requires that
the average value of

~
ip(x) ~' in the boundary regions

0(x(X and I.—X(x(I.be equal to I.:

(4.23)

' Strictly, the charge density of the noncondensed bosons is not
uniform if V(x) is not constant. However, p is much less sensitive
to V(x) than the density p, of condensed bosons, and since, as we
shall show, the resulting V(g) tends to be smoothed out, the
approximation p„=constant is su%.cient for our purpose.
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where G is the volume of the container, tio
——eh/2mc

Bohr's magneton, ti= the chemical potential, n=1/kT.
The number of particles is given by

BQ
(4.24),y =

leap

eH' G (+" (dx P exp n~ fsoH'(2v+1)
2Iic 2~'

This means that oo(x) must rise from its value oo(0) =0
to a peak and then drop to the value oo(X) =I &, and by
symmetry, similarly near x=I.. (4.19) then shows that
V(x) rises from V(0)=0 to a value

V,=—V())=n,o cs. )s

(4.18) now requires that

Ii'/2m''=E —V(0) = V(X)—V(0) =n, 'e9,'. (4.25)

Consistency is thus achieved for a X of the order of
magnitude

X4=Ii'/me'n, o. (4.26)

Using (3.1) to relate n, o to the penetration depth d we
Gnd The free energy is

k' '
+ —.

I
-1 . (5.2)

2m

t
It/mc

)/a=
J

d
(4.27)

S. THE CRITICAL FIELD

I.et us now consider a Bose gas in a cylindrical con-
tainer in an "acting" homogeneous magnetic field II'
parallel to the axis of the container. The grand canonical
partition function e " can be worked out in a standard
way" to give

eH' 6 p+"
Q=kT I de P

2kc 2m'

Xlog 1—exp —
n~ tioH'(2v+1)

kK2

+ -t I, (51)
2m

W. Pauli, Solvay-Report 1930 (Gauthier-Uillars, Paris, 1932),
pp. 183—190 and H. A. Bethe and A. Sommerfeld, Hundblch der
Physik (Verlag Julius Springer, Berlin, 1933), Vol. 24, Part 2,
pp. 477 5,

For bosons of a mass comparable to or larger than the
electron mass the right-hand side is always very small,
so that the layer X can always be neglected for calcula-
tions about superconducting phenomena. For our pur-
poses, therefore, the Bose gas including Coulomb inter-
action behaves like an ideal Bose gas with the artificial
boundary condition

(ag/an) „.it =0 (4.28)

(4.28) gives the correct ground state lt (x) =G & for all
volumes; the contributions due to the higher states, i.e.,
the contributions of the noncondensed bosons, are not
affected by the choice of the boundary condition anyway,
apart from pure surface effects.

The strong Aattening of the ground-state wave func-
tion due to the Coulomb repulsion between particles
may be surprising at first sight. It should be noted that
this is again due to the high occupation of the ground
state by the condensed particles: All of them contribute
simultaneously to the potential V(x) acting on any
single one, and this cumulative eGect is responsible for
the high sensitivity of V(x) to oo(x) t'through the factor
n,oI. in front of

~ q (x)
~

' in (4.19)$.

(5 3)

The chemical potential p is here no longer restricted
to negative values as in the absence of a magnetic field,
but can take values up to

timax. = +@OH ~ (5 4)

Here,

e t"" etMOH v
n—=—=no

G 1 (-,s) =i v* sinh(ntioH'v)

t"2mkTil
«=1 (-:)I

E 4irh' )

(5 6)

(5.7)

is the maximum density of particles that can be ac-
commodated outside the ground state in the Bose gas at
temperature T without magnetic field.

On putting H'=0, (5.5) and (5.6) reduce to well-
known expressions for the free Bose gas.

However, even arbitrarily small values of the mag-
netic held G' introduce qualitative changes. However
small H', the sum in (5.6) can take arbitrarily large
values, so that any density of bosons can be accommo-
dated outside the ground state at all finite temperatures:
The Bose gas does not condense at any finite lemPeratsire

if it is in a fixed homogeneotis magnetic field. 'o

An important question at this point is the precise
nature of the "acting" field II'. The Lorentz relation

H'= H+ (4sr/3)M, (5.8)
"It should be kept in mind here that (5.1), (5.2), (5.5), (5.6)

are derived under the assumption that the volume G tends to
infinity at fixed H', i.e., that

(e/c)H'»(2mkT)&/R (A),
where R is the radius of the cylindrical container. The above
statement therefore holds only for fields fulfilling (A), and
"arbitrarily small fields" strictly means "Gelds of the order
(2mb T)&/R. "

(5.1) and (5.2) can be brought into a more tractable
form by expanding the integrands in powers of
exp f —nI tioH'(2v+1)+ (k's'/2m) —ti]) and interchang-
ing summation and integration; this yields

0 ~ e )"" ago+ ~
oi—=—= —kTno (5.5)

G 1 (-,s) =i v"' sinh(npoH'v)
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where H is the applied field, M= —8Q(H')/c)H' the
magnetization, cannot be applied here. In fact, an
estimate (see Appendix II) shows that for all values of
H' which need be considered, the diameter of the bosons'
orbits are much larger than the mean distance between
particles, provided that the right-hand side of (3.3) is
small, i.e., provided that

The B(H) law (5.12) of the Bose gas differs from the
one usually assumed for superconductors, " and there-
fore the thermodynamical relations have to be rein-
vestigated.

Ca11ing 4(T) the free energy of the Bose gas at
vanishing held, the thermodynamical potential with
variables T and H, G(H, T),s' is given by

(5.9)rt —= (e'/mc') mi((1. i.~
G(H, T) =e(T) —BdH

4 J,The field produced by any one such large orbit is
negligible compared to the average field, and, therefore,
the "acting" field JI' has to be identified with the
average microscopic field B." G, (H, T) =C (T); (H &H,),

(5.15)
(5.10) G (H, T)=4 (T) (1/Sw—) (H Hp)'; —(H) Hp).

It will be shown at the end of this section that, apart
from negligible corrections, for T & T,(1—rt):

From this, one finds for the latent heat of the transi-
tion. in the field

M(H') = —N, pp
8 1 8(H —Ho)'

Q= —T (G —G.)H=Ho =—T
BT Sm. BT

. (5.16)
H=HO

H'
~

(Tq'-
= —'spp 1—

i

iH'f, l T) (5.11) The jump in the specific heat is, similarly

C„—C,= —T (G —G,)Ir =rrp
aT2

where p, o is the Bohr magneton. In a magnetic field 8,
therefore, the Bose gas exhibits a permanent diamagnetic
moment, it is a "dia-ferromagnet. "No condensed phase
exists.

From (5.10) and (5.11), it can be seen that the
B(H)-curve for the Bose-gas is given by

T 8
(H-H. )o

~
~=~„(5.17)

Sx BT'
or

T /&Hot'c.—c.=—
i

gor l aT)0 II&Ho

II—IIO II&IIp
(5.12)

One sees that the thermodynamic properties of the
ideal Bose gas are not in agreement with the properties
of actual superconductors. The transition in the mag-
netic field is still of the second kind„having no latent
heat; however, a jump in the specific heat occurs for
B/0. '4

There now remains to calculate M(H') from the basic
equations (5.5) and (5.6).We shall do this separately for
the absolute zero and for higher temperatures.

(a) Absolute Zero: ppB))kT

with
Hp=4orÃp'oL1 (T/T.)'j (5.13)

This means that for B&BO a field P applied to the
surface of the cylinder penetrates the Bose gas as a
honsogeneols field, producing a magnetization M and an
induction 8 related by (5.10) and (5.11). For H(Ho,
however, no homogemeols field can penetrate the Bose
gas; indeed, assuming a homogeneous H(BO leads to a
contradiction in (5.10) and (5.11).If one applies to the
surface of the cylinder an II IIO the bosons condense,
expel the field except for a thin surface layer —inhomo-
geneous Gelds are, of course, outside the scope of the
approach in this section —and the superconducting
state is established. Hp(T) (5.12) is, therefore, the
critical field. Using (3.6) and (3.7), Hp(T) can be related
to the penetration depth d:

Here, (5.5) and (5.6) reduce to

t' T q
' 2 expL —n(poH' —p) v)

ro= —upoH'( —
( (5.18)

f(-;) = p2

H, =hc/2ed'
( T q ~ 2 expL —rr(poH' —p) vj

(5 14)
u= rs] —

( rxpoH P (5 1'9)
LT. & r(-:)

s' From (5.10) one can deduce the following relation between the
susceptibility x and the quantity x' of (1.5):

x=x'/(I —4~x')

This shows that on approaching condensation, where y'—+—~,
x—+—1/471- so that the permeability tends to zero, in accordance
with (5.12). See also H. Frohlich, Nature 168, 280 (1951).

ss C. J. Gorter and H. B. G. Casimir, Physics 1, 305 (1934).
-" See reference 9, paragraph 2.
'4 It should be borne in mind that (5.11) and all subsequent

equations become invalid near the transition temperature. It
follows from (5.17) that Ho(T') must have a vanishing derivative
at T=T„since there C„=C,=O.
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f (l) t.(--:)
F(s) =s 1'+ + s+O(s'),

v2 v2

np= N(T/T, )1, (5.20)

The factor (T/T. )tntlpH tends to zero as T~O, and
therefore the sum in (5.19) must 'tend to inanity as
T~O, i.e.,

(5.27)
f (-:), l-(-', )

G(s) = — +2ssl+ s+0(s').
v2 K2

. rr(poH' —p)—+0 as T~O.

At 1=0 therefore, one has
Introducing the dimensionless variablesp= poEI',

co=0,

and thus the free energy per unit volume is

po(H', 0)—=sr+ pn =npoH'. (5.21)

The magnetization is

M = —r) y/r)H'= np p— (5.22)

It is of no great use to make an expansion in powers of
temperature starting from (5.18) and (5.19),because the
range of validity of such an expansion is limited to a
very small interval, vis. :

T/T, «rt'= 4orntJ, p'/tp—T„ (5.23)

and this latter ratio is of the same order of magnitude as
rt (5.9) and thus very small for all reasonable values
ofe, m, n.

h=H'/4~npo', t= T/T.

(5.24) and (5.25) read

1 = (hrt') lF (s), (5.30)
f.(-;) 1 t—

p(H', T) p(0, T) —2+m
t(rl') ~hlC (s).

4Tn pp l (s)
(5.31)

From (5.30) it follows that for rt'l«1 —t'*we can restrict
ourselves to the first terms in the expansion (5.29), so
that C (s) =F(s). Then, (5.31) yields

po(H', T) p(0, T)—
=4sn'pp'(1 —t'*)h=npp(1 —t'*)H', (5.32)

and
r)p(H', T)(b) Finite Temperatures: ypH«kT

For npDH«1, it is shown in Appendix III that the
expressions (5.5) and (5.6) can be transformed into

2+or
n np n—p

——(npoH') ~F (s),
f (-:)

2+or
to+un —coo =no kT(nppH') *'C'(s), (5.23)

(s)

= —npp(1 —tl),
(5.33)

M(H', T)=—

M(H', T) = —n.lao,

(522) which proves our earlier statement. (5.33) is valid as
long as

1—{T/T,.)-:»(q')-*'.

6. CONCLUSION AND OUTLOOK

(5.34)

where use has been made of the equation valid for valid for nonintegral rr, Re(x)&0, and ~x~ (2~. One
T&T,. finds

where np is given by (5.7), top by (5.5) with H'=0, @=0,
s= 1 tJ,/(p pH'), —

and
C (s) =or—'G(s)+ (1—s)F(s),

cosLn (ns —4)]
F(s)= 2

(5.24)

sin m ns —
4

G(s)= Z

(5.25)

An expansion of these functions for small ~s( can be
obtained by using the well-known expansion"

Z.(x)=—P-r v sins-n F(a)
( 1)x

+ P t (rr —)i)x" (5.26)
p, r

"J.E. Robinson, Phys. Rev. 83, 678 (1951);M. R. Schafroth,
Proc. Phys. Soc. (London) A67, 33 (1953);J. Clnnie, Proc. Phys.
Soc. (London) A67, 682 (1954).

As shown in the preceding sections, an ideal gas of
charged bosons at low temperatures exhibits qualita-
tively the same magnetic and thermodynamic prop-
erties as a superconductor. The only differences are the
continuity of the specific heat through the transition
point and the form of the B(H) curve. The non-
equilibrium properties (e.g. , the vanishing of electrical
resistance) are clearly outside the scope of the model,
since it does not provide any mechanism for electrical
resistance even above the transition temperature.

In view of the fact that the Bose gas is the only known
system with superconducting properties, it is tempting
to assume that the occurrence of superconductivity in
metals is due to the formation of some kind of charged
bosons at low temperatures. Without prejudicing the
nature of these bosons, one may get some insight about
them by trying to fit experimental data to the ideal-
gas model.

The model contains three parameters, the mass m, the
charge e and the density e of the bosons. These can be
fitted to three experimental data: the transition temper-
ature T., the penetration depth d0 at T=O, and the
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critical field H, (0) at T=O. If one tries this, one gets
utterly implausible results (e= 10" cm ', m=10' elec-
tron masses). Only the charge falls into the reasonable
order of magnitude of a few elementary charges. This
fact may give a clue for the understanding of the actual
situation if one notices that the charge is determined
through (5.14) by H, (0) and d0 alone, i.e., by two
quantities at zero temperature, whereas m and e require
comparison of properties at T=O and T= T,. It seems,
therefore, that one will have to consider a creation of
more bosons with decreasing temperature. If one allows
for this and assumes a reasonable boson mass of the
order of the electron mass, one can compute the density
e of bosons at T= T, from (1.1) and at T=0 from (3.7),
and one Gnds

e(T),=10'~ cm ',

N(0) =10"cm—',

i.e., a considerable increase. On the other hand, this
picture does not affect the relation (5.14) between
H, (0) and d0 which shows that the charge of the bosons
is of the order of a few electron charges ep. For tin, e.g.,
taking d0 ——5.2X 10 ' cm and H, (0)=300 gauss one gets
e= 4ep.

This picture has the further consequence that g'

(5.23) and q (5.9) are no longer of the same order of
magnitude, since the former now involves e(0)/Le(T, )fl,
and the latter (m(T,)j'. The temperature interval in

which K„(q ) is important and (5.11) fails, thus remains
small ((T,—T)/T, ))10 '), whereas g'= p0H, (0)/izT„
~f0—2

It is also interesting to note that the relation (5.14),
as a function of temperature, holds approximately in
actual superconductors, the product of d'Hp varying
only by about 50%%uo over the range 0(T(T„whereas
the temperature dependence (3.6) of d alone is quite
di8erent from the one in superconducting metals. This
seems to corroborate the assumption that actual super-
conductivity is related to the properties of a Bose gas
whose total particle number depends on temperature.

A theoretical picture which accounts for a tempera-
ture-dependent density of bosons has been proposed by
the author" on the assumption that the bosons are
resonant two-electron states. However, a rough treat-
ment which neglected the width of the resonance
altogether was not sufFicient to fit the facts quanti-
tatively, mainly because the increase in the density of
bosons between the transition point and absolute zero
could not be made large enough. It is, however, expected
that a more re6ned elaboration of the same picture
would lead to appreciable improvement.

The author is deeply indebted to Dr. J. M. Blatt and
Dr. S. T. Butler for numerous valuable discussions and
criticisms. Their stimulating inhuence was vital to the
development of this work. His thanks are also due to
Professor W. Pauli for a very interesting correspondence

over this work which reshaped important parts of it.
Helpful criticism by Professor H. Froehlich is also
gratefully acknowledged.

APPENDIX I. EXPANSION OF A(z)

We wish to expand

k, (s) = dx —(x'—s')
~p 2s

&&log +x' (I.1)
x+z exp(x'+e) —1

in powers of s in the limit ~—+0. First we notice that the
integrand is even in x, so that

This can be expressed in the complex x-plane, with a cut
from —s to +s, in which log(x —s) is real for real
x—s&0.

S
k, (s) = —', Re dx —(x'—s')

2s

fx s-
ylogi )+x'

&x+z)
(I.2)

exp (x'+ e) —1

where Re denotes "real part" and C is the path shown in
Fig. 1. (2) can then be reduced to an integral over a
path C' on which everywhere

~
x~ )s and a residue at the

pole x0 ——+i&i.
The residue contributes

S
R(e, z) =—', Re 27ri residue~ —(x'—s')

& 2s

Px —s~
Xiogl I+x'

I(x+sJ ) exp(x'+e) —1 I

=+s- Re i —(—e—s )
2s

(ic*—s) 1
Xlogi [

—e ~. (I.3)i',—:ps) 2i.'I

In the limit ~—+0, we have

and thus

(ie&—s)
logi i~i~,

hie&+s~

R(O,s) = (s'/4)s. (I.4)

+00 g
k, (s) = -,'dx —(x'—s')

2s

)& log +x' . (I.1')
x+z exp(x'+e) —1
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FIG. 1. Paths in the complex x-plane.

YVe therefore get

kp(s) =—s+-', Re
r x

dx —(x'—s')
- 28

APPENDIX II. ESTIMATE OF RADII OF ORBITS
IN MAGNETIC FIELD

The radius of the classical orbit of a particle moving
with energy E in a field H' is given by

x—s'q ~ 1
Xlog i

I+x' — (I 5)
Ex+s) exp (x') —1

p = (c/eH') (2srsE) -**.

As long as poJI'((k T, we may replace E by the
average kinetic energy of a free particle, i.e.,

In the remaining integral, (s~ ( ~x~, so that we can
expand the expression in brackets in powers of s/x. The
first term is easily calculated to be

m'
(2rssE)

'*=— (kT)'f'(2).
e m'h'

(II.2)

so that

x (x—s)—(x'—s') log i i +x' = -'s'+ 0 (s4), (I.6)
2s

Therefore
Pp(0) =4s rsvp

The maximum value for B' we need is

(II.3)

X2 32

kp (s) =—sy —Re
~

dx
4 3 o ~ exp(x') —1

(I.7)

k, (s) =—s+ t (-,')s'+O(s'), (I.g)
3

The remaining s-independent integral can be redu ced
by the substi tution rt' = II, to the well-known integral
representation of Riemann's zeta function's f (s) for
s= -,' and we finally get

p 8 (T)' constt'Tp'

., &T, & „ET,& ' (II.4)

where rp —— / ec's, rsvp= n l =mean distance between
particles.

This estimate breaks down near T=0. Here we have
to assume poH')&kT, and to take for E the ground-state
energy of a particle in a magnetic field:

(II.5)
(II.1) then yields

which is the result (2.29). p) dp))g, (II.6)
"E.T. Whittaker and G. N. Watson, Modern Analysis (Cam-

bridge University Press, Cambridge, 1946), fourth edition, p. 266. where dp is the penetration depth at absolute zero, (5.7).
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1 SV
g &PV (1—npv)

(II.7) v' sinh(xv)

(II.4) and (II.6) establish the required estimate

p/&»1

for the whole range of temperature and fields of interest.

APPENDIX III., REDUCTION OF (5.5) AND (5.6)
TO (5.24) AND (5.25)

In the case of nppH'(&1, it is convenient to consider
instead of + and e the following linear combinations

=2(—1)""
n=l

exp( inn —
[

x t' ap) ( x)
nxi E x)

'Sp v=1

v=1Rp

P)+Vn Mp ce

t (l)

1
g CXQV

3V'

V5/2

(III.1)
sinh(xv). exp( —inurn —

[*)
(III.6)

X 1—e~"" (1—npv), (III.2)
sinh(xv)

with x—=appH'(&1. These are the physical quantities
actually required and are also mathematically con-
venient for the following reason: Due to our assumption
x((1 and the ensuing one np«1 (in view of 0 p (ppH'),
we can replace the sums over v by integrals, provided
these converge at the lower limit. The combinations
(III.1) and (III.2) are just such that this holds, and we
therefore write

The integration i.n A and 8 then gives

(—1)"—' ( np
A=2(vrX)& P COS lr~ n—+-,' ~,

E x )

2 (—1)" ' '
t' np8= xi+ sin~~ n +-,

~

7r n 1 O' S

(III.7)

dv
gCLPV

4 p V2 sinh(xv)
(III.3)

( 1)n—i
—2(~x)'*ay P

n=l

( np
cos

i
n—+—,'

i
. (III.S)

x

dV8—
J V5/2

1—e "" (1 nv, v) —. (III.4)
siilll (sv)

Putting s=1—np/x=1 —V/(ppH') these expressions
become

These integrals can be evaluated by expanding their
integrands into partial fractions, using the theorem of
Mittag-LefQer. One finds that

1 SV
g&PV

v sinh(xv)

(
exp~ inn —

[x)=2(—1)" '
n=l

QO

A = —2+m (nppH') -'* g —cosLm (ns ——,'))
n=l g2

= —2+~(nppH') ~F (s).

2 oo 1
8= (nppH')'* P —sinLm (ns —-',)]

n~] Q&

00

+2 (7r) l (nv pH') &nv, p —cosL~(ns ',))—-
n 1+~

(III.9)

I'
expl —i~n—

(x)
(eppH )I(G(s)+7r(1 s)P(s)}, (111.10)

with F(s) and G(s) defined. by (5.27). Inserting (III.9)
and (III.10) into (III.1) and (III.2) readily gives (5.24)
and (5.25).


