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The integral is evaluated by partial functions or
contour integration. The result, which is independent
of r and p, agrees with (5).

The power spectrum of b, can be obtained similarly.
In fact, one gets for this just the right-hand side of
(11) with 7 and p interchanged and / and ¢ interchanged.
Consequently

(b2)w=2kT/LI (13)

again in agreement with (5).
For a line with open ends the coordinates a; and &,
will be defined by

V=3 a,cos(wsy/L), I=3 bssin(rsy/L). (14)
One finds that the power spectra and consequently the

mean square values of ¢, and b, are again given by the
expressions obtained above.
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IV. LONG TRANSMISSION LINE

A very long transmission line with arbitrary terminal
conditions can be treated as follows. The actual normal
coordinates for the undamped system will depend on
the capacities and inductances of the terminal im-
pedances. Suppose that, in spite of this, one introduces
coordinates defined by (3). Then, although the Eq. (7)
is no longer imposed by the boundary conditions, the
relation (8) will hold for all points P such that a dis-
turbance of any frequency originating at P does not
extend to the end of the line. Thus for a sufficiently
long line, one may suppose (8) to hold at all points,
the contribution of the end portions to the final integrals
being a negligible fraction of the whole. The results
(11), (12), and (13) will therefore still hold.

The same conclusion would follow if coordinates
defined by (14) were introduced. Consequently, for a
long line terminated in an arbitrary way, the equi-
partition results hold in their simple form.
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The excess free energy of a mixture of isotopes is expanded in * differences \;. From this result it can be shown, among other

a Taylor series in powers of the relative mass differences
(mo—m;)/m;, where m; and mq are the masses of the particles of
the jth component and of a reference isotope, respectively. This
expansion is only useful if it assumed that all the particles in the
mixture obey classical or Boltzmann statistics. When this assump-
tion is made it is found that the linear term in the expansion
vanishes identically. The second-order term has the form
252 %x;(\i—\;)2-Q, where Q is a universal function of mo, T,
and V, \; equals (mo—m;)/mj, and x;is the mole fraction of the jth
component. This expression gives the explicit dependence of the
excess free energy on the mole fractions and on the relative mass

1. INTRODUCTION

HE purpose of this paper is to develop an approxi-
mate theory of mixtures of isotopes. It is of
course well known! that if the atoms or molecules of a
mixture of isotopes are assumed to obey the laws of
classical mechanics then the thermodynamic properties
of the mixture can easily be related to those of the pure
isotopes. Such mixtures are in fact “ideal solutions.”
However, if we assume that the particles of the system
obey the laws of quantum mechanics then it is impos-
sible to express, in any general way, the properties of a
mixture of isotopes in terms of those of its components.
Now we know, that, except at very low temperatures,
* Contribution number 1301 from the Sterling Chemistry
Laboratory.

LE. A. Guggenheim, Mixtures (Cambridge University Press,
Cambridge, 1952), Chap. 2.

things, that a phase separation of the isotopes in a mixture should
take place at a sufficiently low temperature. It can also be shown
that there is an approximate law of corresponding states between
different mixtures of isotopes. The theory is directly applicable
to all solid mixtures and to fluid mixtures of the hydrogen isotopes.
Unfortunately owing to the lack of experimental data it is impos-
sible to test the theory rigorously. Finally it is shown how the
theory can be used to interpret the behavior of He3—He! solutions.
When sufficient experimental data becomes available the theory
should throw considerable light on the influence of quantum
statistics on the properties of these solutions.

the physical properties of most substances can be
accurately accounted for by means of classical statis-
tical mechanics. Consequently the properties of solu-
tions of isotopes will remain ideal until these tem-
peratures are reached. If we limit our attention to the
class of simple substances to which De Boer’s quantum
mechanical law of corresponding states? applies, then
we can easily estimate the highest temperature at which
any particular mixture can be expected to show devia-
tions from ideal behavior. For example, we find that
(gaseous) mixtures of helium and hydrogen isotopes
are unlikely to show nonideal behavior above 30°K and
60°K, respectively. These two substances are, however,
the only ones that show appreciable departures from
classical behavior in the gaseous and liquid states; all

2 J. De Boer, Physica 14, 139 (1948).
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other substances solidify before any departures from
classical behavior appear. We can therefore conclude
that, apart from these substances, mixtures of isotopes
will be ideal in the liquid and gaseous states.

The theory we shall develop is based on the following
three assumptions.

(a) We shall assume that the atoms or molecules of
the system (for simplicity we shall henceforth refer to
these as “particles”) are “rigid.” That is to say we
assume that the motions of the electrons and nuclei,
relative to the mass center of one of the particles, are
not influenced by the presence of the other particles in
the system. If we make this assumption then the par-
tition function of the system immediately factorizes
into two factors, Z; and Z,. Here Z, is the partition
function for the motions of the electrons and nuclei
relative to the mass centers of the particles and Z; is
the partition function for the motions of the mass
centers themselves. Now the variation in Z; due to the
difference between the masses of the isotopes makes no
contribution to the free energy of mixing.! We can
therefore ignore Z; and concentrate our attention
entirely on Z,, which we shall write simply as Z.

(b) Next we shall assume that the particles of all the
isotopes in the mixture obey classical or Boltzmann
statistics. While this assumption is not generally
justified there are two important cases in which it is
likely that it can be regarded as an accurate approxima-
tion. First, we should expect it to be a good approxi-
mation for the hydrogen isotopes. This is because the
different types of statistics obeyed by the molecules of
these isotopes arise from their different spin states.
Consequently if the different spin states of the mole-
cules exert a marked influence on the properties of the
isotopes then we should expect a considerable difference
in the properties of the ortho and para species of any
particular isotope. The properties of the two species are,
however, very nearly identical; they amount at the
most to about 19%,. We can therefore assume that the
properties of the hydrogen isotopes are very nearly
independent of the spin states of their molecules; con-
sequently we can assume that they obey Boltzmann
statistics. The accuracy of this assumption can very
easily be tested by comparing the properties of mixtures
of hydrogen isotopes that have different ortho-para
concentrations. If the properties of the mixtures depend
strongly on the ortho-para concentrations of the various
concentrations of the various components then we must
conclude that our assumption is unjustified. Secondly
we should expect the assumption to be an accurate
approximation for mixtures of isotopes in the solid state.
For, in the solid state the particles in the system can
usually be regarded as being localized on lattice sites,
and it is well known? that in such a system both Fermi-
Dirac and Bose-Einstein statistics reduce to Boltzmann
statistics.

3R. H. Fowler, Statistical Mechanics (Cambridge University
Press, Cambridge, 1936), Chap. 2,
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On the other hand, this assumption is unlikely to be
an accurate approximation for liquid or gaseous mixtures
of He® and He*. This is because the properties of these
substances appear to depend critically on the type of
statistics obeyed by their atoms. However, we shall
see in Sec. 4 that if we use the theory in an indirect
manner we can throw considerable light on the behavior
of these solutions.

(c) Finally we assume that the interaction potential
between the particles of any isotope is independent of
the mass of the isotope. This assumption, while very
accurate, is not completely correct for the following
reason. The interaction potential depends on the elec-
tron density distribution round the nuclei. Now the
reduced electron masses enter into this distribution and
these in turn depend on the mass of the nuclei. However
if the mass of the nuclei is changed by an amount 6M
then the reduced electron masses will change by an
amount of the order of 10~%6M. This change is so
small that it can be neglected entirely and consequently
the interaction potential between the particles can be
considered to be independent of the mass of the nuclei.

In the next section we give the formal mathematical
development of the theory. This is based on the per-
turbation expansion of the partition function Z.*® The
expansion parameters are the relative mass differences
(mo—m;)/m;, where m; is the mass of the jth com-
ponent and s, is the mass of the particles of a reference
isotope. The way in which these parameters enter into
the partition function can readily be seen from the
Hamiltonian of the system. Suppose we have a mixture
of s isotopes. Let m; and x;=N;/N be the mass and
the mole fraction of the sth component. Then we can
write the total Hamiltonian, H, for the mixture in the
form,

He— 3 (Um) T G/DVe 4V (1 1)y (11)

i=1 =

where r;- - - 1y are the coordinates of the NV particles and
V(r1- - -ry) is the total interaction potential of all the
particles. From assumption (c) this potential is inde-
pendent of the masses m;. To simplify the notation we
write kj= (—#%/2)V-? and set

Ng
KN ymi)=(1/mi) 2 k;.
7
With this notation the Hamiltonian becomes

H=i K(N,-,mi)—{—V(rl- . ~1'N).

=1

(1.2)

4 M. R. Schafroth, Helv. Phys. Acta 24, 645 (1951).

§ G. V. Chester, Phys. Rev. 93, 606 (1954). The author wishes
to thank Dr. Schafroth for pointing out to him that many of the
results obtained in this paper had been found earlier by Dr.
Schafroth in the paper quoted above,



Now,
1 N
K(Nymi)=— 3 kj
m; =1
1 N mo—m; 1 Ni
=—3 k;i+ — 2 ki, (1.3)
mo =1 msg moy =1

and if we set \;= (mo—m;)/m; we have,
K(N,-,m,-) = K(N{,Mg)-f—)iK(Ni,MQ).
The Hamiltonian can therefore be written in the form,

H=% KWim)+V+ENENyme),  (1.4)
=1

1=l

that is,
H=K(N,mo)+V+2 NK (N s;mq). (1.5)
P
Finally, if we define Hy by the equation
Ho=K(N,mo)+V, (1.6)
then H becomes
H=Ho+z A.gK(Ni,mo). (17)
i=1

The_free energy to the system can therefore be con-
sidered as a function of the A;/s and we can formally
expand it as a Taylor series in these parameters. Clearly
we may expect such a series to be physically useful as
long as the A; are not too large. We can also express the
Hamiltonian for NV particles of one of the pure isotopes
in a similar way. Thus,

H,-=H(N,m1-) =Ho+)\iK(N,m0), (18)

and we can again expand the free energy in powers of A;.
Our method is therefore as follows. We expand the free
energy of the mixture in powers of the A\;’s and we also
expand the free energy of each of the pure isotopes in a
similar series. From these series we can at once obtain
a formal expansion of the free energy of mixing in
powers of the \.’s. The first term in this expansion gives
the ideal free energy of mixing. The term that is linear
in the A; vanishes identically and we have to include
terms that are quadratic in the \; in order to obtain any
departures from ideal behavior. This term is calculated
explicitly as a function of the x; and \;. An important
feature of this method is that no assumption is made
about the state of aggregation of the mixture and the
theory should therefore be equally applicable to solid,
liquid and gaseous mixtures. In Sec. 3, we discuss the
physical consequences of the expression we have ob-
tained for the excess free energy of mixing. The prin-
cipal results that emerge from this discussion are:
(a) that mixtures of isotopes should exhibit very nearly
ideal behavior, this conclusion follows directly from
the fact that the excess free energy depends only on
second and higher powers of the relative mass dif-
ferences, (b) that the free energy of mixing has the
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same dependence on the mole fractions as that of a
“regular” solution,® (c) that at sufficiently low tem-
peratures the excess free energy of mixing is always
positive, consequently we expect a phase separation of
the isotopes to take place at some temperature above
absolute zero, and (d) that there exists an approximate
law of corresponding states between mixtures of dif-
ferent isotopes. Unfortunately, we have not been able
to express the excess free energy in terms of the proper-
ties of pure isotopes. The best we have been able to do
is to obtain an upper bound for the excess free energy
in terms of measurable quantities. There appears to be
very little experimental data with which to compare the
theory. In fact, only a qualitative comparison can be
made; this comparison is however satisfactory. We
conclude this section by discussing the experimental
data that are required to test the theory rigorously.

In Sec. 4, we turn to a discussion of He®—He!
solutions. Our aim here is to throw some light on the
influence of quantum statistics on the properties of
these solutions. Now the theory we have developed is
only valid if the particles of all the isotopes in the
mixture obey Boltzmann statistics. Therefore if we
compare the predictions of our theory with the experi-
mental properties of He?*—He? solutions we should be
able to show how the properties of these solutions are
influenced by the different types of quantum statistics
obeyed by He?® and He? atoms. Thus if the experimental
properties are in good agreement with the predictions
of the theory then we can conclude that the properties
of the solutions are not appreciably influenced by the
different types of statistics obeyed by the atoms. On
the other hand if there are large discrepancies between
the predictions and the experimental data then we must
draw the opposite conclusion. What little data are
available indicates that at about 3°K the predictions
and experimental data are in qualitative agreement
but that at lower temperatures thereare large
discrepancies.

The only other work on the theory of isotopes appears
to be that due to Prigogine.”® Although his method of
approach is very different from ours he has obtained
very similar physical results. In Sec. 5 we shall
compare these with our own.

2. FREE ENERGY OF MIXING

We consider a mixture of s components each of which
is an isotope of the same substance. If m; and x;
(=N;/N) are the mass and the mole fraction of the ith
component then we have seen that the Hamiltonian of
this system can be written in the form,

H=H0(N,m0)+z NiK,

=1

(2.1)

6 E. A. Guggenheim, reference 1, Chap. 4.

7 Prigogine, Bingen, and Jeener, Physica 20, 383 (1954).
8T, Prigogine and J. Jeener, Physica 20, 516 (1954).
9 Prigogine, Bingen, and_Bellemans, Physica 20, 633 (1954).
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where for convenience we have set K;=K(N;my).
Likewise the Hamiltonian of the 7th component can be
written,

H=H(N,mo)+N\:K. (2.2)

Now the free energy of the mixture, which we denote
by Fu(N1---Ngmohs: - +X,) is given by

Fp(N1- - -Ngmohi- - -As)=—kT logZ, (2.3)
where

Z=Tr[exp(—BH)]. (2.4)

In this last equation 8=1/kT, T is the absolute tem-
perature, & is Boltzmann’s constant, and the symbol
Tr(A4) stands for the trace of the operator 4. Since we
have assumed that all the different types of particles in
the mixture obey Boltzmann statistics all the traces
that occur in the theory must be formed with unsym-
metrized wave functions. We now formally expand F,,
in a Taylor series in the parameters A;. Thus,

Fm=Fm(N1 . ’Ns,mO,O)—*_Z Ai[aFm/a)\i])\=o

=1

8 8

+3 2 2 ANL0%F /NN =0 O D),

=1 j=1

(2.5)

where X stands for the set A\;- - -A;. We now calculate the
derivatives of F,, in terms of those of Z. Using Eq. (2.3)
we find that

[OF /N Inmo= — [T/ Z (m0,0) J[dZ/ON; ]r=o,
and

[02F 1/ ON:ON; Inmo= (ET/Z2)[0Z/INs-Z/ON; =0
— (kT /Z)[3*Z/INiON j ro.

(2.6)

2.7)

We next calculate the derivatives of Z with respect to
the A; by means of the perturbation expansions for the
partition function®; we find that,

[0Z/ N Ihmo=—8 21(K ;)u exp(—BEy), (2.8)
and

[322/3)\1'0);]);0 = 62 Z Z (If ,') lllz(Kj) lzllGlllz,

u 12

(2.9)

where Guis is given by,
Gule=[exp(—BEun)—exp(—BEw)]/8(Ew— Ey). (2.10)

In these equations, the Ei; are the energy eigenvalues
of the reference system of NV particles of mass m, and
the matrix elements (K;)u1p are formed with the cor-
responding wave functions. It is now convenient to
define the following two averaging operations,

(A)y=>"1(A)u exp(—BE)) /%1 exp(—BEy), (2.11)

and

A4,B)=3Y > (A)uia(B)1auGui/y exp(—BE). (2.12)

i U2 i
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The matrix elements (K;)ui; in Eqs. (2.8) and (2.9)
are given by equations of the form,

(Kj)1112=§j(kt) l1la, (2.13)

where we have absorbed the factor (m,)! into k. If
we combine Egs. (2.11), (2.12), and (2.13) with Egs.
(2.8) and (2.9) we find that

1902 N
[__-] ——BK)=—BY (k),  (2.19)
Z I\ hoo t=1
and
1 022 Ni Nj
[— ] (K K)=BE S (k). (2.15)
Z ONON ;o r=1 =1

Now (k;) is the average value of the kinetic energy of
the 4th particle, averaged over all accessible states of
the reference system. It is therefore independent of the
suffix 7; to indicate this we set (k;)= (k.), where a
refers to any particle of the reference system. Similarily
(krk:); vt is independent of the pair of particles that
we chose and we can set it equal to (k4,ks); a3B. The
suffixes  and ¢ can, however, be equal and in this case
we have to set (k,k.) equal to (kak.). Using this
notation we can write Egs. (2.14)zand (2.15) in the
following way,

(1/Z3Z/IN)rmo=—BN i(Ea), (2.16)
and
(1/Z0Z/3NidN )rm0= B[ NN j(karks)+-0:;N:AT,  (2.17)
where A is given by,
A= (ka,ke)— (kayks). (2.18)

Substituting Egs. (2.16) and (2.17) into Egs. (2.6) and
(2.7) we get,

(6Fm/a)\,~)>\=o=Ni(ka)=x,-(K), (2.19)
and
(82F 1/ ON 0N ;) a0
=BLN:N j(ka)*— Nl j(ka,kg)—0::N A7
=B[xx;(KY2—xwx;({(K,K)—NA)—8;2,NA]. (2.20)

These last two equations lead to the following expansion
for the free energy of the mixture

Fm(fV1' . 'Ns,mO,)\r . ')\3)
=Fn(N1- - -Noymo0)+ (3 A )(K)

=1

+(8/2)(% S AA ) [(K Y — (K,K)—NA)]

i=1 j=1

—(B/2) (}f A )NA+HOR).  (2.21)

i=1
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Using exactly the same methods we can expand the free
energy, F;, of one mole of a pure isotope of mass m;,
thus,

Fi(Nymo\i)=F i(N,m0,0)+N oK)+ (B/2)N
X[(K)— ((K,K)—NA)]— (B/2AANA.  (2.22)
We now have to examine the function
Fu(N1e - Ngymo,0).
It is given by the equation,
Fu(Ny-+-Ngmo,0)=—kT logZ(N1- - -Ngmo,0), -

where .
Z(Ny- - N oymo,0)=[TI(V;) 112 exp(—BEy).
. i l
The factor

8
I
=1
in the last equation arises because the particles of the
different isotopes in the mixture were originally dis-
tinguishable by their different masses. We can therefore
write

Z(Ny- - <N gym0,0)

=[VYILW) QW)™ L exp(—BE),
and consequently,
Fu(Ny- - Ngymo,0)

=F(N,m,0)+NET f: x;logxs.  (2.23)

i=1

The excess free energy of mixing AFF| is defined by the
equation,

1=1 =1

Therefore from Egs. (2.21), (2.22), and (2.23) we find
that,

A= (§/)(F, T et A= X 50

i=1 j=1

X[(KYy—((K,K)=NA)J+O0(M). (2.25)
This equation gives the explicit dependence of AFZ®
on the x;and \,. It is clear from the method of derivation
that it would be a simple, though tedious, matter to
calculate as many terms in the expansion as we wish.

The first factor on the right of Eq. (2.25) is easily
shown to be equal to

*ZSZ xxi(Ai—N)%

i<j
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and is therefore negative for all values of the x; and A;.

We now shorten the notation by writing
AFE=c(x\)Q(T,V o), (2.26)

where x and A stand for the sets (x;) and (\;) respec-
tively, and c¢(x,\), Q(T,V,mo) are given by

cw\)=2_ SZ ww;(Ni—Nj)?,

<7

(2.27)

and
- Q(T,V,mo) = 2kT)[{K,K)—(K)*—~NA]. (2.28)

The function Q(7,V ,mo) is a universal function of T,V
and my; that is, it does not depend on either the x; or
A;. Unfortunately, we have not been able to express it
in terms of the properties of the pure isotopes. However
the following equation can easily be derived:

(K, K)—(K)*=—ET[°F i/ 0N Fhi=0.  (2.29)

Now, since we can also show that (K,K)— (K)? and A
are always positive, we find that AFF must obey the
following inequality:

AFE _<_ —%[azFi/é»\@z])\i:O. (230)
This equation provides us with an upper bound for AFZ;
in the next section we shall show how we can determine
[82F:/ O\ i =0, approximately, from experiment.

Finally, it is easily shown that the “fluctuation”
term A tends to zero as 7—0. The sum of the other two
terms in Q approaches ;50| Ki|%/ (Ei— Ey), as T—0,
and the excess free energy is therefore positive at
absolute zero. This completes the formal part of our
work.

3. PHYSICAL CONSEQUENCES OF THE THEORY

In this section we shall first discuss the physical con-
sequences of the formulas we have derived and after-
wards we shall compare the predictions of the theory
with experiment.

The fundamental formula for AFZ is

AFE=c(x\)Q(T,V ,my), (3.1a)
where
N =5 ¥ wars (M=)} (3.1b)
and
Q(T,V,me)=36[(K,K)—(K)*=NA].  (3.1c)

From these equations we can draw the following con-
clusions.

(a) The foregoing formulas were derived without
making any assumptions about the state of aggregation
of the system; they therefore apply quite generally to
gaseous, liquid and solid mixtures.

(b) Equation (2.27) shows that AFF depends only on
second and higher order terms in the mass differences
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Mi. This makes it seem likely that mixtures of isotopes
that obey Boltzmann statistics will, in general, show
only very small deviations from ideal behavior. We
shall see that this conjecture is confirmed by what
little experimental data is available.

(c) We have seen that the excess free energy of
mixing is positive at absolute zero. On the other hand
the ideal free energy of mixing goes to zero as 7—0.
Therefore at some temperature above absolute zero we
should expect a phase separation of the isotopes in the
mixture. The highest temperature, 7', at which this
separation can occur is found, by the usual methods,®
to be given by the conditions,

RTD:%()‘I_)‘Z)ZQ(TMV;MO): .’Xf‘1=9C2=%, (32)
where we have specialized to a binary mixture. Equation
(3.2) must be regarded as a transcendental equation for
T.; clearly as long as Q is negative it has no solution.
It is interesting to note that this phase separation is a
purely quantum mechanical phenomenon. If the par-
ticles of the mixture were assumed to obey the laws of
classical mechanics then the solution would always be
ideal.

(d) Next we notice that Eq. (3.1) give the explicit
dependence of AFF on the mole fractions x;. It is clear
from this equation that if we know AFZ for any one set
of concentrations x then we can at once predict it for
any other set #’. For we have at once that

AFE(T,V 2/)=[c(@ \)/c(x\)JAFE(T,V,2).  (3.3)

(e) Equation (3.1) also gives the explicit dependence
of AFE on the relative mass differences A;. Therefore if
we have determined AFF experimentally for one solu-
tion with mass differences A and mole fractions x we
can at once predict AFZ for any other solution with
mass differences A’ and mole fractions 2’. We have in
fact,

AFE(TV o' N)="[c(x' N)/c(x ) JAFE(T,V x\).

This last equation really expresses a law of correspond-
ing states for mixtures of isotopes. In fact Eq. (3.2)
tells us that if we know AFZ for a solution and divide
it by the appropriate value of ¢(x,\) then we obtain a
universal function of 7', ¥, and m,. Clearly since these
remarks apply to any other thermodynamic property
of the solution we are justified in speaking of a law of
corresponding states. -
(f) We can easily show that AFF—0 as T—x, or as
k—0. Therefore we should expect AFF to increase as
the temperature of the mixture is lowered. However, it
appears that the properties of pure isotopes become
very nearly identical when we pass from the liquid to
the solid phase. This is strikingly shown by the plots
of the specific heats of the hydrogen isotopes that appear
in the article by Wooley, Scott, and Brickwedde.?® It

10 Wooley, Scott, and Brickwedde, J. Research Natl. Bur.
Standards 41, 379 (1948).

(3.4)
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seems likely therefore that AFZ will decrease sharply
as the mixture solidifies.

(2) Equation (3.16) shows that AFF has the same
dependence on the mole fractions x; as a “regular”
solution. Our formula differs from that for a regular
solution in that Q is function both of T and V (or P).

(h) Finally we note that Eq. (2.30) provides an
upper bound for AFE. To our degree of approximation
we find that [82F;/dN#Tn;=0 is given by the equation,

%F; 1
[ } =——————NF;=NFi— Ni—\)Fo],
6)\1:2 Ai=0 )\i>\j(>\i—)\j)
(3.5)

where F; is the free energy of a pure isotope of mass m;.
In principle therefore we can determine the upper
bound for AFF provided we know the free energies of
two pure isotopes together with that of the reference
species.

The only published data on mixtures of isotopes other
than helium is that due to Kerr! and Hoge and
Arnold.”* Kerr measured the excess molar volume of a
mixture of Ty, DT, and D; and found that it was about
0.6% of the total volume of the mixture. Unfortunately
he worked with only one solution at fixed composition
and we therefore cannot test either the dependence on
the mole fractions or the approximate law of corre-
sponding states predicted by the theory. However, the
fact that the excess molar volume is so small is in good
agreement with our prediction that isotopic solutions
should be very nearly ideal. Hoge and Arnold measured
the dew points pressures for two Hy— D5 mixtures and
for three Ho—HD mixtures. From their data, we can
calculate the excess free energy of mixing for the solu-
tions. The results of these calculations are tabulated in
Table I. First we note that the values of AGF range
from 29, to 49, of the ideal free energies of mixing and
are therefore comparitively small—as we have pre-
dicted. Let us take HD as the reference isotope. Then
we find that \;=—% and Ay=%, for Hy; and Dy, re-
spectively. Now solutions 3 and 5 both refer to the
same temperature and roughly the same pressure. Con-
sequently, from Eq. (3.1), we find that

AGE(S)/AGE(S) = (xlxz)g/(xlxg)sul.z,

which is in satisfactory agreement with experiment.
Likewise solutions 1 and 3 refer to roughly the same
temperature and pressure and we find that we should
have,

AGE(S)/AGE(l) =>\12(x1x2)3/ ()\1—')\2)2(901952)120.5.

Again the agreement with experiment is satisfactory.
Unfortunately this is as far as we can go with this type
of comparison.
It is fairly clear from our discussion that the two
1 E, C. Kerr, J. Am. Chem. Soc. 74, 824 (1952).

2H. J. Hoge and R. D. Arnold, J. Research Natl. Bur.
Standards 47, 63 (1951).
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TaBLE 1. Excess free energy of mixing for solutions investigated by Hoge and Arnold (reference 12).

Solution No. 1 2 3 4 5
Temperature (7)) °K 19.00 20.00 18.00 17.03 18.00
Pressure (P) mm/Hg 23442 3224-2 28041 158+1 28641
Mole fraction Hs 0.499 0.460 0.503 0.503 0.752
Mole fraction HD 0.004 0.004 0.496 0.686 0.268
Mole fr?ction D, 0.497 0.556 0.001 0.001 0.000
Excess free energy
AGE in cal/mole } 1.6540.8 1.1540.5 0.8040.4 0.7040.3 0.80+0.4

most satisfactory methods of testing the predictions of
the theory would be (a) to test the dependence of the
excess molar quantities on the mole fractions of the
components in the mixture and (b) to test the approxi-
mate law of corresponding states for mixtures of dif-
ferent isotopes. To test the dependence of the excess
molar quantities on the mole fractions we require data,
at fixed T and P (or V), and for various concentrations.
On the other hand to test the law of corresponding
states we require data on a number of solutions of
different isotopes, again at fixed T and P (or V). Since
we can form three binary solutions from Hj, Ds, and
HD it is likely that a thorough study of solutions of
these three isotopes will provide us with sufficient data
with which to test the theory.

4. He3—He* SOLUTIONS

There is now a variety of evidence which indicates
that the properties of the two pure isotopes of helium,
He? and He?, are to a large extent dependent on the
type of statistics obeyed by their atoms. For example
the specific heats and hydrodynamical flow properties
are very different, at least for all temperatures for
which measurements are available. The theory that we
developed in the last two sections was, however, based
on the assumption that all the particles in the mixture
under consideration obeyed Boltzmann statistics. We
therefore cannot expect to apply the theory directly to
solutions of He? and He* isotopes. However, just
because of this fact we can say that any deviations of
the properties of He®—He? solutions from those pre-
dicted by the theory are likely to be due to the fact
that He? and He? atoms obey quantum statistics rather
than Boltzmann statistics. We must therefore consider
what properties we should predict for He?—He*
solutions.

The two most important predictions of the theory are,
first, that the excess free energy of mixing depends only
on second and higher powers of the relative mass dif-
ferences and second, that the excess free energy depends
on the mole fractions through the factor xx,. As we
have already pointed out, the first prediction indicates
that the excess molar quantities should be small, and
this prediction was born out by the data we quoted on
the hydrogen isotopes. Now it is easily seen that the
excess free energy of a mixture of isotopes whose par-
ticles obey quantum statistics rather than classical

statistics depends on both zero and first order terms in the
mass differences. Consequently we should expect that
the excess molar quantities will be much larger for this
type of solution. However, as the temperature of the
solution is raised the influence of the different types of
quantum statistics will decrease and it is likely that at
sufficiently high temperatures the excess molar quan-
tities will become of the same order of magnitude as
those found in mixtures of hydrogen isotopes. Unfor-
tunately there appears to be very little data available
on He*—He!* mixtures. The only data that extend to
temperatures well above the A temperature are those
due to Weinstock, Osborne, and Abraham.’® They found
that the vapor pressure for a 209, mixture of He? in
Het was 6%, 20%,, and 809, greater than that for an
ideal solution at temperatures of 3°K, 2°K, and 1.2°K
respectively. These values are in good qualitative
agreement with the ideas presented in the foregoing.
They seem to indicate that at about 3°K the different
types of quantum statistics have very little influence on
the properties of He® and He* mixtures. A much more
satisfactory method of determining the influence of
quantum statistics on these solutions would be to test,
at fixed temperature and pressure (or volume), the
dependence of some excess molar quantity on the mole
fractions. Unfortunately there is insufficient data to
enable us to do this satisfactorily. However, Nanda!
has analyzed the rather scanty data due to Sommers,
on He?*—He! solutions above the A temperature. He as-
sumed that at these temperatures the solutions obey the
composition law we havederived in this paper. We should
note that the theory we have developed definitely
shows that the nonideality parameter W[ =3%(\1—2X2)?Q]
is a function of both 7" and V (or P). We consequently
cannot expect to fit the available data with a tem-
perature independent . Unfortunately, Sommer’s data
does not extend to temperatures above 2.2°K!¢ and it

( 135\R§einstock, Osborne, and Abraham, Phys. Rev. 77, 400
1950).
14V, S, Nanda, Phys. Rev. 97, 571 (1955).

16 H. S. Sommers, Phys. Rev. 88, 113 (1952).

18Tn a recent issue of Zhur. Eksptl. i Teort. Fiz. 26, No. 6
(1954). B. Eselson has published a large amoung of data on
solutions ranging in concentration from 0.49%, to 8.08%, and from
temperatures of 1.3°K to 3.2°K. Unfortunately his data disagrees
both with that due to Sommers and with that due to Weinstock,
Osborne, and Abraham. In particular he finds large negative
deviations from ideality above the N temperature and these
deviations show no signs of decreasing at 3.0°K. This behavior
also contradicts our theoretical predictions.



STATISTICAL MECHANICS OF MIXTURES OF ISOTOPES

is doubtful whether our theory is applicable at tem-
peratures as near the N point as this. Nevertheless
Nanda, found that the data leads to a fairly consistent
value of W of 1.8 cals/mole. He also states that this
value for W will account for the experimental data of
Daunt and Tseng!” on a 49, solution of He? in He?. To
check Nanda’s calculations we have calculated W from
Weinstock’s data on a 209, solution and we find that
this leads to a value of 2.0 cals/mole, at 2.2°K. Con-
sidering the uncertainty in the experimental measure-
ments, this value can be considered to be in good
agreement with Nanda’s value.

When a He’—He* solution is solidified by the appli-
cation of pressure it is almost certainly correct to
assume that the atoms become localized on lattice sites.
Consequently, when we enumerate the states of the
system it makes no difference whether we apply Fermi-
Dirac or Bose-Einstein statistics to the particles. For in
a localized system both methods of enumeration lead
to the same result as that obtained by the application
of Boltzmann statistics.3'® Our theory is therefore
directly applicable to solid solutions of He® and He*.
Perhaps the best way to test the theory in this instance
would be to measure some simple property, such as the
velocity of sound or the specific heat at constant
pressure. The dependence of both these quantities on
the mole fractions can easily be calculated from the
formula we have derived for AFE. The predicted
dependence can then be compared with that found
experimentally.

So far our remarks have been entirely qualitative in
nature. We shall now show how, in principle at least, a
quantitative comparison can be made between the
properties of a helium mixture and the properties of a
hydrogen mixture. Let us consider Eq. (3.2)

AFE/c(x\)=Q (m0o,T,V). 4.1)

We know from De Boer’s work on the law of corre-
sponding states? that the partition function Z depends
only on the reduced variables 7%, V* and the parameter
A*. Here T*=FkT/e, V¥*=V/No® and A*=h/c(me)?,
where ¢, o, m have the usual significance. If we use the
same methods as De Boer then we can easily show that

*=(/Ne, is also a function of T* V* and A* alone.
Therefore if we set (AFE)*=AFZ/Ne, we can write
Eq. (4.1) in the form

(AFEY*/c(x\)=Q*(T*V*Ad¥).  (4.2)

We now consider two different mixtures; (i) a mixture
of hydrogen isotopes and (ii) a mixture of He® and He*.
Let us choose reference masses 70, for the first and .
for the second. Then if we make the assumption that
the atoms and molecules of all the isotopes in the two

177, G. Daunt and T. P. Tseng (unpublished).

18 This fact suggests that there may be a marked decrease in
the deviations from ideal behavior of He3—He* solutions as they
solidify. It is also likely that the dependence of AF¥ on the mole
fractions will change as the solution solidifies.
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mixtures obey Boltzmann statistics we can write down
two equations similar to Eq. (4.1), namely,

(AFE)*/c(2\)=Q*(T*,V*,Anr*), (4.3)
and

(AFE)* o/ N') = Q* (T*,V*,A0r™), (4.4)

where x, A refer to the hydrogen mixture, 2/, A’ refer to
the helium mixture, and Ao* and Ag* are the appro-
priate values of A*. Clearly the two functions on the
right hand sides of Eqgs. (4.3) and (4.4) will become
identical if we chose m9; and mq2 s0 that Ao* = Ago*. This
implies that 0, and m,, must satisfy the equation,

mm/m02= (62/61) (0'2/0’1)2_’}_’0.2. (45)

The numerical value was obtained by substituting the
known® values of ¢, e, 71, and o2. When this condition
is fulfilled we can write,

(AFE)*/c(x\)= (AFZ)y*/c(x' \'), (4.6)

where of course (AFF)* and (AFF),* are to be regarded
as a function of the reduced variables 7% and V*, It is
obvious from this last equation that a similar equation
must hold between the reduced values of any other
property of the two mixtures. In fact this equation
merely expresses a general, though approximate, law
of corresponding states between the properties of
mixtures of isotopes of different substances; it can be
regarded as a generalization of the more restricted law
that we discussed in the last section. The reason why
we are able to set up a law of corresponding states
between the properties of quantum mechanical systems
is that we have considerable freedom in the choice of
the reference masses and mo; and mog,. As long as we
chose them so that Eq. (4.5) is satisfied the above law
will hold.

We can now use Eq. (4.5) to predict the properties
of He’—He* solutions from those of a hydrogen mixture.
Let us suppose that we have measured a reduced excess
quantity, (AX),*, as a function of 7* and P* for a
hydrogen mixture. Then we have at once that (AX),*
for a He*—He* solution is given by

(AX)o*=[c(@' N)/c(xN)](AX),* 4.7

But this prediction is only possible if we assume that
the atoms or molecules of all the substances obey
Boltzmann statistics. We can therefore say that any
departures of (AX)s* from that predicted by the above
equation are almost certain to be due to the different
types of quantum statics_obeyed bygthelHe? and He!
atoms. Equation (4.7) and other similar equations
therefore enable us to determine, in principal at least,
the influence of quantum statistics on the properties of
He®—He! solutions.

We must now consider whether such a comparison
can be carried through in practice. There are two points
to be considered in this connection. Firstly, Eq. (4.1)

19 J. De Boer, Repts. Progr. Phys. 12, 305 (1948).
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will be an accurate approximation as long as m and
mos are chosen so that (a) Eq. (4.5) is satisfied and (b)
so that the relative mass differences X and A’ for the
two mixtures are as small as possible. The largest
value of mos would therefore appear to be about 5 amu,
with this value Ny" and Ny’ are % and %, respectively. If
mog is about 5 amu then mo; must be about 1 amu to
satisfy Eq. (4.5). We then find that for a H,—HD
mixture, A; and A, are —% and —%, respectively. While
these values are rather large it is unlikely that they are
so large as to render the theory inapplicable. Secondly,
if we wish to make an exact comparison between the
properties of the two mixtures then the reduced ther-
modyhamic variables must have the same values. For
example, if we consider properties under conditions of
constant pressure and temperature then we must have
T1*=T5* and pi*= p,*. Using the known values of e,
€, 01, and o, we find that this means that 7,=3.7T
and p;=2.5ps. It should be a simple matter to fulfill
these two conditions. '

5. COMPARISON WITH PRIGOGINE’S THEORY

In a series of interesting papers™ (hereafter referred
to as I, IT, and III) Prigogine has developed an approxi-
mate theory of solutions of isotopes. Papers I and II
are concerned with the thermodynamic properties of
mixtures of isotopes at absolute zero. The assumptions
are made that the particles of the mixture are localized
on lattice points and that they are coupled by means of
harmonic forces. It is, of course, impossible to solve
even this simple problem completely, except in the one
dimensional case.?? Prigogine therefore treats the three-
dimensional case by means of perturbation theory. He
finds that the first-order terms in the mass differences
do not contribute to the energy of mixing and that the
second order term is always as positive. This latter
result leads at once to the prediction of a phase sepa-
ration of the isotopes at some temperature above
absolute zero. Both of these results are in complete
agreement with our own; namely (ii) and (iii) of Sec.
III. However, on the basis of these assumptions the
energy of mixing is found to be only about 107! cal/
mole. That is to say it is about ten times smaller than
that found in mixtures of hydrogen isotopes. As

2 F. J. Dyson, Phys. Rev. 92, 1331 (1954).
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Prigogine points out, this large discrepancy is almost
certainly due to the very large anharmonic forces that
come into play because of the higher zero point energy
of these substances.

In paper III, Prigogine introduces a new assumption.
This is that if by means of suitable external pressures
we make the molar volumes of the components equal
to that of the mixture then the free energy of the
mixture should be equal to that of the components,
apart from the usual configurational entropy term.
This means that before we mix the two components
we must apply a suitable positive pressure to one a
negative pressure to the other. With this assumption
the free energy of the mixture, f.(7T,), is given by the
equation,

Ju(Ty0) =21 f1(T,0)+25fo(T,v)— RT Z %; logx,, (5.1)

where f;(T,v) is the free energy of the sth component
at a temperature 7" and molar volume v. If we expand
each of the f;in Eq. (5.1) in a Taylor series in powers
of (v—wv;) and substitute these expansions into the
above expression for f, then we can easily relate the
properties of the mixture to those of its components.
The principal results that follow from this treatment
are as follows:

(a) The excess free energy is proportional to (v1—v)?%,
when terms of order (v—1v;)? are neglected, and is always
positive. Again we should expect a phase separation of
the isotopes. This result is'in agreement with our own
conclusions.

(b) The numerical value for the excess free energy is
in good agreement with the experimental values derived
from the data due to Hoge and Arnold.”

(c) The excess free energy is not a symmetrical func-
tion of the mole fractions #; and . This result therefore
is different from our own and consequently can be used
to compare the two theories experimentally.
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