
PH YSI CAL REVIEW VOLUME 100, NUMBER 2 OCTOB ER 15, 1955

x Transition in Liquid Helium
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It is shown, by means of an expansion formula, that Feynman's partition function for liquid helium
exhibits a second-order lambda transition. The validity of the expansion is discussed and it is shown that it is
very likely to be valid for the case under consideration. A discussion is also given of some general properties
of Feynman's partition function.

l. INTRODUCTION

'N a recent publication' Feynman has proposed a
~ ~ comparatively simple approach to the problem of
the phase transition in liquid helium. This approach
consisted of constructing an alternative, exact, mathe-
matical form for the partition function for liquid
helium, and then using a series of intuitive physical
arguments to derive from it a much simpler approxi-
mate partition function. We have discussed the deriva-
tion of this approximate partition function elsewhere'
and we do not propose to enter into any further dis-
cussion of this aspect of Feynman's work in this paper.
Unfortunately it is probably impossible, at least at
the moment, to evaluate even this comparatively simple
partition function. In his original paper' Feynman
showed, using some rather crude approximations, that
his partition function could exhibit a third-order
transition under conditions of constant volume. It is
a simple matter to show that it also exhibits a third-
order transition under conditions of constant pressure.
Recently several authors' ' have advanced opinions
as to whether or not Feynman's form for the partition
function can yield a second-order transition. This
question is of some importance because if the partition
function does exhibit such a transition then it will at
least be in qualitative agreement with experiment. '
Kikuchi has in fact shown, on the basis of a simple
lattice model, that the partition function can exhibit
a second order transition. He pointed out, however,
that this result is not completely rigorous because of
the unrealistic nature of the lattice model.

The purpose of this paper is to present what we

believe is a fairly rigorous proof that Feynman's par-
tition function does exhibit a second-order transition.
Besides doing this we shall, however, discuss some

general properties of Feynman's partition function.
Our proof of the existence of a second-order transition

is based on an expansion formula for the partition
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function, Z. This function can be written as,'

(y&) 8N

Z=, . exp' p V'(p) 3

Xpo(ri Ar)dri driv, (1.1)

where (&')'=k'/2s. m'kT', p=1/k2', ns' is the effective
mass introduced by Feynman and V'(p) is the quasi
interaction potential of the helium atoms. ' The function
ps(ri r&) is the probability density, in configuration
space, for an ideal Bose Einstein gas of particles of
mass e'. Finally the integral J' f dri driv
indicates an integration over all the coordinates r& rN
of the helium atoms. Now Feynman has pointed out'
that the essential property of the function exp( —pV')
is that it must vanish whenever two or more helium
atoms approach sufficiently close to one another. This
simply means that con6gurations in which two or more
atoms are very close together must be given zero weight
in the partition function. Bearing this fact in mind we
can construct a good approximation to the function
exp( —pV') by assuming that V'(p) is the potential
energy for a system of Ã perfectly elastic spheres, the
radii of which are independent of the temperature.
This assumption does not imply any great loss of
generality, for it preserves the essential property of
the function and in addition any weak attractive or
repulsive terms that may be present in V'(p) can easily
be taken into account by means of perturbation
theory. " With this assumption we can write

(1 2)

where f(r, ,) =f;, is given by

f;,=—1; r,; ~&2rp

(1.3)=0; r;;)2ro,
7 In the second reference we showed how Feynman's partition

function could he obtained from the full partition function by
means of the semiclassical expansion in powers of h'. However, if
the interaction potential is singular over regions of configuration
space, as is the case for perfectly elastic spheres, this method.
breaks down. This is simply because for this type of potential it
is impossible to derive the usual expansion in powers of h. A
very similar difhculty arises in the development of the perturbation
expansion for the partition function. This has been discussed by
the author in Phys. Rev. 93, 606 (1954}.
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and ro is the radius of the elastic spheres. The expansion
of the partition function which we shall construct is
essentially an exPansion in Powers of Eras/V, where

X/V is the density of the system. It should be pointed
out that this expansion of Z is not identical with virial
expansion and is therefore not necessarily divergent for
a liquid phase. We shall return to this point later. In
Sec. 2 we shall show how this expansion can be con-
structed and we shall calculate the 6rst two terms of it
explicitly.

In Sec. 3 we study the thermodynamic properties
of the first two terms in this expansion and show that
they lead to a second-order transition. Since this result
is based on the 6rst two terms in the expansion for Z
we must try to decide whether or not it is true for the
exact form for Z. We therefore conclude this section
with a discussion of (a) the validity of the expansion
formula itself and (b) the validity of breaking off the
expansion after only two terms. The essential result
that emerges from this discussion is that the results we

have derived by our approximate method are very
likely to be true for the exact form for Z. We have not,
however, been able to construct a completely rigorous
argument to show this.

Finally in Sec. 4 we discuss some general properties
of Feynman's partition function,

It follows at once that the free energy F can be written
as

where
p= pp+pi (2.8)

Qt Ql p (1+f,y)dri drN. (2.10)
i(j

The integral on the right hand side of Eq. (2.10) is very
similar to the configuration integral that arises in the
classical theory of compressed gases. ' In fact if we put
@i*pl=1, then the integrals become identical. This
suggests that we can probably obtain an expansion for
Pj by using the same techniques' that are used to
develop the cluster expansion of the classical con-
figuration integral. This surmise proves to be correct.
and it will clarify our work if we briefly recall the main
steps in the calculation of the first two terms in the
classical cluster expansion.

In the classical case we have to consider the integral

Pp= —kT logZp, Pi kT——l—og(R«)'. (2.9)

So far we have made no approximations. We now
wish to develop an expansion formula for Ii~. To do
this we substitute into Eq. (2.3) the expression given
by Eq. (1.2) for exp( —P V'). Thus,

exp( —pU )Qtdri drN
l J aJ

&«xp(-PEt), (2 1)

and if we de6ne R«by the equation

R«= . Pt exp[ —PV 5cktdri drN, (2.2)I

then
Z=gt Rll exp) —PEt5. (2.4)

This last equation can be rewritten in the form

where

Z= Zp(R„)',

Zp ——gt exp( —PEt),

(2.5)

(2.6)

(R,t)P=Q, Rll exp( PE,)/Pt —exp( —PEl). (2.7)

2. THE EXPANSION FORMULA

We first construct an explicit expression for

pp(ri rN). This function is the unnormalized prob-
ability density, in configuration space, for a system of
E noninteracting particles of mass m'. If the eigen-
values of Schrodinger's equation for such a system
are El and if @t are the corresponding, correctly sym-

metrized, wave functions then

L(~ ) /+ 5Pp( 1 N) Zl 4 l 4't xpL PEl5 (2 1)

Substituting this expression in Eq. (1.1), we get,

(2.11)

The first step is to expand the product g;&;(1+f;;) as
a polynomial, the terms of which are sums of products
of the f;;.Thus,

&1(11 &2(72

We next integrate this expansion over all the coor-
dinates. The 6rst term is trivial and leads at once to a
term V~. To obtain the first-order correction to this
term we simply have to select from each term in the
polynomial just those terms in which there are no f;,'s
with common suKces. For example in the 6rst sum,
g;&,f,;, as there are no terms with more than one f;,
we keep all the terms. In the second sum, however, we
select terms like f;;fzt but reject terms like f;;f,&. In
the rth sum in the polynomial each term consists of r
f; s multiplied together, and as we only retain terms
with no common suf6ces this means that we have 2r
different coordinates appearing in the f;;, and E 2r-
that do not appear. Therefore when we integrate over
all the coordinates, g —2r of these integrations can be
carried out at once to yield a factor V~ '". The re-
maining 2r integrations can also be easily performed—
simply because there are no common suffixes in the
product of the f;,'s—and yield a factor s", where s' is

R. H. Fowler, Statistical Mechanics (Cambridge 'University
Press, Cambridge, 1936), Chap. 8.
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given by

s= ~f(e)de,

where

(3 13) Rii(pt p')

and p is equal to r;—r;. Consequently from any one
term in the rth sum we get a contribution t/'N "s". To
get the complete contribution to E from the sum we

multiply this typical contribution by the number of
terms we retain. This number is just the number of
ways of picking r different pairs of suffixes from a total
of N suKxes. H this number is denoted by P(r,N), then
the total contribution to E from the rth sum is
P(r,N)VN "s'. We now have to sum this expression
over all values of r from 0 to N/2 to obtain, to our
degree of approximation, the complete expression for E,
namely,

N N

expc 2tri(p Q k,"r; P' —P kt' r, ,))J J g=l @=1

XQ(1+f,;)dri drN. (2.20)

We now expand the product g;(;(1+f;;) in the same
way as before and we again select only those terms from
the rth sum in the expansion that have no common
suKces. This procedure yields the following series for
R«(P,P'),

N/2

R77(ptp') = p P(r,N)N "J~,„(P,P'), (2.21)

where
N/2 N/2

E=P P(r,N)V~ "s"=V~ P P(r,N)N "2"x", (2.14) J (p pt)
r=o r=o

where
~V

f(e)de,
2V ~g

(2.15) Xexpr 2tri(P p k; r, P' p k—,' r,')j. (2.22)

and depends on N and V only through the density N/V.
It is now a fairly simple matter to show' that for suf-
ficiently large N the sum in Eq. (2.14) is asymptotically
equal to (I+x)~, to first order in x. Therefore logE is
is given by,

We now substitute this series for R«(P,P') into Eq.
(2.19) and get

N/2

R(7——A(A7*+ p Q P(r,N)A 'JE „(P,P'). (2.23)
P P' r=o

V+N l (1 + ) N l V+N (2 16)
If we invert the order of summation, this leads to

This completes the evaluation of logE to the desired
degree of approximation. We shal1 now show that a
very similar cluster expansion can be obtained for
log(R„& .

The wave functions that appear in the integral, Eq.
(2.10), for R«are the correctly symmetrized wave
functions for E noninteracting point particles of mass
m'. They can be written as,

N

p~(ri r~) =A t p exp[2trip p k,'r;j, (2 17)

Xexpg2tri(p P k;.r; P' P k,' r;)j. —(2.18)

Substituting this expression into Eq. (2.10) we have

R()=A (A (*Q Q Rii(P,P'),
P'

(2.19)

where A ~ is a normalization constant, P is a permutation
operator acting on the N suffixes of the wave vectors k, ,
Pi indicates a summation over all distinct permuta-
tions P and P; is a sum over all h indices j.From this
last equation we have that,

Q*Q =A A*PP
P P'

N/2

Rt, =P P(r,N)N "H t „,
r=O

(2.24)

where B~,„ is given by

(2.25)

The evaluation of the integrals in Eq. (2.22) and the
summation in Eq. (2.25) involve elementary but lengthy
operations. These are carried out in Appendix A where
it is shown that II&, „ is given by

Hi. = (1~)'= (N/V)" f(e)g~(e)dy, (2 26)

where

gt(g) = (1/N )Q Q Ãttmtt exp[2triy (k—k')]+1, (2.27)

and the symbols ek that appears in this last equation
are the set of integers that define the state l; they give
the number of wave vectors in the wave function Q~

that are equal to k, and satisfy the relation gt, mt,
——N.

We see that the only difference between the integral
for Ig and the corresponding classical integral for x is
the extra factor g~(y) in the integrand. This function,
considered as a function of X and V, is of order unity.
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We have at once from Eq. (2.24) that

N/2

(Rgt)'=P P(r,N)N "((-Ii)")'. (2.28)

properties' of these occupation numbers,

nk ——
C
exp(pk'+n) —1) ', all it; T)Tk, (3.4)

nk=Lexp(pk') —1] ', k&0; T& Tk, (3.5)

It is shown in Appendix B that to our degree of approxi-
rnation ((Ii)")' can be replaced by ((I&)s)"; we then
have

ns ——N —P nk. T& Tk
k+0

N/2

(Ett)s=P P(r,N)N-"((I()')', (2.29)

(3 6)Tk= (k'/2m'ks. )LN/Vf'(-, ')]1,

Here p=k'/2m'kT, the transition temperature Tk is
given by

and for large E this gives,

(~«)'=(1+l (I)')"
From Eq. (2.9), we have

ÃkT
Fi= kT log—(R(()'~— (I))',

2
where

(2.30)

(2.31)

and

(I ) =(N/U) I'/(9)(g (9))'d9,
Jg,

(2.32)

(gt(p))s= (1/Ns)P P nknk expf27rip (lt —li')]+1.
krak' (2.33)

In this last equation the nk are the mean values of the
integers rsk that appeared in Eq. (2.26). Since f(9)
differs from zero only if tg~ ~&2rs, we see that (I&)'

¹ss/U, and is therefore of exactly the same order of
magnitude as the first term in the classical cluster ex-
pansion. It is easily shown that if we include in our
calculations more complicated products of f,,'s then we

get terms in the expansion of F~, that depend on higher
powers of Nrs /V. We shall not, however, calculate any
of these terms as they are unnecessary for our purpose.

3. NATURE OF THE TRANSITION

If we combine Eq. (2.32) and Eq. (2.31), invert the
order of integration and summation and then substitute
the result in Eq. (2.30) we get,

where

Fi s Q Q rtkrtk'+k, k'+sN L'Op
kgkf

(3.1)

1I k, k'
~

exp j2s sy (lr l~ )]P kT/(9)]~9 (3 2)V"
and

1
I.o=—,t 5 kTf(9)]de. —

&g
(3.3)

Now the nk that occur in Eq. (3.1) are, as we have
pointed out in the previous section, the average values
of the integers nk that define the state l. Since these
averages were calculated with weights exp( —PE~)/
g exp( —pEt), the nk must be identical with the average
occupation numbers of the single particle energy levels
of an ideal Bose-Einstein gas. %e summarize the

and i (s) is the Riemann zerta function of order ss. The
statistical parameter o, is given as a function of T and
N/V by the equation pknk(rr; T,V)=N, for T) Tk.
For T ~& T), n is identically zero. ' It follows from this
last equation that 0. and its first order derivatives with
respect to T and U are continuous at T~ but that all
the higher order derivatives are discontinuous at this
temperature. Equations (3.4) and (3.5) define the nk
as functions of T, V, and a, and we shall henceforth
consider F~ to be given as a function of these variables.
The term Fs in Eq. (2.7) is very easily evaluated as it
is the free energy of an ideal Bose-Einstein gas composed
of particles of mass m'. It is given explicitly by the
equations

Fs NkTn+kT ——g—k 1OgL1 —eXp( —pk' —n)];
T)Tk, (3.7)

and

Fp kT Qk logI ——1—exp( —pk')]; T ~& Tk. (3.8)

Here all the symbols have exactly the same meaning as
before. If we regard Eq. (3.7) as de6ning Fs as an
explicit function of T, V, and o., then it is easily seen
that [BFs/Bn]r, v —=0; this last relation is in fact
equivalent to the equation gkn (k, rr,T)V=N, which
the nk must satisfy.

We can now use exactly the same arguments that we
used in a previous publication" to show that, while Fo
exhibits a third-order transition at Tq, F&, exhibits a
second order transition at this temperature. We first
notice that because $8Fs/r)n]r, v —=0, the rth derivatives
of Fo with respect to T and V only depend on the
(r—1)th and lower order derivatives of rr. Since only
the second and higher order derivatives of n are discon-
tinuous at T), it follows that only the third and higher
order derivatives of Fo will be discontinuous at this
temperature. This result is of course to be expected
because Fo is merely the free energy of an ideal Bose-
Einstein gas, and such a system exhibits a third order
transition under conditions of constant volume. It is
easily seen from Eq. (3.1) that [BFi/r)rr]r, v 80.
Therefore the rth derivatives of F~ will depend on the
rth derivatives of e. This in turn implies that the
second-order derivatives of F~ will be discontinuous at

' A. R. Frsser, Phii. Meg. 42, 156, 165 (1951)."G. V. Chester, Phys. Rev. 94, 246 (1954).
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T~ and that F» wi11 exhibit a second-order transition
under conditions of constant volume. To show that it
exhibits a second-order transition under conditions of
constant pressure we merely have to show that
(Bp/BU)r 0, for T & T&,. This inequality also deter-
mines whether the system is stable for T &~T~. Because
(Bp/BV)z 0=—, for T~&T&„ in the London theory this
theory leads to a first-order transition under conditions
of constant pressure. It is easily shown" that the first
term in Eq. (3.1) is linear in U, for &&Tx, therefore
(Bp/BV)r is given by"

(Bp/BV)r= (—&/V') L &Tf(—0)jd0 (3 9)

Consequently (BP/BV)z 0 as long as J&L
—kTf(0)]d0)0. From the definition of f(0), Eq. (1.3), we have at

once the integral =47rMATrs'/3V', and is therefore
positive. We have therefore shown that to our degree
of approximation the partition function proposed by
Feynman exhibits a second-order transition both under
conditions of constant pressure and under conditions of
constant volume. For the sake of completeness we quote
the formula for the discontinuity in the specific heat
at constant volume. If DCr=Cr(Tx+0) Cr(Tq 0), — —
then

where
+~(P)T(0)jP dP (3 10)

S(p) =p exp( —aps/e)/e'*,
+=1

"G. V. Chester, Phys. Rev. 100, 446 (1955).
'2 This formula is correct as long as the dependence of m' on U

is ignored. If this dependence is taken into account then the
expression for (BP/BVlr becomes more complicated. It is easily
seen, however, that (ap/aU)&+0 and that in consequence the
transition remains a second order one.

T(p) =+$1 exp( a—p'/e)]/—m&

n=l

and a=m/X'.
It is interesting to examine, in a more physical

manner, the reason why the second term in the ex-
pansion changed the transition from one of the third
order to one of the second order. In the first term in the
series the transition arises because of the existence of
very large cyclical configurations, or polygons, in the
integrand of the partition function. This fact has been
pointed out by Feynmann. ' Now it is well known that
in the type of cluster expansion we have used the
second term in the expansion always introduces corre-
lation between the atoms. In particular this means that
we have introduced correlation between the polygons
in the integrand of the partition function. It is just the
introduction of these correlations that changes the
order of the transition. As long as the polygons are

uncorrelated we shall have a third-order transition, but
as soon as we introduce correlation between them the
transition changes to a second-order one.

Finally we note that if Tz, as given by Eq. (3.6), is
to agree with experiment we must have then nz' —', m

at the X temperature. We also note that BTq/Bp will

only have the correct sign if m' varies with p faster
than p&. While both these requirements seem to be
reasonable on physical grounds we cannot see any
rigorous method of showing that they are satisfied.

We now turn to a discussion of the validity of these
results, the point at issue being whether they are true
for the exact form of Feynman's partition function or
whether they are spurious and result from the approxi-
mations that we have made. The two essential steps
in our method are (a) the development of the expansion
formula itself and (b) the approximation of breaking
off this expansion after only two terms. We shall discuss
these points in turn.

The use of an expansion formula for P~ could only
lead to incorrect results if it were divergent. To develop
the complete series for Ii~ along the lines we have
suggested would be an extremely tedious task and a
rigorous proof, or disproof, of the convergence of the
series would be almost impossible. It would therefore
seem to be worth while to present a much simpler
physical arguxnent that suggests that the series for Iii
is convergent at the temperatures and densities we are
interested in. Our argument is based on the fact that
if we set &~&~*/I in the integral for R~~ then this
integral becomes identical with the classical configura-
tion integral for E perfectly elastic spheres; our ex-
pansion formula is then identical with the classical
virial expansion. Now since the coefficients of this
expansion are independent of the temperature its radius
of convergence will also be independent of the tem-
perature. It seems reasonable on physical grounds to
suppose that this series will be convergent for suffi-

ciently low densities, and, since the density of liquid
helium is only about one half the density of a "normal"
Quid, it is reasonable to suppose that the series will be
convergent at liquid helium densities. Now the only
difference between the coefficients in the classical ex-
pansion and those in the expansion we have proposed
is that in the integrals that define the coefficients we
have an extra factor P~P~*. This factor is always
positive, less than unity and, in the region we are
interested in, is a slowly varying function of the coor-
dinates. Bearing these facts in mind it seems possible
that the introduction of this extra factor into the
integrals will in fact leave the radius of convergence of
the series almost unaltered. On the basis of this very
incomplete and unrigorous argument it is plausible
that the expansion we have proposed for Ii~ is con-
vergent at the temperatures and densities we are
interested in.

If this conclusion is correct then we only have to
show that the results wc have obtained on the basis of
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the first two terms in the series will not be altered by
taking into account the behavior of any of the higher
terms in it. We in fact showed that the second order
derivatives of the second term in the expansion of E~
were discontinuous at a temperature T~ given by Eq.
(3.6). If this result is spurious then the derivatives of
the higher order terms in the series must also be discon-
tinuous at this temperature. Moreover these discon-
tinuities must be just sufhcient to cancel out those that
we have found. It is very easily seen that our expansion
of Ii& is essentially an expansion in powers of Pro'/V.
Consequently while the discontinuities in the various
terms may exactly cancel for one particular value of
Pro'/V it would seem to be impossible that they should
do so in general. We can therefore conclude that the
discontinuities we have found are in fact genuine. On
the other hand it should be pointed out that there is
nothing to prevent the 6rst-order derivatives of any of
the higher order terms in the series exhibiting discon-
tinuities; this type of behavior would lead to a first
order transition. We can therefore conclude that while
it seems fairly certain that Feynman's partition function
exhibits a second-order A transition we cannot rule
out the possibility that it exhibits a first-order X

transition.

4. SOME GENERAL CONSIDERATIONS

First we wish to draw attention to an important
theoretical point that must be considered whenever we
construct a theory of liquid helium. A helium atom
consists of two electrons that are tightly bound to a
nucleus, and we normally treat this composite system
as an individual particle. Moreover since the total spin
of this system, when it is in the ground state, is zero
we must apply Bose-Einstein statistics to any assembly
of them. However, this procedure is only correct as
long as the two electrons can be considered as being so
tightly bound to the nucleus that the whole system
behaves as a rigid particle. This is of course well
known. "Now if in any statistical treatment of a system
composed of helium atoms we allow con6gurations to
occur in which two or more atoms come so close together
that their charge clouds overlap, then we cannot apply
Bose-Einstein statistics to the atoms in these con-
figurations. In other words, in configurations of this
type we must not symmetrize the total wave function
with respect to the coordinates of the atoms but we must
rather antisymmetrize it with respect to the coordinates
of the individual electrons and nucleons that go to make
up the atoms. For this reason, it is not possible to regard
I.ondon's ideal gas theory as an accurate treatment of a
noninteracting system of helium atoms, although it is
of course an accurate treatment of a system of noninter-
acting Bose-Einstein particles. For example, it is clear
from the Pauli exclusion principle that the probability
of finding two collections of electrons and nuclei in the

~3 R. H. Fowler, reference 8, Chap. 2.

same region of configuration space will be very small.
London's treatment, on the other hand, indicates that
there is a very high probability of this happening.

Let us now examine Feynman's partition function
- in the light of these remarks. It follows from Eq. (1.1)

that Feynman gives each con6guration a statistical
weight po exp (—PV'). Therefore as long as the function
exp( —PV') vanishes whenever two or more helium
atoms approach very close together this configuration
density will be perfectly satisfactory. To be more
precise this means that the function exp( —PV') must
vanish, or at least become very small, whenever any of
the X(X—1)/2 conditions r;, &~2ro (where ro is the
radius of the charge cloud of a helium atom) are satisfied.
However, we have pointed out that this is an essential
property of the function exp( —PV'). We can therefore
conclude that the configurational density that Feynman
has proposed ful6lls the requirements we have discussed
above. It is easily shown that our approximate method
of dealing with the partition function is also satisfactory
in this respect.

Finally we wish to discuss whether Feynman's par-
tition function can exhibit a liquid-gas transition. This
question is important because the X transition only
takes place in the liquid phase of helium. Consequently
any really satisfactory theory of liquid helium must
(a) show that helium exhibits a liquid-gas transition
and (b) show that this transition takes place at a tem-
perature above the theoretical X transition. It appears
likely that Feynman's treatment can fulfill at least the
6rst of these requirements. This conclusion rests on the
following considerations. The function p(ri r~), that
occurs in the integrand of the partition function, is of
the form 1+f(ri r~). Here f(ri r~) is a sum of
terms each of which contains at least one factor of the
type expL —(S~ro2/X')x;P), where x;,= r,;/2ro and
X=h'/2vrmkT. Since the other factor in the integrand
vanishes whenever x;;~&1 the smallest value that the
argument of the exponential can have is 8~r02/X'. This
in turn implies that the function f(ri r~) falls very
rapidly to zero, as any pair of relative coordinates
increases, as long as T&)2'K. Thus for temperatures
above about 6'K the factor po may be replaced by
unity. In this region of temperature therefore the par-
tition function reduces to exactly the same form as the
partition function for a classical Auid except that the
actual potential U is replaced by the quasi potential
V'(P). Now as long as V'(P) contains a weak attractive
part this partition function will exhibit a gas-liquid
transition. Unfortunately we cannot estimate the tem-
perature at which this will occur unless we know some-
thing of the form of V'(P), and this means that we
cannot be sure that even if a transition takes place
it will occur at a temperature above the X point.
However, it is worth noting that if V' is set equal to the
true interaction potential, V, then it is almost certain
that the partition function will exhibit a gas-liquid
transition at about 13'K. For we kngw from the law of
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corresponding states that if helium were a "classical"
liquid it would liquify at about this temperature. Now
at 13'K the factors exp( —kr') that occur in the function
f(ri r~) are never greater than 10 ', in the region of
configuration space of interest, and hence we can
certainly set f=Oa—nd po

=—1. The partition function
then becomes identical with that for a classical Quid,
with an interaction potential U, and will therefore
exhibit a gas-liquid transition at about 13'K. This
shows that this approximation to the partition function
does not take into account the high zero-point energy
of liquid helium. To introduce the zero-point energy
in this approximation we have to assume that the
quasi potential, V', is much weaker than the actual
potential U. On the basis of this assumption it is prob-
ably fairly simple to construct a realistic model"
of liquid helium near the X point; it remains to be
shown how such a "model" can be derived from first
principles. As we have already mentioned, the weak
attractive part of the potential, that is necessary for a
gas-liquid condensation, can easily be taken account of
near the X temperature by means of perturbation
theory.

The author wishes to thank the United States Govern-
ment for the award of an F. O. A. research fellowship.

coordinates yields a factor V5(n, ,n ), where 8(n, p) is
zero if

asap

and unity if n= p. Consequently, J'&, ,(P,P')
will vanish unless n;=o, , for all i)2s. When these
conditions are fulfilled the integral reduces to,

J, ,(P,P') = V~—" . f(1,2)f(3,4) f(2s 1, 2—s)

28

Xexp[2~i(P P k; r, P' P —k,' r;)jdri . dr2, . (A.4)

Next we introduce center of mass and relative coor-
dinates for each pair of coordinates that appear together
in a function f(i, i+ 1).Thus,

y;= (r; r,+—i)/2; R;= (r;+r ~)i/2;
(i= 1, 3, , 2s —1). (A.5)

Solving these equations we get,

r;= R;+y;; r;+,= R;—yi, (i =1,3,2s-1), (A.6)

and the integral now becomes

J (, ,(P,P') =
) j(1,2)f(3,4) f(2s—1, 2s)

Xexp[2~i(P P k,"r,

—P P kp rp) jdri . dry, . (A.1)
2'r

where f(i,k) stands for f(r;i) Let us supp. ose that P
and P' are a pair of permutations that permute the
indices (j) on the wave vectors k in the following way,

P(1 g) = (~i 0'z) (A.2)

(A.3)

These two equations are to be interpreted as meaning
that when P operates on the indices 1 .X it sends
them into a permutation e~ .n~ and similarly for P'.
There are (X—2r) coordinates that do not appear in
the functions f(i,k). We can therefore integrate over
these coordinates at once. Because of the orthogonality
conditions on the single particle wave functions,
exp[2~ik r$, the integration over the jth of these

APPENDIX A

In this Appendix, we shall outline the main steps in
the evaluation of the integral for Ji „(P,P'), Eq. (2.22),
and the sum for Hi „, Eq. (2.25).

We first consider the integral for Ji, ,(P,P'),

2s—1

Xexp{2ni P R;[P(k;+k;+i)—P(k;+k;+i)])
] 3 s ~ ~

2s—1

Xexp {27ri Q p;[P(k,—k;+i) —P'(k; —k~i)7)
~ ~

Xdgl' ' dg28 —ldRl' ' 'dR2s-l. (A.7)

If we perform the integrations over the center-of-mass
coordinates R;, we find that Ji, ,(P,P') vanishes unless
the s conditions,

k(n;)+k(n~, ) =k(n )+k(n~, '),
(i= 1, 3 .

, 2s —1). (A.S)

are satisfied. Here k(p, ) stands for k„. These conditions
can be fulfilled in two ways: (a) by choosing P and P'
so that they are satisfied identically for all values of
the wave vectors k or (b) by regarding them as condi-
tions to be imposed on the wave vectors. We ignore this
second possibility for the moment; we shall show later
that if one or more of the s conditions are imposed on
the wave vectors then the contribution to LI'~, , is
negligible. Let us return to the first possibility. For any
given P the conditions given by Eq. (A.8) can only be
satisfied if P' is such that either n =n; and n;+~'= n~~,
orn =n;+gr ande~~'=n; for alii=1, 3 . , 2s—1. Let
us suppose therefore that P' is a permutation such that
n;=n;+i' and n~i ——u, for 1 &i &p; while a~i' n;~i-—
and n =n;, for p&i~&2s —1. Then the integral for
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J~, ,(P„P') becomes

J(, .(P,P') =J(, ,(P,p)

where we have used the fact that

A A *=V "g-(n,)!/)V!,

and

(A.16)

&(f(g~) expf2s. i P g, (k,—k,+q)]dye . dp„,

where we have relabeled the wave vectors for con-
venience, k;= k(n, ), and we have replaced P' in
J~„(P,P') by p to indicate that P' is identical with P
except that p of the N indices on the k's are permuted
in pairs, namely so that o. =n;+.~ and n;+~' ——n;, for
1 &&i ~& p. This last equation is the complete expression
for J&,(P,P') when P is any permutation and P differs
from P in the way we have specified. If we were to
choose a more complicated pair of permutations that
could not be specified in this way then we could not
satisfy the s conditions (A.8) on the wave vectors
identically.

We next consider the sum for H~„,

II(, ,——A (A(* Q Q J(, ,(P,P'). (A.10)

'S

P J g„,(P,P') =Q 'C,J(, ,(P,p).
p/ y=o

(A.11)

The permutation P is on the other hand labeled by the
particular wave vectors that are associated with the
coordinates r;. But J&,(P,p) depends only on the pairs
of wave vectors that are associated with relative coor-
dinates y~ y„. Therefore all permutations that
permute the N indices so that the same wave vectors k
are associated with the coordinates g&. .p„will lead
to the above expression for Jt, ,(P,p). Since we have
(N —2p) wave vectors that do not appear in the ex-
pression J &, ,(P,p) and these vectors are equal in groups
ni, ,—1 or ei,„according as one of the vectors in the
group e~,. appears in JE, , or not, the number of per-
mutations P' that lead to the same expression for J~, ,
is simply

(A. 12)

To complete the summation over P' we merely have
to sum over-all values of the wave vectors in J~, After
a few elementary reductions we get,

II(, ,=Q 'C V 'K &Lp(N 2~)!/N!, (A.13)'—

Now since the permutation P' is labeled by the number
of pairs of adjacent indices that it permutes we have
at once that

Lq ——P P e~,e~, !~ f(g) expL2sig (k~ —k2)]dg. (A.15)
k1+k2 J P

Consequently, for large E,
II~,——(N/V)'fK+L~/N'7'= (I~)' (A.16)

and this is the result quoted in the text.
We can now easily see why any pairs of permutations

that are such that not all the s conditions (A.8) are
fulfilled identically do not contribute significantly to
H~, , For if t of these conditions are not satisfied identi-
cally then they must be imposed as restrictions on the
values that the wave vectors k can take. Therefore the
contribution to B~, , from a permutation of this type
will be exactly the same as that given by Eq. (A.16)
except that there will be t restrictions on the summations
over the k's. Now since the eq obey the condition
g~ rs~=N each restriction we impose on the summa-
tions electively introduces a factor S ' in H~, , If we
have 1 restrictions then we introduce a factor 37 ' and
the contribution to Hg, , will therefore be negligible for
large g.

APPENDIX 3
In this Appendix, we shall show that it is permissible

to replace ((I&)")' by ((I~)')" in Eq. (2.27). First we
notice that ((I&)")'=((I&)')", if r=0 or 1. Consequently
the error introduced into F& by this approximation can
only depend on second and higher powers of the integral
J~. I et us now write

((I )")'= ((I )')"(1+~ )- (B.1)

Then it can be easily shown, using the methods
developed by Fowler, '4 that

where b is a quantity of order unity. From Eqs. (B.1)
and (B.2) together with Eqs. (2.29) and (2.30) of the
text, we see that the magnitude of the error, dF j, in F~
obeys the following inequality

~
AFy[ «N [ (I/)'bkT ), (B.3)

and is therefore at most of order A'. H we now bear in
mind that AF~ can only depend on second and higher
powers of I~ then we see that it can be written in the
form Nf(I~), where f(I~) depends only on second and
higher powers of J&. But any quantity of this order is
negligible compared with N(I~)' and therefore the
error introduced into Fj by this approximation is
negligible.

' R. H. Fowler, reference 8, Chap. 20.


