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The present paper is a study of the radial Schrodinger equations for the case of an interaction between
the 3th and the (1+2)nd angular momentum, produced by the tensor force in the presence of spin-orbit
coupling. It contains a number of theorems, known for central potentials, concerning the low-energy be-
havior of the S-matrix, bound states, and zero-energy resonance. The construction, in two stages, of all
potentials belonging to a given S-matrix and given bound states, is described. The step from the spectral
function to the potential involves the generalization of the Gel'fand Levitan equation given in a recent
paper; that from the S-matrix to the spectral function, a procedure due to Plemelj also outlined in that
paper. The latter procedure leads to a restriction on the S-matrix necessary for a short range potential to
exist. If there is such a potential, it is uniquely determined by the S-matrix, the binding energies, and as
many real, symmetric, positive semidefinite matrices as there are bound states.

1. INTRODUCTION

' 'N the work of Bargmann, "Jost and Kohn, ' ' and
~ ~ I evinson, ' it was shown that the scattering phase
shift of one angular momentum, t, given as a function
of the energy, if caused by a short-range central po-
tential, together with the I.~ bound state energies and
a set of I.~ positive parameters C„, uniquely determines
that potential. Moreover, the latter can be constructed
from the former by solving a Fredholm integral equation
first derived by Gel'fand and I.evitan. ' " It is the
primary purpose. of the present paper to generalize the
work of the above authors to such noncentral potentials
as that of a combination of spin-orbit coupling and the
tensor force.'" As a first step in that direction, the
author and Res Jost have recently extended the con-
struction procedure to the (physically fictitious) case
of a finite number of coupled radial Schrodinger
equations for S-states. "The then neglected centrifugal
barrier is now fully taken into account.

In addition to the construction of the potential from
the S-matrix, the bound states, and as many matrices
as there are bound states, a number of generalizations
of theorems, known for central potentials, concerning
bound states and the low-energy behavior of the
S-matrix are proved.
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Section 2 contains several kinds of solutions of the
radial Schrodinger equation with coupling between the
/th and the (k+2)nd angular momentum, and their
properties as functions of the distance and of the energy.
The 5-matrix is defined and shown to be unitary and

symmetric. At the end of the section a theorem is
proved concerning the low-energy behav ior of the
S-matrix, being the generalization of the statement
that for a large class of potentials the /th phase shift
goes as k"+' near k=+E=O. Section 3 deals with the
bound states and the special possibility of a resonance
with no bound state at zero energy for /=0. While the
former are independent of the 5-matrix (except for
their total number), the latter is not. Subsection 3a
treats the bound states for negative energy; 3b that of
zero energy and 1&~ 1; 3c the bound state and resonance
for zero energy and l,=0 (coupled with /=2); 3d the
generalization of the theorem at the end of Sec. 2 to
the case of bound states or resonance at E=O; 3e the
only connection between bound states and the 5-matrix
for short range potentials.

Section 4 contains the completeness relation and the
definition of the spectral function. The generalization
of the Gel'fand Levitan equation derived in (I) connects
the latter directly with the potential. In Sec. 5 the
construction of the spectral function from the S-matrix,
the bound state energies, and a set of real, symmetric,
positive semidefinite matrices is described. In contrast
to the case of a central potential, this step in the
construction is rather involved and, as in (I), leads to
certain restrictions on the 5-matrix necessary for the
existence of a short-range potential.

There are three appendices. The first supplies all the
convergence and existence proofs as well as a number of
inequalities necessary for the work; Appendix 8 con-
tains the proof of an ideal-theoretic theorem needed
for the existence of an "irregular solution" of the
Schrodinger equation as an entire function of the
energy. Appendix C proves a special theorem about
matrix functions needed for the completeness relation
in the case of coupling between 5- and D-states.



CONNECTION BETWEEN 5 —MATRIX AND TENSOR FORCE

The general position- and spin-dependent potential 'U' of (1.2), be written as follows":
between two particles is of the form"

it" E,r+EQ E,r =P Er r 23 3+1 I E-
'U (r) = vz(r)+v, (T)e& tr2+ v&(r)522. (1.1) +r 2(3+2) (1+3)P+V(r)], (2.1)

YVhen this is applied to the wave function of two spin
—,
' particles in a triplet state, whose two relevant radial
components, of the lth and the (l+ 2)nd. angular
momentum, may be combined in the row-matrix or
vector

U= (u, tV),

and whose spin-angle components are

V = (I;, i. . .V, , (+2, , ),

then, in matrix notation,

'OUI'~= VVI'~.

Here V is a real, symmetric (2&&2)-matrix whose
elements are functions of r alone. For l=o,

vg 2v2'v (

E 2%2'v i 'v~ —2'v ( J

(0 Oi

&0 1)
' (2 2)

f
M[=—2 max (f M.,[),

a, P=l, 2

(2.3)

which obeys both the triangle and Schwarz's in-
equalities. Furthermore, we use the notation OR(s) for
the class of (matrix valued) functions whose sth
absolute moment exists":

and. V(r) is a real symmetric (2X2)-matrix function of
r; f (E,r) is a (2 X2)-matrix whose rows are individually
vector solutions of (2.1). "A solution of (2.1)" will

always mean such a square matrix of two vector
solutions.

In the space of (2&&2)-matrices it will be useful to
define a norm:

where" v.=vd+v, . Only ttvo of the elements in the
matrix V are independent.

From the point of view of the 5-matrix any restriction
on U beyond symmetry and reality is unnatural. No
criterion is known for the scattering to arise from a
potential U that satisfies the condition necessary to be
associated with the U of (1.1). In order to remove this
restriction, a spin-orbit potential of the form v, (r)S L
must be added to (1.1). Such a potential has the
property

(2.4)M(r)eOR(s) if dr r'~M(r)
~
& ao.

v. (r)S LUVT

(J2 )2 g2;..(.)U]-
0

0
iVT

Z2 (f+ 2) 2 S—2)—dr r
~
V(r+R) V(r)

~

(CR', fo—r some 5)0. (2.5)

The assumptions on the potential will not be entirely
fixed. For the main purpose it will be assumed that
VeOR(0)+OR(5), although for 1=0 it will suflice that
VeOR(0) +OK(4+ 5), 6)0. For the purpose of one
theorem concerning the behavior of the 5-matrix at
low energies (see the end of this sect.ion) we will need.

VeOR(0)+OR(2l+6). The only other assumption, needed
in Sec. 5, will be

Consequently, the potential

'U'=vd(r)+v (r)si o2+vi(r)522+v, (r)S L,
Several different kinds of solutions of (2.1) will be

(1.2) used. The first is G(k,r), (k'=E), which vanishes at"

when applied to a triplet state wave function, manifests
itself as a matrix-multiple of the radial part, UV (the
spin-angle matrix that always multiplies from the right
being neglected), where V is a real, symmetric (2&C2)-
matrix function of r and otherwise unrestricted. The
matrix V and the set of three potentials v, , v&, and v,
stand in one-to-one correspondence to each other.
Among the latter it is the tensor force alone that
produces coupling between the 1th and the (/+2)nd
angular momentum.

2. SOLUTIONS AND THE 8-MATRIX

In view of the statements in the introduction, the
Schrodinger equation for the radial part of the wave
function containing the components of angular mo-
mentum / and f+2 can, in the presence of the potential

"Differentiation with respect to e will be indicated by a prime;
r is the radial distance in units of A/me&2, 8 the energy in units
of mc', V the potential in units of mc~; m is the reduced mass if
(2.1) describes the interaction between two particles. The erst
derivative with respect to k, where k2=E, is denoted by a dot,
the second by a dash."The symbolism customary in mathematics is used: "e"stands
for "is a member of;" "A" stands for the intersection of two
classes, i.e., the members of GAIA SK2 are all elements which are
both in BKI and in BR2.' It is well known that, in contrast to the scalar case (i.e., with
no coupling between diferent angular momenta) in general no
"regular" solution can be defined for the tensor force without
interference with the )ogarithmic term. (There is one regular
vector solution without a logarithm, but the second row of the
matrix solution generally contains log r.) It is correspondingly
dificult to define this solution by a boundary condition. The
obvious integral equation for this solution diverges at r =0 unless
the existence of large negative moments of the potential is as-
sumed. If to the inhomogeneity of this integral equation, however,
a judicious (V-depemdeet) multiple of the solution of (2.1) with
V=o is added, the integral is made to converge. The result is (2.6).
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r =0. It is defined by the integral equation

r

G(k, r) =G, (k,r)+(2l+3) dt t
—'(1—P) V(t)GO(k, r)

dt[G(k, t) U(t) g(k; t,r)
0

—(2l+3)t—'(1—P) U(t)PGO(k, r)], (2.6)

which, if Ve5E(0), has a unique solution obtainable by
successive approximations. " The following functions
occur in (2.6): the free solution

If we define a Kronskian matrix"

[G; G]=0. (2.14)

An "irregular" solution I(k,r) of (2.1) that for all
r) 0 is an entire function of k and satisfies the equations

[I;G]=1, (2.15)

[C;+]—:4 (r)+r'(r) —C'(r)+'(r), (2.13)

which is independent of r if both C and + satisfy (2.1)
(due to the symmetry of V), then

t'k "+i&ui(kr)
Go(k, r) =

]

0

and the Green's function

[I;I]=0, (2.16)

pi(k, 1)=$2'(k, 1)= 1, pi'(k, 1)=$2(k, 1)=0.

0

k ~,+@ (k )
' ' can be defined as follows. Let fi(k, r) and $2(k, r) be(2.7)

k "+"n)+2 kr
two solutions of (2.1) fixed by the boundary conditions

t gi(k; t,r)
g(k; t,r)=

~

0

0
They are entire functions of k for all r) 0. Let

ging(k; t,r) G(k, r) =Mir (k)gi(k, r)+M2r (k)P~(k, r),

Ii(k,r) = —tVg(k)fi(k, r)+l&Ii(kg, (k,r).
where

g, (k; t,r) = k
—'[u, (kt)i&, (kr) —u, (kr)i&, (kt)],

=-,'i( —1)'k—
'[wi(kr)w&( —kt) In order for Ii(k, r) to obey (2.15), I&li and 1V2 must

—
w& (—kr) wi(kt)], (2.9) satisfy

ui(x) =xji(x),
i&i(x) = xm&(x), (2 1o)

(*)= (—i)'" 7 "'(—*)=—[ (*)+.(*)],
and j&, e&, h&(') are the customary" spherical Bessel
functions, spherical Neumann functions, and spherical
Hankel functions of the first kind, respectively. The
solution G(k,r) of (2.6) and (2.1) is" an even, entire
function' "of k for all r If Ue5R.(0)g5R(1), then, ""
with a=Imk,

(1—P)G(k)r) = (1—P)[k i'+'& sin(kr —~iirl)1

+O(k &'+'&e~"'")], as ~k~
—&~)

(2.11)
PG(k, r) =P[—k "+'& sin(kr —-', ml)1

+O(k—&'+4&e~ "~")],as jk~ —& ~,
and

(1—P)G(k, r) = (1—P){[(2l+1)!!]'r'+'I

+O(r'+')), as r~0,
PG(k, r) =P{[(2l+5)!!]'r'"'1 (2.12)

+0(r'+')), as r—+0

"See Appendix A for the proof.
"See, for example L. I. Schi6, Quaalude Mechalics (McGraw-

Hill Book Company, Inc. , New York, l949), pp. 77 K The
functions u& and v& are identical with those used by Walter Kohn,
Revs. Modern Phys. 26, 292 (1954) and are called j& and rI& in
reference 6.

'7 The notions analyticity, continuity, etc. , when applied to a
matrix valued function, are always meant to hold for each matrix
element.

'8 Such a regular solution can presumably be dehned under the
weaker assumption V&OR(l) for which (2.6) in general, diverges.
It will, however, in the following be convenient to have an
equation for G whose series of successive approximations con-
verges. Therefore it was assumed that Vcr(0).

'9 Throughout this paper, the notations 0 and 0 will be used to
mean a matrix all of whose elements are 0(. ) or 0( ).

Xi(k)M&(k)+IVg(k)3I. (k) = 1. (2.17)

Both 351 and iV2 are entire functions of k. Moreover,
(2.12) shows that, for every ko, the only vector a with
the property Mi(ko)a=&~(ko)a=0 is a=0. It is proved
in Appendix 8 that under these circumstances there
exist two matrices cVi and lV, which solve (2.17) and
which are entire functions of k. Because of (2.14), the
solution

where

lim exp[i(kr ——',n l)]bF (k,r) = 1,
phoo

(1 Oi

EO —1j

(2.i8)

(2.19)

If UeOE(3), F(k,r) is" an analytic function of k in
Imk (0, continuous for Imk ~&0, except at & =0; at the
latter point,

with
Xi(k)F(k, r) =F,(k,r), . (2.20)

Xi(k) = k'(1—P)+ k'+'P (2.21)
"A superscript T will stand for transposition, an asterisk for

complex conjugation.

I(k,r) = [—cV2(k)+2 (k)Mir(k)]P, (k,r)

+ [IVi(k)+A (k)3I,r(k)]P, (k,r),
where

A (k) = —Ng(k)/ir(k)+B(k),

and I3(k) is symmetric and an entire function of k, is
then an entire function of k for all r) 0 and it satisfies
both (2.15) and (2.16).

A further solution of (2.1) is defined by the boundary
condition
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and for Imk=0,
LF(k,r); F(k, )~=0, (2.25)

[F(k,r) ) F(—k,r) j=2i(—1)'kl

is continuous. The asymptotic behavior in Imk~&0 is
the following":

F(k,r) =exp( —i(kr —-,'~E)jh+0(r —'e—
~ "~')

as r~ ~, k WO, (2.22)

F,(0,r)= (2l—1)!!(1—P)gr '1+o(r ' ')g
+(2/+3)!!P/r ' '1+o(r ' 4)J, r~~, (2.23)

F(k,r)=exp/ —i(kr ——',~E)JB+0([k) 'e ~ "~')

as
J
k f~~, r) 0. (2.24)

If" V&OR(2), then" PF, (0,r) exists (for r) 0); if
VeBR(4), so does (1—P)F,(0,r). If V~OR(3), then
PF, (0,r) —=0 and" PF, (0,r) exists; if UeDE(5), then,
for E~&1, (1—P)F,(0,r) —=0 and (1—P)F, (0,r) exists.
The same is true for the first derivative of Ii with
respect to r.

The solution F(k,r) satisfies, for Imk~&0,

Finally, insertion of (2.30) and (2.26) in (2.14) yields
the relation

Fr(k)F( —k)=Fr( —k)F(k). (2.35)

The S-matrix" is obtained from (2.30) and (2.35) as

5(k)=F(k)F i(—k) (2.36)

Owing to (2.35) it is symmetric, and due to (2.34),

5(—k) =S*(k)=S '(k) (2.37)

which, , together with its symmetry, demonstrates its
unitarity.

It is well known that for central potentials sufficiently
small at infinity, the asymptotic phase (—', log ImS) of
the 3th angular momentum tends to zero at k=0 as
k"+', provided there is no bound state (of angular
momentum /) with zero binding energy. "The general-
ization of this theorem to the present case is given in
the remainder of this section.

It is proved in Appendix A that, if Ve5K(0)QDK(2/
+6), then

ImF (k) = (1—P)0(k"+')+P 0(k"+')& as k~0. (2.38)

for real k it also has the property

F( k,r)—= (—1)'F*(k r).

By means of the definitions"

(2.27)

Suppose now that detF. (0) WO. Then, owing to (2.36)
and (2.34)

5(k) == X (k ')$1+iImF, (k) (ReF, (k))
—'

F(k) =fF(k,r); G(k,r))xi(k), (2.28)

F'(k) —=—[F(k,r); I(k,r) jX(k '), (2.29)

G(k, r) can readily be expressed in terms of F(k,r) and

F(—k, r), for Imk=O:

y Ll —iImF, (k) (ReF.(k))
—']—

'Xo (k)

/ 0 (k2 l+1) 0 (k2l+3) )
as k—+0.

EO (k"+') 0 (k"+') 3
(2.39)

F(—k) =F"(k). (2.34)

"The functions F(k) and P'(k) of (l) although defi, wed diBer-
ently, satisfy (2.28) and (2.29) mututis mntumChs.

G(k, r) = (2ik)- X,(k- ) t (—1)iF'(k)F(—k, r)
—Fr(—k)F(k, r) j. (2.30)

Similarly, F(k,r) can be expressed in terms of G and I,
for Imk&0:

F(k,r) =F'(k)Xi(k)G(k, r)+F(k)X~(k—')I(k, r). (2.31)

The function F(k) is of fundamental importance in
the following. It is analytic in Imk(0, continuous for
Imk~&0, except possibly at k=0, where

F.(k) =—Xi(k)F(k)xt(k '), (2.32)

however, is continuous. The statements following (2.24)

apply to F,(0): If VeNZ(0) +BR(2), then PF, (0) exists;
if V&5K(0)QSK(4), so does (1—P)F,(0); if Ve5K(0)
+OR(3), then PF, (0)=0 and PF,(0) exists; if VeOR(0)

+OR(5), then, for /&&1, (1—P)F,(0)=0 and (1—P)
&(F,(0) exists. Furthermore, if VeOR(0)+BR(1), then

F(k)=1+0(k '), as ~k~
—+~ in Imk~(0. (2.33)

In contrast to (2.27), F(k) has the property that for
real k

limbI(k, r) =0 implies b=0.
r—&0

(3.3)

2'See C. Mgller, Kgl. Danske Videnskab. Selskab, Mat. -Fys.
Medd. 22, No. 19, 19 (1946).

2'This theorem was proved rigorously for central potentials
in 5K(2t+2), by David S. Carter in a Ph.D. thesis at Princeton
University, 1952 (unpublished).

The modification of this statement in case detF, (0)= 0
will be given in part (d) of the next section.

3. BOUND STATES AND RESONANCE

a. k/0. —Suppose that for k=ko, Imk&0, detF(k)
=0, so that there exists a vector a &0 for which (2.31)
yields

(3 1)

The vector solution aF(ko, r) of (2.1) thus vanishes
both at r=0 and r= ~; at the latter pointexponentially.
This means that —kP in an eigenvalue of (2.1), or the
energy of a bound state. One can show from (2.15),
via (2.12) and similar estimates for G', that

I(k,r) = (1—P)L(2/ —1)!!r '1+o(r ')$
+P[(2/+3)!!r i'+'il+o(r i'+'i)7,

as r—+0; (3.2)

consequently,



ROGER G. NEWTON

It follows, therefore, from the fact that detXi(k, ') &0,
by (2.31), that if —kp', Imkp(0, is a bound state
energy, then there must exist a vector d;&0 so that
aF (kp) =0, and hence detF (kp) =0. Thus the nonzero
eigenvalues of (2.1) correspond exactly to the points in

the lower half plane where F(k) is a singular matrix.
It is proved in the standard fashion that these eigen-
values are all real. The functions F(k) and F '(k) are
therefore both analytic for Imk&0, except at a finite
number'4 of points on the negative imaginary axis,
k= iK;—, E;)0, where F '(k) has poles. As in (I), we

shall now prove that at k= iE;, —F '(k) has exactly a
si nap/e pole.

Since" LG' 6) vanishes at r=0, one obtains, as in

(I), (31),

$6(k r) G(k r) j=2k dtG(k t)G'(k t) (3 4)
dp

On the other hand, (2.14), (2.16), (2.28), and (2.31)
lead to

[F(k,r); G(k,r)]=F(k)X,—' —F (k)X,X,—'
+F'(k) XiLG(k,r); G(k, r)$

+F(k)X,—'tI(k, r); G(k, r)j. (3.5)

Now suppose that the vectors a and b solve

!
1 —c)

f2
F„=(1+c') 'I

& —c
(3.10')

This is not directly related to the probability ratio of
the two states in the sense in which the ground state of
the deuteron is a 4%%uc D-state. The connection between
the two strictly speal~ing, involves the potential.

If f —E„'},x=1, , I., 0(Ki( (Er„are the
bound state energies and I'„ the corresponding pro-
jections fulfilling (3.10), then one defines a matrix
R=—Ri(k) as follows:

Rp ——1,

2iE. ) (3.11)
R (k)=i 1 F„' —!R i(k), +=1, , I.,k+iE.)
where I'„ is again a real, symmetric projection, related
to I'„by

which satis6es'~

rangeF„=—kernel(1 —F„)=kerneIF (—iE„). (3.10)

It describes the mixture of angular momenta for which
E„2 is a bound state energy, in the sense that if the
ratio of the two components of the bound state wave
function is asymptotically equal to c, then

aF(—iE)=0,
aF ( iK)+bF ( —i E)=0. —

(3.6a)

(3.6b)
rangeF '=—kernel(1 —F„')

—=rangeLR„r( —iE„)F„R„r'(—iE„)g. (3.12)

One then forms

F(k)F'r (k) —F'(k)Fr (k) =0. (3 7) and

Substitution of (2.31) in (2.25) yields, for Imk&~0:
F~(k) =—R.(k)F (k), (3.13)

Equations (3.6a) and (3.6b) therefore imply

aF( i')F"( iK—)aT—
bF ( iK)F'r (—iE)—ar-

=bF'( —iK)FT (—iE)ar =0. (3.8)

Multiplication of (3.5), taken at k= iE, by a o—n the
left and by Xi( i')F'r( iE)a—r on the —right then
leads, via (3.1) and (3.4), to

agF( iK, r); F( —iK, r)ja—
= —2iE dtoIi —iE t F~ —iE) f a~ 39

The function F( iE, r) being real, the—abs'olute value
of the right-hand side increases monotonely, while that
of the left vanishes at r= ~. It follows that a=0 and,
according to (I), Appendix A, therefore that F '(k)
has a simple pole at k= —iE,

%e can now reduce the case of bound states to that
without bound states. For that purpose we need for
every bound state a real, symmetric projection I'„

~ See (Il, reference 19.

aF, (0,r) = aF,'(0)G(0,r). (3.15)

It is now, however, not true that kF, '(k) is continuous
at k=0. AVe shall prove that k'F, '(k) exists at k=0
and, if and only if k'=0 is an eigenvalue, it does not
vanish there. "

' As in (I), we mean by the range of a matrix M the set of all
vectors x for which there exist vectors y so that x=yM; the
kernel of M is the set of all x so that xvV=0. By a projection
we mean merely an idempotent matrix, P'=P.

2' We assume in the following that V&OR(0) A OR(5).

5'~(k)=R(k)g(k)R —i(—k) = F~(k)F~—i(—k) (3 14)

It was proved in (I), Sec. 3, that Fii and S~ have all
the relevant properties of F and 5: F~(k) is analytic
for Imk&0, continuous for Imk(-0, except at k=0,
limF~(k) = 1 as ! k!~~; Sii is unitary and symmetric
and satisfies (2.37). In addition, however, F~ '(k) is
also analytic for Imk &0.

b. k=0, l&~1.—It is evident from (2.23) that for
l~) 1, F,(0,r) is always square integrable at infinity. It
is therefore again clear from (2.31) that a necessary
and suiIicient condition for k'=0 to be the energy of a
bound state, is that detF. (0)=0; i.e., thatthere ex, ist
a vector a&0 so that aF, (0)=0 and therefore
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Consider the system

aF, (0)=0, aF, (0)+bF,(0)=0. - (3.16) F,i(k) =Rpp(k)F, (k) (3.25)

will be used in the same way as the other R„'s. We form

By (3.15) both aF, (0,r) and aF,'(O,r) vanish at r=0.
Moreover, since F,(0)=0, by (2.31),

and find that F,i(k) and F,i '(k) both exist at k=0.
One can then write

bF, (0,r) = bF, '(0)G(0,r)+bF, (0)I(0,r), (3.17) F(k) =Rp—'(k)Fi(k), (3.26)

82

aF, (0,r) = a [F,'(k)G(k, r)]s p+aF, (0)I,(0,r). (3.18)
Bk'

where

Rp(k) = Xp(k
—

')Rpp(k)xp(k),

Fi(k) = Xp(k
—')F,i(k)Xp(k).

(3.27)

(3.28)

The second equation in (3.16) then shows that aF&,(0,r)
+bF, (0,r) vanishes at r=0 and so does its derivative.
Consequently

f(r) =—[aF,(0,r); aF, (0,r)+bF, (0,r)]—&0, r~0 (3.1.9)

The differential equation (2.1), on the other hand,
yields'~

(3.20)f'(r) = 2aF, (0,—r)F,r (O,r) ar,

[aF,(O,r); aF, (O,r)]—+[aF,p(0,r); aF,p(0,r)]~0,

which is certainly nonpositive (a and F,(0,r) being
real). Now, as r—+~

Instead of choosing I'0' symmetric, we make it such that

(1 F)Fp'F—=0, (3.29)

which is always possible. "With that choice of I'0'

Rp(~)=1, (3.30)

and consequently F i( po ) = l. Equation (3.27) with
(3.24) now replaces the first line in (3.11).The matrix
Sip of (3.14) will, if k'=0 is a bound state energy, in
general not be unitary or symmetric. It will be noticed
that in contrast to the discussion in (I), Sec. 3, Fp is
independent of the S-matrix. For l~) 1 one always has,

and similarly,

[aF,(0,r); bF, (0,r)]—&0. 5(0)= l. (3.31)

Therefore f(0) =f(~)=0. Since (3.20) states that f(r)
is monotonic, it follows that f'(r)=—0 and hence by
(3.20),

aF, (O,r) =0.
As r—+~, (2.23) shows that

detF, (0,r)~(2/ 1)!!(21+—3) t ~r ' '

and therefore a=0. The theorem of (I), Appendix A,
then states that the inverse of

Qp
—=limk'F —' (k) (3.22)

M (k) =—F.(0)+-',k' F,(0)

has exactly a double pole at k=O. Since F,(0)=0, and

F —'(k) = [I+M—'(k) R(k)] 'M—'(k), (3.21)
where

fR(k) =0(k') as k—&0,

it follows that

c. A=O, 1=—0.—Contrary to the case of no coupling
between angular momenta, where E=O never is a
bound state energy for l=0 [if Vega(2)], ' and. for
l)~1 it is a bound state if and only if f(0) =0, in the
present case A= 0 may or may not be an eigenvalue if
F,(0) is a singular matrix. Equation (2.23) shows

that, while FF, (O,r) is always square integrable,
(1—F)F,(0,r) is not. The criterion for a bound state
at F.=O is therefore that FF,(0,0)=0. As before, it
follows from (2.31) that a necessary and suKcient
condition for the existence of a bound state of zero
binding energy is that F,(0)=0.

If detF, (0)=0 we 'distinguish three cases:

(1) The case of a bound state" and no resonance; by
this we mean (I—F)F,(0) WO, FF,(0)=0;

(2) The case of a bound state and a resonance at the
same time; then F,(0)=0;

(3) The case of a resonance and no bound state, i.e.,
FF,(0)NO, detF, (0) =0.

(The suKciency follows clearly from the fact that
F,(0)=0.)

The bound state at k=0 can now be removed as in
the previous procedure. Let I'0' be a projection that
satisfies (3.10) with respect to F,(0). Then

"If the kernel of F,(0) is represented by (1,C), then

P''= C-

if it is (1,0), then P0' ——1—P; if it is the whole space, then PO'=1."See V. Bargmann, Proc. Natl. Acad. Sci. U. S. 38, 961 (1952).
3' This occurs in the lower row of Ii„ if l= 0. It must be remem-

bered, though, that the first column refers to S-components and
the second colnmm to D-components.

Rpp(k) = (I-Fp'ik —')' (3.24)

"As (I), (3.1).

always exists and In the following we assume that VeOR(0) +OR(4), in

F.= 0 is an eigenvalue if and only if Qp~O. (3.23) which case F,(0) exists, FF,(0)= 0& and FF,(0) exists.
We now wish to prove that Qp, (3.22), exists.
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Consider the system

aF, (0)=0, aF, (0)+bF, (0)=0,

aF, (0)+bF,(0)+cF.(0)=0. (3.32b)
F '(k) = [1+0(1)]M '(k) as k~0; (3.39)

a simple pole at k=0. Therefore M 'R=o(1) as k—+0

and we can write3.32a

Insertion of (2.31) in (2.26) yields

F(k)F'r( —k) —F'(k)Fr( —k) = 2ikl. (3.33)

If this is multiplied by Xi(k) on the left, Xi(—k) on
the right, and differentiated, it becomes for 1=0, k =0,

F,(0)F,' (0)—F,(0)F,' (0)—F,'(0)F, (0)
+F,'(0)F,r(0) =2i(1 P). (3—.34)

Multiplication by a on the left and by a~ on the right
leads, by (3.32a) and (3.7), to

2ia(1 P)ar =——2bF, (0)F,'r (0)ar
= —2bF, '(0)F,r (0)ar =0.

This means that
limkF, '(k)(1—P) exists for 1=0.
k—+0

(3.40)

hence Qp of (3.22) exists.
Moreover, neither in case (1) nor in case (2) can

cV '(k) have a simp/e pole at k=O, because then
(3.32a) would, by (I), Appendix A, imply a=0; in
both cases, however, the second component of a is
quite undetermined by (3.32a). Conversely, if M '(k)
has a simple pole at k=0, then (3.32a) must force a=0.
But since PF, (0)=0, the lower row of F,(0) can then
not be zero and PF, (0)WO; we are then in case (3)
and F.=O is not an eigenvalue. Consequently, (3.23)
holds also for /=0. In addition, in view of the statement
following (3.38),

Eqs. (3.32a) imply a(1—P) =0. (3.35)

Consequently aF.(0) exists. Now consider separately
the three cases distinguished above.

(1) PF, (0)=0, (1—P)F,(0)&0. Then b(1—P)=0
and. (3.32) becomes

We are now in a position to remove the singularity
of F. ' at k=0 as before. Again one forms F,i(k) by
(3.25), but now

(1—Pik ')' in case (1),
Epp(k) = & (1—ik ') (1 Pik —'), in case (2), (3.41)

(1—Pp'ik '), in case (3),

rangePp'= kernel (1—Pp') =—kernelF, (0), (3.42)

(1—P)Pp' ——0. (3.43)

(3.32b") The proof that F,i(0) and F,i '(0) both exist is straight
forward and analogous to the previous proof in (I),
Sec. 3. Ep of (3.27) with Rpp of (3.41) again satisfies
(3.30).

In case (3), there is a connection between the kernel
of F.(0) and the S-matrix. One can write

Similarly as (3.18) we obtain

8
bF, (O,r) = b—[F,'(k)G(k, r)]p p+bF, (0)I(O,r), (3.36)

Bk

aF, (0)=0, aF, (0)+cF,(0) =0. (3.32')
where

The arguments following (3.16) apply equally here and
show that (3.32) implies a=O. and

(2) F,(0)=0. In that case (3.32b) reduces to

aF, (0)+bF, (0)=0.

while (3.18) still holds. One now uses (3.36) in place
of (3.17) to prove, quite as before, that a=0.

(3) detF. (0)=0, PF, (0)QO. In that case the erst
line of (3.32a) and (3.35) imply a=0.

This completes the proof that the system (3.32)
implies a=0. That statement, however, is a necessary
and sufficient condition" for the inverse of

M(k) =F,(0)+k(l —P)F,(0)+-,'k'PF, (0) (3.37)

to have at most a double pole at k =0. We now write

F, (k) =M(k)+ R(k), (R(k) = (1—P)o(k)+P o(k'),

and
e, (k)=—F '(k) —M '(k)

= —[M—'e. (1yM-'61)-']ll —'. (3.38)

It is proved in Appendix C that, since 3/I(k) has at
most a double pole at k=0, (3.35) is a necessary and
sufficient condition for M—'(k) (1—P) to have at most

3' The proof of this is entirely parallel to that of (I},Appendix

S„(k)= Xp(k)S(k)xp(k '), (3.45)

and Pp" is a projection which satisfies (3.42) and, in
addition

I'I' p"——0.

F, (k) =F,(0)+k (1—P)F,(0)+-,'k'PF, (0)
+ (1—P)0(k)+P 0(kp),

F. '(k) =X ik
—'+g(k), g(k) =0(k—'),

where A' i and R must satisfy (even if %(0) does not
exist),

A iF.(0)=F.(0)1V i=0,
%(0)F,(0)+X,(1—P)F,(0)

=F,(0)%(0)+(1—P)F, (0)N' i ——1,

where %(0)F,(0)=limp(k)F, (0) as k—+0. For a modi-
fied S-matrix one then obtains

S,(0)=F,(0)R(0)—(1—P)F.(0)X
=1—2(l —P)F,(0)X i=—1—2Pp", (3.44)

where
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The equality of the ranges of Pp and Pp", together with
(3.43), determines the former uniquely. For the S-
matrix itself, therefore

S(k) = xo(k )[1 2Po +o(1)]xp(k)
= 1—2 (1—P)Pp" (1—P)+ (1—P) o (1)(1—P)

+P o(1)P+ (1—P)o(k') P+P o(k
—') (1—P)

and thus, because it is symmetric, "

4. SPECTRAL FUNCTION AND POTENTIAL

The completeness relation is derived as in (I), Sec. 4.
We shall give here only the necessary changes for the
present case of the admixture of higher angular mo-
menta. In the integral on the left hand side of (I),
(4.2), the contribution due to the small semicircle in

(I), Fig. 1, will now not vanish. Equation (I), (4.13)
will therefore be modified to read

5(0)= —h. (3.46)

d. Genera/isatioti of (Z.39).—In case detF, (0)=0 we
now write, for /~& 1 and case (1) of /=0:

5(k) =Xp '(1—k 'Pp') '[1+iRop* ImF, (ReF,i) ']
X[1—igloo ImF, (ReF,i)—']—'(1—k 'Po') Xo

= Xo
—'[1+2i ImF, (ReF„)-'(1—k

—'Po')

+ ]xp, (3.47)

where Pp'=P for 3=0. This leads, for /&~1, to

$(r) =2ir '5' k'dk dt's(t)G (k t)

X[P r(k)X-'(k)P (—k)]—'G(k, r)

—2 dt's(t)Gr(O, t)QoF, (0,r)
r—E'

L gr
dt's(t)G:(t)C. G.(r), (4.1)

n=l e& r—e

pO(k"—') O(k"+') i
5(k) =1+1 „, „, I

a k~O ( 48) where (p denotes the principal value of the integral,&O(k"+') O(ko'+') )
G„(r)=G( iE„,r)—, and—

and for 3=0, since it is symmetric, to

t O(k) O(k') y
5(k) =1+

& 0(k') O(k') )
(3.48')

C„=——Q„F,'(—iE„)=) drC„G (r)G r(r)C„
p

In case (2) of /=0, one writes

Rop(k) = (1—k'P) (1—ik—'(1—P))[1—2i(k/k' —1)P] with

l

drQ„F,„(r)F,„r(r)Q„r, (4.2)
~Jp

(4.3)Q„—= lim (k'+K„')F, '(k),
and. proves similarly as in (3.47), if Ve9R (4+5),
0(6&1, that P.'(k) —=x,(k) P'(k)x, (k).t'O(k) O(k') i

5(k) = —8+
&O(ko) O(ko))

'

in case (3), /=0, finally

348 The matrix C„ is real, symmetric and positive semi-
definite. Equation (4.2) also holds for Ep ——0 and
defines Cp. From (2.31) one obtains

—', log detS(k) —= irt (k), (3.49)

then it is shown as in (I), end of Sec. 3, that if rtt is the
number of bound states (counted twice if more than
one mixture has a bound state at the same energy), then

,(0+)—~(

ir(nz+-', ), for /=0, if k=0 is a resonance,
(3.50)

xm, otherwise.

'P S is defined in (2.19).

t'O(k') O(k'+') q
5(k) = —h+~ (3.48'")

& 0(k'+') O(k')

e. The De/e~reieuef. —Consideration of the determi-
nants leads to a connection between the 5-matrix and
the number of bound states. If one defines an asymp-
totic phase continuously between k= ~ and k= 0, as

~i Gr(QE, t)dP(E)G(QE, r) =5(t—r), (4.4)

QoF. (O,r) = CoG(O, r), —

so that the last two terms in (4.1) can be combined
into one sum of the form of the last term, e running
from 0 to 1.. In view of (3.23), Cp has the same con-
nection with a bound state at k=0 as C„has with one
at k= —iE„.

In the first term of (4.1),

k'[F.r(k)x '(k)F, (—k)]
= [kF.—'(—k)Xi(k)][kF.—'(k)Xi(k)]r

For /)~ 1 this obviously exists at k=0; owing to (3.40),
it also does for /=0. The principal value sign can
therefore be dropped in (4.1). As a result the com-
pleteness relation becomes
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or comparison potential V~, and

dr%(r)E (r)= ' dr%(r)G (QEr)
f

0 J @(sr)= — G '(V'E s)

XdLP (E)—P(E)]G (4E, ), (4.»)
XdP(E)

J
dr&(r)G (VE2r) 1 then there exists a matrix function R(s,r) which is the

unique solution of the integral equation

where the spectral function P(E) is defined by

P(—~)=0,

~ 'E'+'X p(v'E) L~'(v'E)

P(E)/'dE I XF(—V E)] 'Xo(V E), E)0, (4 5)
Q C tt(E E„), —Ep=0, E(&0.
n=O

where
C„=Q„X2( iK„)A—X2( iK„)Q—„~, (4.6)

It is a real, symmetric, positive semide6nite matrix
function of E.

It was shown in (I), Sec. 4, that one can write, for
~&0,

2(d/dr) X(r,r) = V(r) —Vi(r),

S. CONSTRUCTION OF V FROM S

(4.14)

The potential V(r) can now be constructed from a
given S-matrix, I bound state energies, E„', and L,

real, symmetric, positive-semidefinite matrices
Except for (3.50), all these quantities are independent
of each other. From A„one obtains, via (4.8) or (4.9),I'; by means of the procedures of Sec. 3 one then
removes from S the bound states and, for /=0, the
resonance at k=0 if S(0)= —h, forming S~. We then
define

g (sr)+Q (sr)+ dtI (s,t)g (t r) =0, s( r, (4.13)
0

and satis6es

0

(4.7) (—zk 1t (—ik)
F~o(k) =XoI IFm(k)xo 'I I, (5.1)

&k—i)
'

is a real, symmetric, ,
positive-semidefinite matrix with

the property that

kernels „—=kernels„. (4 8)

d= Jt dr{LF„12(r)+cF„21(r)j'
0

In fact, with the notation (3.10') we can write (in the
case of no degeneracy; if F (—iK„)=0, then F„=I and
three parameters are needed to fix A„).

A„= (1+c') 'dF„,
where"

(—iky ( ik~-
Sxo(k) =XpI . ISx(k)Xo 'I

I (5 2)
4k+i)

Frn(~) = &.

The new S-matrix can be written

(5.3)

(k+i y
Sxo(k) =Fop(k)Xpl IF~ o ( k), (5 4)

The functions F~p(k) and F~p '(k) are analytic for
Imk &0 and continuous for Imk ~(0. Moreover,

+(F2212(r)+cF„»(r)$'}. (4.10) and, although in general not unitary or symmetric,
it satisfies

For n=0, the pro. jection Fp to be used in (4.7) must
be a real, symmetric projection, with and

Sxo(k)Sxp( —k) = I, (5.5)

rangeI'o —=rangePo', (4.11) Sxo(~)= &, (5.6)

i.e., the projection of (3.10') rather than that of
reference 28.

The connection between the spectral function and
the potential via the generalized Gel'fand Levitan
equation is precisely the same as in (I), Sec. 4. If the
subscript 1 denotes quantities belonging to a suitable

"The relative probability for the (/+2)-state is

p = 2t d2'(F 12+CFn22),
0

and depends both on c and d. It can be obtained from the latter
two vari', bios only via F(k,r).

SNo( k) SXO (k) ~

After the transformation

s= (k+i)/(k —i),

(5.7)

(5.8)

which takes the lower half plane into the interior of
the unit circle, (5.4) becomes, in the notation of (I),
Sec. 5,

M(t) =C, (t)A'(t)C (t-'), (5.9)

where, with t=s for IsI =1,

~(1)= I, M(t)M(t —') = I, cV(t-') = M*(t), (5.10)
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and

X(s)= (I P—)+Ps'. (5.11)

'4 J. Plemelj, Monatshefte Math. und Physik. , 19, 211 (1908).
"N. I. Muskelishvili, Singular Integral Equations (Croningen,

Holland, 1953), pp. 381 ff.
' See (l)' for the proof.
'7 One writes

z z '+1
z+1 z '

and thus distributes the extra powers of z onto 4+(t) and C+ '(t ').
38 If F, (k) is O(k ") at k=0, then more bound states will not

alter (3.50).

It is proved in Appendix C that if UeOR(4+5) and
(2.5) is satisfied, then 3E fulfills a Holder condition.
The Plemelj theorem, '4" quoted at the end of (I),
Sec. 5, is therefore applicable. Accordingly, Eq. (5.9)
can always be satisfied with a matrix X(s),

(5.12)

the integers u, , or "indices, " being uniquely (up to
permutations) determined by M(/). The solution C~(/)
as well as the indices are obtainable by solving a
Fredholm equation. Since the present situation is in
general not the "normal case" of (I), Sec. 5, the reader
is referred to references 34 and 35 for the procedure of
solving (5.9) and obtaining the indices. If the latter
have the values 0 and 2, (5.9) and (5.11) together have
a solution and one obtains F~o(k), F~(k), and F(k).

Once F (k) is obtained, the spectral function is formed
via (4-.5), (4.6), and (4.3). Equations (4.12) to (4.14)
then lead to the potential. The latter will automatically
be symmetric, since P(E) is so." If the potential so
constructed is in OR(0) +OR(5) (for /= O, OR(0) +OR(4+8)
is sufficient), then it will have S(k) as an 5-matrix
and E„', I'„as bound state energies and projections.

If the indices do not have the values 0 and 2, then
there exists no "short. range" potential (i.e., &OR(5)) as
either F~p(k) ol' F~p '(k), or both, will be forced to
have a singularity at k=0." So long as F~D '(k) is
continuous at &=0, the Gel'fand Levitan equation can
be solved and a potential found. If, however, F~o '(k)
has a singularity at k=0, then one has to shift the
latter, if necessary, to several different points on the
negative imaginary k-axis (so that at each point
F~o '(k) has exactly a simple pole), where they produce
bound states; at the same time F~o(k) will become
infinite at k=0.

One can, in such a manner, always find an F(k) for
which the Gel'fand Levitan equation (4.13) can be
solved and a potential constructed. Unless the S-matrix
is such that the indices are 0 and 2, that potential will

not be of short range and, in addition, it may produce
more bound states than were originally contemplated. "

The author takes great pleasure in thanking Dr. Res
Jost for many fruitful and stimulating conversations.
Appendix 8, indeed, is entirely his work.

APPENDIX A

The purpose of this appendix is to supply a number
of existence proofs and inequalities that are essential to
the support of the body of the paper. All of the esti-
mates below will rest on inequalities satisfied by the
solutions of (2.1) with V=O. We shall list the essential
properties of these functions Q.rst.

The following are well known":

«(x) = L(2~+1)!j 'x'+'+o(x'+'),
vi(x) = —(2l—1)!!x'+O(x '+') ~as x~0, (A.1)

ui(x)= (2/ —1)!!x'+O(x '+') l)0
ui(x) = sin(x ——',m.l)+O(x 'el™l)
~i(x)= —cos(x——,'ml)+O(x 'e~' *~) )as fx f~~. (A2)
~ (x) ~te—sz+O(x—lermx)

If v= Imk, one then easily obtains the following
inequalities':

fkfr
fui(kr)f &Ce "'f

(1y fkfr)

t1+ fk[r~
f
v, (kr)

f

& Ce&
"&"

f

fkfr )

f
wi(kr)

f
~& Ce""ft

& fkfr &

(A.3)

(A.4)

(A.5)

The Green's function obeys the following':

(
f gi(k; t,r)

f &~Ce~
"~~"—'&

and
AG(k, r) =G(k,r) —Go(k, r),

P(k,r) = dtPGO(k, t)V(t)g(k; t,r)
0

—(2l+3)—'(I—P) U (()PGO (k,r) $

+(23+3)JI dt t '(I—P) V(/)PGO(k)r). (A.9)

for t ~& r. (A.6)

In addition we require an estimate for j~. By considering
separately the cases where fkft&1 and fk f/~&1, one
obtains in a straightforward manner, for Imk=0,

fkfr p r 1y fkf~~
!fg, (k;~,r)

f
&C

(1+Iklr)' &1+ Iklr t ) '

t & r. (A.7)

For the purpose of proving the convergence of the
successive approximations [Liouville-Neumann series,
or Born expansion] to (2.6) and estimates on G, we
rewrite (2.6):

aG(kr)=y(kr)+~ dtaG(k t)V(t)g(k; fr), (A8)
0

where
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(1y [kiri z+3-

z~'(k, r) —=e '~r
I I 1+ I (I—P)

r & E. 1+ fkfr&
f (k; t,r) = kgz+, (k; t,r) 2zz (kt)

—(2l+3) (kt)-'2zz+2 (kr), t &~r. (A.10) 1+ k ry2
+ I i

P GZ"Z(k, r),
rFor [k it~&1 one may use both terms in g separately,

its second part together with the second term on the
right of (A.10); for

I
k

I
t~&1 one estimates both terms

on the right of (A.10) separately. In either case one

readily obtains

then (A.6) and (A.11) show that the series P '"z is
dominated by P k„, where

k3 (r) =C ( I
k

I
+r '),

r

Iz (r)=C Ctk (t)iV(t)it(1+ikit) ', yz&—1,&1+Iklr& &1+[kit&

The only part of the estimate on zt that requires and define

detailed consideration is the (12)-term, containing

Accordingly, the (12)-element of the first integral in

(A.9) is, in absolute value,
which, in turn, is dominated by the series P $z "z, where

3+2 ~ T

&Cei "i"I
i

!' dti V»(t) f.

P«z =C(f kI+.-i)

tz-z =C
~

Ct(1+t)
I V(t) I

p

e~, e&~1.

The (12)-element of the second integral in (A.9), its
only nonzero one, is in absolute value

( r ) '(1+r) I-
&1+ fkfy& ! 1+ fkfr& "o

and one easily obtains

( y ) Z+2 r

I+»I &Ce~ "~ "I
I

!' «I V»«) I

41-+ fkfr&

Under the assumption, then, that VeDR(0),

1(I—P)~(k, ) I

( y ) Z+2 y

i [1+ i (A»)(1+Ik fr& & 1+ Ik fr&

P Pz"z=C(fkf+r '—1)+Cexp C —dt(1+t)
I V(t) I

Jp

It follows that if Ve5R(0), then Q ~ z"z and hence the
Born series of (A.S) converges for all k and r. Further-
more, if VeOR(0)+OR(1), then AG satisfies a set of
inequalities, which, when resubstituted in (A.S) yield,
for all k and all r,

I(I—P)AG(kr)
I

&&Ce'"'"I
I /

1+
r q'+'( r

41+ [k[.& & 1+ [k f.&

y q
Z+3 r

f
PDG(k, r) I ~&ce~ "~"

I I
ct (A.12)

1+ [k fr&

2

&&I 1+
I lv(t)l

1+ fkft&

Similarly, one obtains,

IP~(k, ) I

If we now write

Since G is now defined by a series of entire functions
of k which converges for all finite k, it is itself an entire
function of k. Moreover, (A.2) and (A.12) show that
for every r& ~, as Ik f~~,

E1+ fkfr& ", 1+fkft +O(k-"+"e"")j
(A.13)

PG(k, r) =P[—k zz+3z sin(kr —-22rl) I
yO (k

—ZH-4ie) r[r)g

where

DG(k, r) = Q Gz"z(k, r),
n=p

GZ'Z (k,r) =y(k, r),

T

Gz"z(k r) = dtGz"—zz(k, t) V(t)g(k t,r), yz&~1,
dp

Also, for every k, as r—&0,

(I—P)G(kr) = (I—P) [((2t+1)z!)-zrz+'I

+ O(.z+2)j (A.14)

PG(k, r) =P[((2t+5)!!)'rz+31+o(rz+4) j.
One now readily verifies that 6 satisfies the diBer-

ential equation (2.1). Equation (A.S) also shows that,
as r~0, lim[G'(k, r) —G3'(k, r) j=0, and therefore, with
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For the purpose of estimating F(k,r), we write
LG; G]=0. (A.IS)

For later purposes we need an estimate on G(k, r),
where k is real. Differentiation of (A.8) with respect to
yields

r

aG(k, r) =e(k,r)+ dtAG(k, t) V(t)g(k; t,r), (A.16)

where

e(k,r)= j(k,r)+ dtSG(k, t)V(t)g (k;tr) (A. .17)
a& p

One obtains from (A.10) that

fklt q p lklr
If (k,tr)l &«I

&1+
I
k

I
t) E1+

I
k

I
r)

F00

AF, (k,r) = pp(k, r)+~ dt's F,(k, t) V(t) g(k; r, t), (A.21')

where

t1F,(k,r) =F,(k,r) —F,p(k, r),

y(k, r) = dtF, p(k, t) V(t) g(k; r, t),

F,p(k, r) = k'I (1—F)2e, (ky)+Fk'w, +2(ky) j.
According to (A.5) and (A.6), for v=Imk&~0,

As a result of this and similar estimates on the other
~ p p~ (C —,„I,&1+ lklr& '+'

integrals in (A.9), it is easily found that, for Imk=0,

I (I-F)~(k, ) I

y q
l+1 r

I
1+-

&1y fkfr) I, 1+ fkfy)

y $
l+2

~1+Ikly&

(A.18)

x& «I I fv(t)f,
( t

&1+I kit

1+.Ikfrq 1+

IPp(k, r) I &~Ce
)

(A.22)

The second term on the right of (A.17) is estimated by
means of (A.7) and (A.12). If VpOR(0), then If we now write

I I v(t) I

&1+ fkft)

r

dt(1 —Z)LG(k, t) V(t) g. (k; t,r)
0

l+2 2

&Clkl-lrf
I I

1+
i1+ fkf.&

r

t dtPaG(k, t)V(t)g (k; t,r)J,

(A.19)

where

hF. (k,r) = P F~"~ (k,r),
n-O

F"&(k,r) = q (k,r),

F "'(kr)= t dtF " ' (k,t)V(t)g(k r t) rl&1
r

t' ( r ) l+2

(A.19) 7&"&(k,r) =e&"
&1+ Ikly& & 1+ lklr& (1+Ikfr)

The integral equation (A.16) leads from (A.18) and
(A.19) to (A.20) in the same fashion as (A.8) does from
(A.11) to (A.12).

I (I—P)sG(k, y) I

t
I I V(t) I (I—F)

&1+Iklt&

IZ~Gg, r) I

y 1+1 r
I I

1+
&1+lkfr) 4 1y fkf.)

(A.20)

then P Yt"& is dominated by the series P $„, where

~.()=C, ~-()=C "«Iv(t)l«-(t),
) l+2 y 2

I 1+ I«+ fk fr) & 1+lk fr&

This completes the inequalities'needed from G(k, r).

Then P„(r)=C/C J„'"dt t
I V(t) ff"/rt! and P P„&C', if

VpOR(1). Consequently the Born series of (A.21) con-
verges for all r)0 and all k for which Imk&~0. (For
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q
~1y fk f&~

t+o

I(1—P)~F, (k,r) f

&Ce-~ ~

I

E.

k=0, it is required that UpOR(3). ) Thus, F,(k,r) is, for
all r&0, an analytic function of k for Imk 0, con-
tinuous for Imp~& 0. Moreover, it satisies the following
ine ualities:

I
(1—P)4 (kr) I

.Cr, &=0, if VpOR(4) and if VpOR(5),

~««(lk I+r ')' '»f VpOR(4),

C"(Ikl+r ')' 'Ikl ~
if VpOR(5),

Therefore, for r&rp)0, fkI &kp(op,

I lv(t)l,
~1+ Ikft&

t1+ lkl. &
~+

f»F.(k,r) I
& Ce-~"'"I

(A.23)

IP~(k, r)
I

Cr(fkf+r ')'+' if VpOR(2),

Cr(lkl+r ')'+'lkl
~

if VpOR(3).

(A.30)

r

F,(k,r) =P(k,r)+ dtF. (k, t) U(t) g(k; r, t) (A.26)

x «I I I v(t) I.
«+fkft&

For Imk~&0, therefore, as r~~,
F,(k,r) =F,o(k,r)+o(r 'e ~ "~")

=(ik)'e ""Xp(k')8+O(r 'e ~"~") k/0,
(A.24)

F,(0,r) = (2l—1)!!((I—P)[r 'I+o(r ' ')]
+(2l+3)(2l+1)P[r ' 'I+o(r—'—4)])

where b is defined by (2.19).
For every r)0, as fk I

—+0o, Imk&0,

F(k,r)=i'e *"8+O(fkf 'e ~ "~') (A 25)

We now wish to prove the existence of F, (k,r) and
estimate it, for real k. Accordingly we differentiate
(A.21) with respect to k:

The inequalities (A.30) lead to estimates on F,(k,r),
via (A.26) in the same way as (A.22) leads to (A.23).
For the existence of PF, (0,r) it is suflicient that
VpOR(2), while for that of (1—P)F.(0,r) we require
VeOR(4). If VpOR(3), then PF, (0,r)=—0 and PF, (0,r)
exists; if UeOR(5), then, for /&~1, (1—P)F, (0,r)—=0 and
(1—P)F, (0,r) exists. The same is true for F, (k,r) and
therefore for F,(k), if in addition VpOR(0).

For the purpose of further estimates it is convenient
to introduce an integral representation for F(k). We
write

F, (k) = [F,p(k, r); G(k,r)]+[DE,(k,r); G(k, r)].
The last term vanishes as r~~. Since, moreover,

[Fco (k,r); g (k; t,r)]=Fso (k, t),

[Fp(k,r); Pui+p(kr)]= kP,

one obtains from the integral equation for G, (2.6),

p(k, r) =P,p(k, r)+~I dtF, (k, t) V(t)g (k; r, t). (A.27) F,(k) =1+ dt[F, o(k, t) V(t)Gr(k, t)
r 0

iWow
t=0,Cr,

I(1—P)F o(kr)l &&

Crlkl (lkl+r ')' ' l&1, ~ (A.28)

I PF,p (k,r) f
& Cr

f
k

I ( I
k

I +r ') '+'.
ol

—(2l+3)t iPV(t)'(1 —P)]

+(2l+3) t dt t 'PV(t)(1 —P), (A.31)
1

The inequalities (A.7) and (A.23) yield for r&~rp)0,
fk I

~&ko(~, F(k)—1=Jl dtl Fo(k, t) V (t)Gp (k, t)Xi(k)
0

dt(1 —P)F,(k, t)V(t)g (k; r, t)
r

f 1+
I
k

I
r q

+-'

&cf I !l dt t4I v(t)
f I~1+ lkft&

(A.29)

dtPF, (kt, )v(t)g (k; r,)t

p1+Iklr~ '+' 1"

—(2l+3)k 't 'PV(t)(1 —P)]

+(2l+3)k ' t dt t 'PV(t)(1 —P)

+ I dtFp(k, t) U(t)AG (k,rt)X, (k) (A.31').
~

p

(For the convergence of the last integral we require
VpOR(0). ) If UpOR(1), then (A.12) shows that the last
term in (A.31') is O(k ') as

I
k

I
—+~. The first term is

O(k ') as fk f~~, if UpOR(0). Therefore, if VpOR(0)
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+mr(1), then

F(k)=l+O(k —'), as Ikl~~ in Imk&0. (A.32)

We further wish to estimate the derivative of F(k).
The first term in (A.31') contains expressions such as
k '0222(k), where

0 22(k) = d tU22( )twl +2(k )tul +2(kt) ~

~Jp

The boundedness of q22 is readily proved. For the
derivative we write

Ikl —+00. Therefore

j222(k)=O(k ') as lk

One proceeds similarly for

il 00(k) = dt V]1(t)wl(kt)ul(kt),
0

'@02(k) dtU12(t)wl(kt)ul+2(kt),
0

((-1)"'I
I sinx+nl(x),

&1+x)
l even

0220(k)= J dtV21(t)LWl+2(kt)ul(kt) —(2t+3)(kt) '$.

u, (x) =,
( x ) 1+1

(—1)"+'&t2I
I cosx+nl(x), t odd,

&1+*)

I- '( ) I
« —,l~.'( ))=0,

(1+x)'+'

(1+x ' '
Ill'(x) I

&C

We now have

j 22(k) = dt t V22(t) I nl+2(kt)wl+2(kt) j
0 Bkt

( kt ) '+'
—(—1)'"e 2'2'I

) P (kt)
&1+kt)

x=e '~ x

and easily prove the following inequalities (for real x)
from (A.2) and (A.S):

p l+1 ( 1+x)
I«(x)

I
~«, l&1(x) I ~«I

(1+x)l+2 x )

q ~0 requires a little extra care; there one sets

( xi+1
u, (x) =

I (2t+1)!!]-'I
I yp, (x),«+xi+ )

w, (x) = (2t—1)!!x'+e—' |,(x),

and obtains

wl+, (x)ul (x)—(2t+3)x—' = —(2l+ 3)
1+x'+'

+(2l+3)!!x 'y (x)+f' (x)e ' u, (x),

whose integrals exist separately. The first two terms
contribute O(k ') to the k-derivative, and the last
O(k ').

Consequently, the first integral in (A.31) yields,
when differentiated with respect to k, O(k ') as

I
k I~~.

The derivative of the second is clearly O(k '); that of
the last consists of two parts:

For
I kl &~ko&0, by (A.S) and (A.12),

dtF0(kt) V(t)bGr(k, t)
Jp

kt q
'+'

—(—1) 't'e —""sinkt
I I Pl+2(kt)

Bkt «+kt)
if V.mr(0)+mr(1);

()I(+I I
')I

I

' 'I I-'
0

for even t, and a similar expression for odd t The first.
and third terms are O(k ') as lkl~oo if Uomr(0)
X(O(k ') if Vomr(1 —6)). Consider the second;

dtF, (kt) V(t)AGr(k t) &~C)kl
—'

0

is bounded, and

xl(*)~Pl(x)I x/(1+x) j'
by the use of (A.20). Therefore it follows that

F(k)=O(k ' '), as lk)~~ in Imk&~0. (A.33)
lxl'(x) I &e/«+ Ixl)'

Therefore, with 2r
I
k )

I x (k(t+5)) —x (kt) I

=~l x '(»')
)

& e/(I+ Ikl t)'& e/(tlkl)

One then proves precisely as in (I). (C.S) to (C.7),
from (2.5) that the second term in j222 is O(k ') as

The function Filo(k) of (5.1) combines the features
of F.(k) at the origin with those of F(k) at infinity.
It is continuous and has a continuous derivative for
all real k, and it satisfies (A.32) and (A.33). It was
proved in (I), Appendix C, that therefore F110(k), when
transformed to the unit circle, satisfies a Holder
condition, (I), (C.15).
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Finally, the behavior of F,(k,r) near k=0 must be for /=0. It follows from (A.30) and (A.26) that
examined. From (A.21) we obtain VeOR(4+6) also implies (A.35a) for /~&1, and

F,(k,r) —F, (O,r) =F,p(k, r) —F.p(O, r)

+ dtF, (0,t) V(t)[g (k; r, t) g—(0; r, t)]

+ «[F,(k, t) —F,(0,t)]V(t) g (k; r, t)

I P[F,(k,r) —F,(0,r)] [
& C [k [ (A.35b)

for all l. As a consequence,

S~p(k) = 1+0(k'), as k—&0

and then, as in (I) Appendix C, after the transformation
(5.8) to the unit circle, S~p satisfies a Holder condition:

[~(ti)—~(t~) I
&&~ [ti—ts[" (A.36)

dtF, (o,t) V(t)[g(k; r, t) g(0—; r, t)]

dt[F, (k, t) —F,(0,t)]V(t)g(k; r, t). (A.34)

provided that Ve511 (4+6) and V obeys (2.5).
A further theorem is obtained by taking the imagi-

nary part of (A.31):
00

ImF, (k) = —k"+'Xp'(k), dtGp(k, t) V(t)Gr(k, t). (A.37)
Jo

(I—P) ImF, (k) =O(k"+') as k—&0, (A.38a)

[(I—P)[F„(k, ) —F„(0, )][ &C
[

i k
I

&C '+'[k[, '""' U ~(o)~~("+') '"'"

Ke use this equation for 3=0 only, and multiplied on
the left by (1—P). Regarding (A.34) as an integral If VeST((0)QSIt(2t+4), then it follows that
equation for F,(k,r) —F, (O,r), we estimate first the in-

homogeneity. For r~&rp&0, [kl &~kp&~& if Ve3)t'(4+&),

4

dt (I—P)[F,(k, t) —F,(0,t)]U(t) g' (k; r, t)

r'"
«I U(t) I-

(1+ lkl t)'

«(I—P)F.(o, t) U(t) [8(k;,t) —8(O»t)]

&C„
fk[ fk'[tp

«V(t t
(1+[k'[t) 4

(
+.C t «I U(t)ltf (1+[k[t)

&~t'I a~

&C «t4+pfv(t)
I
[kf'

«(I—P)F, (O, t) V(t)[g (k; r, t) —b (0; r, t)]
[k[t'

«I V(t) I-

(1y [k[t)'

P ImF, (k) =O(k"+'), as k—&0.

APPENDIX 8

(A.38b)

In this Appendix, we shall prove an ideal-theoretic
theorem which is needed for the purpose" of defining
an "irregular" solution of (2.1) as an entire function
of E.

All matrices in the following are understood to be
matrices over the ring of entire functions of a complex
variable z (i.e., all elements are entire functions). The
subsequent three theorems were proved by O. Helmer. "

Theorem l.—Every finitely generated ideal (in the
ring of entire functions) is a principal ideal":

It~i,~, .If= Itt 3

The function p is the "largest common divisor" of
the set (ni, ",n„) and we also use the notation
Itui, ",n„jf=t. The common zeros of fni, ",n„) and
their multiplicities determine p.

Theorem Z.—If Itni, ",n„lf=t, then there exists an
(n&(e)™atrixwith the vector (ni, ,n„) as its first
row and whose determinant is p.

Corollary. Every matrix A=—[[cz;p[[ can be made
triangular by means of a lef t multiplication by an

+c d«'+'I U(t) I [kl '& c'I kl ',

where we have used the mean value theorem and (A.6),
(A.7), and (A.30). In the same manner as previously,
one then obtains from (A.34) by successive approxi-
mations, that, if UeBR(4+6), then

[(I—P)[F.(k,r) —F.(Or)]l &~C[kl', (A35a)

I See the paragraph after (2.14).
"O. Helmer, Duke Math. J. 6, 331 (1940); and Bull. Am.

Math. Soc. 49, 225 (1943).
4' Here is a reminder of the de6nitions: An ideal is a set with

the property that if it contains u, and P is any member of the
ring, then it also contains pn,. it is generated by the set {n1, ~, u, )
if every member of the ideal is a "linear combination" of nI, . ~ -, n„
with coe%cients in the ring. A principal ideal is an ideal generated
by a single element. We use the notation f(o&, ",n„l for the
ideal generated by the functions {u&, ~, 0(,}.The ideal generated
by the unity is, of course, the whole ring.
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invertible" matrix T:
r
pll
0B=TA=

0

22

p ~ ~ ~

pi
P2

p

Proof. We—prove this by induction. For I=1 the
statement is trivial. Let }}nii,n2i, ,n„i }}=p and

p n2n21= p, with }}121, ,n )=1, which is always pos-
sible; let Ti have the vector (ni, ,n„) as its first row

and let T~ be invertible. The matrix T~A has then in
its left upper corner a divisor of all elements of its 6rst
column. By means of a subtraction of suitable multiples
of the first row from the other rows (which can be
accomplished by left multiplication by an invertible
matrix), a matrix of the following kind can be obtained:

In other words: the left ideal K=}tMi,M2}} generated
by 3f~ and M2 is the entire ring.

Proof. Aga—in we proceed by induction. For 22=1,
the theorem is equivalent to Theorem 1.

Clearly, (TiMiS, T2M2S]}=KS, if Ti and. T2 are
invertible. Ke assume the same about S. Due to
Theorem 3 and the corollary to Theorem 2 we may,
then, assume that the generators of KS are of the form

C2 0

0

r

0
M2' ——

0 p ~ ~ ~

0'2n

that a=p. Then there exist two matrices S~ and S2 so
that

KM,+X2M2= l.

0

and

0
08= TA=

0

0
0

a'=T'A= 0

0

P12 Pip

P22

0 0

0 0 0 ~ ~

P22' P22'

Ppp'

0 0

pi
P2

0

0
P2

'

Pp' .

p

One then applies the induction hypothesis to A~.
Remark. —H the 6rst column of A vanishes, then

there exist invertible matrices T and T' so that

0

n 0
0

Agg=

,0

0!]y

0

0

0 0 ~ ~ p

0

p 0
0

, 0

0
0

Agg=

0

~ ~ 0 0

~ ~ ~ 0

The hypothesis of our theorem evidently still holds for
M~ and 3E~. If it is applied to a column vector whose
only nonzero component is the first, it follows that
}tciuii}}=1,i e., there exist n and P so that nei+Pnii= 1.
With these one constructs the matrices

62

0

TgAT2 ——S=
0

0

0

where ~~ is a divisor of ~~+~.

We can now prove the following
Theorem. Let M'1 and M—2 be two (n&&22)-matrices

with the property that for every so it follows from

Mi(sp)a=0 and M2(sp)a=0
42W'e call a matrix T invertible if T exists and is a matrix

over the ring of entire functions.

Theorem 3 (Elememtary d22isor theorem). To every—
matrix A there exist two invertible matrices T& and T2
so that Ml =A11M1 +A12M2 y M2 =A 21M1 +A22M2 |

for which

Ml A 22M1 A 12M2 | M2 A 21M1 +A 11M2

0

0

62

0

0

Pi212

0

0

pain
0

0

0
0

.0

f/0!]o
ff

0'22

//
0!]3

//
(223

//
CL33

0 0

/f
&1n

ff
&2n

//
0'3~

/f

generate the same left ideal as 3I»' and M2'. Both are
triangular:
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In both matrices one now subtracts the first column
multiplied by Pnio from the kth column, which corre-
sponds to an allowed right multiplication. This diago-
nalizes MI", does not change lvI~", and transforms the
ideal KS into KSi. Finally one transforms Mo",
according to the remark after the corollary to Theorem
2, in such a way that KSi is generated by0&(00~

iO M &'&
L, O M &")'

The [(e—1)X(e—1)j-matrices Mii" and Moi'i again
satisfy the hypothesis of the theorem and the latter
thus follows by induction.

APPENDIX C

Theorem Le.t—M(s) be an (e&&n)-matrix valued
function, analytic in a neighborhood of the origin and
detM(s)AO for all s in that neighborhood, except
possibly at s=0; furthermore, let M '(s) have at. most
a double pole at s=0; and let T be a constant (eXe)-
matrix. Then a necessary and sufficient condition for
M '(s)T to have at most a simple pole at s=0 is that

MpN o
——0, MpN i+Mph o 0, ——

MpNp+MiN i+M2N p I, —— (C.2)

and the same equations with the order of 3f and E
reversed.

Suppose that M ' 1has a simple pole at s=o. Then
iV oT =0. Multiplication of the last equation in (C.2)
by u on the left and T on the right then yields, by
(C.1) and the second and first equation in (C.2),

aT=aMiN iT= bMpiV i—T=bMi¹T=O.
This proves the necessity. The sufficiency is obtained
immediately from the first two equations in (C.2) with
the order of 3E and Ã reversed.

the system
aMo= 0, aMi+ bMo= 0, (C.1)

where Mo M——(0), Mi ——(BM/Bs), =o, implies aT=O.
Proo f. If—we expand

(s) =Mo+Mis+
M '(s) =N os '+N is '+No+

then the matrices 3'; and sV; must satisfy


