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The present paper is a study of the radial Schrodinger equations for the case of an interaction between
the /th and the (42)nd angular momentum, produced by the tensor force in the presence of spin-orbit
coupling. It contains a number of theorems, known for central potentials, concerning the low-energy be-
havior of the S-matrix, bound states, and zero-energy resonance. The construction, in two stages, of all
potentials belonging to a given S-matrix and given bound states, is described. The step from the spectral
function to the potential involves the generalization of the Gel’fand Levitan equation given in a recent
paper; that from the S-matrix to the spectral function, a procedure due to Plemelj also outlined in that
paper. The latter procedure leads to a restriction on the S-matrix necessary for a short range potential to
exist. If there is such a potential, it is uniquely determined by the S-matrix, the binding energies, and as
many real, symmetric, positive semidefinite matrices as there are bound states.

1. INTRODUCTION

N the work of Bargmann? Jost and Kohn,*=® and
Levinson,®7 it was shown that the scattering phase
shift of one angular momentum, /, given as a function
of the energy, if caused by a short-range central po-
tential, together with the L; bound state energies and
a set of L; positive parameters C,, uniquely determines
that potential. Moreover, the latter can be constructed
from the former by solving a Fredholm integral equation
first derived by Gel’fand and Levitan.57:8 It is the
primary purpose.of the present paper to generalize the
work of the above authors to such noncentral potentials
as that of a combination of spin-orbit coupling and the
tensor force.”!® As a first step in that direction, the
author and Res Jost have recently extended the con-
struction procedure to the (physically fictitious) case
of a finite number of coupled radial Schrédinger
equations for S-states.!! The then neglected centrifugal
barrier is now fully taken into account.

In addition to the construction of the potential from
the S-matrix, the bound states, and as many matrices
as there are bound states, a number of generalizations
of theorems, known for central potentials, concerning
bound states and the low-energy behavior of the
S-matrix are proved.

* Frank B. Jewett Fellow.

t Now at Indiana University, Bloomington, Indiana.

1V. Bargmann, Phys. Rev. 75, 301 (1949).

2V. Bargmann, Revs. Modern Phys. 21, 488 (1949).

3R. Jost and W. Kohn, Phys. Rev. 87, 977 (1952).

4R. Jost and W. Kohn, Phys. Rev. 88, 382 (1952).

#R. Jost and W. Kohn, Kgl. Danske Videnskab. Selskab,
Mat.-fys. Medd. 27, No. 9 (1953).

8N. Levinson, Kgl. Danske Videnskab. Selskab, Mat.-fys.
Medd. 25, No. 9 (1949).

7 N. Levinson, Phys. Rev. 89, 755 (1953).

8I. M. Gel'fand and B. M. Levitan, Doklady Akad. Nauk.
S.S.S.R., Ser. 77, 557 (1951), and Izvest. Akad. Nauk. S.S.S.R.,
15, 309 (1951).

9 W. Rarita and J. Schwinger, Phys. Rev. 59, 436 (1941).

0 J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics
(]ogfln Wiley and Sons, Inc., New York and London, 1952), pp.
94 fi.

1 R. G. Newton and R. Jost, Nuovo cimento 1, 590 (1955),
hereafter referred to as (I).

412

Section 2 contains several kinds of solutions of the
radial Schrodinger equation with coupling between the
ith and the (I4+2)nd angular momentum, and their
properties as functions of the distance and of the energy.
The S-matrix is defined and shown to be unitary and
symmetric. At the end of the section a theorem is
proved concerning the low-energy behavior of the
S-matrix, being the generalization of the statement
that for a large class of potentials the /th phase shift
goes as k2 near k=+/E=0. Section 3 deals with the
bound states and the special possibility of a resonance
with no bound state at zero energy for /=0. While the
former are independent of the S-matrix (except for
their total number), the latter is not. Subsection 3a
treats the bound states for negative energy; 3b that of
zero energy and /2> 1; 3¢ the bound state and resonance
for zero energy and /=0 (coupled with [=2); 3d the
generalization of the theorem at the end of Sec. 2 to
the case of bound states or resonance at E=0; 3e the
only connection between bound states and the S-matrix
for short range potentials.

Section 4 contains the completeness relation and the
definition of the spectral function. The generalization
of the Gel’fand Levitan equation derived in (I) connects
the latter directly with the potential. In Sec. 5 the
construction of the spectral function from the S-matrix,
the bound state energies, and a set of real, symmetric,
positive semidefinite matrices is described. In contrast
to the case of a central potential, this step in the
construction is rather involved and, as in (I), leads to
certain restrictions on the S-matrix necessary for the
existence of a short-range potential.

There are three appendices. The first supplies all the
convergence and existence proofs as well as a number of
inequalities necessary for the work; Appendix B con-
tains the proof of an ideal-theoretic theorem needed
for the existence of an “irregular solution” of the
Schrodinger equation as an entire function of the
energy. Appendix C proves a special theorem about
matrix functions needed for the completeness relation
in the case of coupling between S- and D-states.



CONNECTION

The general position- and spin-dependent potential
between two particles is of the form'

V(@) =va(r)+v,(r)o1 0540,(7)S12. (1.1)

When this is applied to the wave function of two spin
1 particles in a triplet state, whose two relevant radial
components, of the Ith and the ([42)nd angular
momentum, may be combined in the row-matrix or
vector

U= (u,w),

and whose spin-angle components are
V=(YV;1,MY142:"),
then, in matrix notation,
VUYT=UVYT.

Here V is a real, symmetric (2X2)-matrix whose
elements are functions of 7 alone. For =0,

e 2V2v,
r=( )
2\/2‘115

where'® v,=v44v,. Only fwo of the elements in the
matrix V are independent.

From the point of view of the S-matrix any restriction
on V beyond symmetry and reality is unnatural. No
criterion is known for the scattering to arise from a
potential V that satisfies the condition necessary to be
associated with the U of (1.1). In order to remove this
restriction, a spin-orbit potential of the form v,(r)S-L
must be added to (1.1). Such a potential has the
property

v,(nS-LUYT
=%vo(r)U(

V,— 20,

J2—P—5? 0
)w.
0 Jr— (I+2)2—5?
Consequently, the potential
V' =0v4(r)+ 2, ()01 02+ 0,(#)S12+2,(#)S- L,

when applied to a triplet state wave function, manifests
itself as a matrix-multiple of the radial part, UV (the
spin-angle matrix that always multiplies from the right
being neglected), where V is a real, symmetric (2X2)-
matrix function of 7 and otherwise unrestricted. The
matrix V and the set of three potentials v, v;, and v,
stand in one-to-one correspondence to each other.
Among the latter it is the tensor force alone that
produces coupling between the /th and the (I+42)nd
angular momentum.

(1.2)

2. SOLUTIONS AND THE S-MATRIX

In view of the statements in the introduction, the
Schrodinger equation for the radial part of the wave
function containing the components of angular mo-
mentum / and /4-2 can, in the presence of the potential
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U’ of (1.2), be written as follows'?:

VI(EN+EY(En)=Y(En[r1(+1)1-P)
+720+2)(+3)P+V ()],

00
()
01

and V(7) is a real symmetric (2X2)-matrix function of
7;¥(E,r) is a (2XX2)-matrix whose rows are individually
vector solutions of (2.1). “A solution of (2.1)” will
always mean such a square matrix of two vector
solutions.

In the space of (2X2)-matrices it will be useful to
define a norm:

(2.1)
where

(2.2)

|M|=2 max (| M),

a,f=1,

(2.3)

which obeys both the triangle and Schwarz’s in-
equalities. Furthermore, we use the notation N (s) for
the class of (matrix valued) functions whose sth
absolute moment exists'®:

M) en(s) iff Q| MO <w.  (24)

The assumptions on the potential will not be entirely
fixed. For the main purpose it will be assumed that
Ve (0)Nam(5), although for I=0 it will suffice that
Ve (0)Nom(44-6), 6>0. For the purpose of one
theorem concerning the behavior of the S-matrix at
low energies (see the end of this section) we will need
Ve (0)NM (24 6). The only other assumption, needed
in Sec. 5, will be

f drr|V(r+R)—V (r)| <CR?, for some 6>0. (2.5)
1]

Several different kinds of solutions of (2.1) will be
used. The first is G(k,7), (k*=E), which vanishes at'

2 Differentiation with respect to # will be indicated by a prime;
7 is the radial distance in units of %#/mc¢V2, E the energy in units
of me?, V the potential in units of mc?; m is the reduced mass if
(2.1) describes the interaction between two particles. The first
derivative with respect to k, where k2=E, is denoted by a dot,
the second by a dash.

13 The symbolism customary in mathematics is used: “¢” stands
for “is a member of;” “M” stands for the intersection of two
classes, 1.e., the members of 9N 9N, are all elements which are
both in 91; and in 9.

14Tt is well known that, in contrast to the scalar case (i.e., with
no coupling between different angular momenta) in general no
“regular” solution can be defined for the tensor force without
interference with the logarithmic term. (There is one regular
vector solution without a logarithm, but the second row of the
matrix solution generally contains log 7.) It is correspondingly
difficult to define this solution by a boundary condition. The
obvious integral equation for this solution diverges at =0 unless
the existence of large negative moments of the potential is as-
sumed. If to the inhomogeneity of this integral equation, however,
a judicious (V-dependent) multiple of the solution of (2.1) with
V' =01is added, the integral is made to converge. The result is (2.6).
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r=0. It is defined by the integral equation
G (k7) = Golly)+ (21+3) f dt (1= PYV ()Go (k)
1

+f UGV (DS 1)

— Q3 A=P)V (O PGo(ky) ], (2.6)

which, if Ve (0), has a unique solution obtainable by
successive approximations.’® The following functions
occur in (2.6): the free solution

k=D (kr)

0
), (2.7
0 k‘(l+3>ul+2(kr)

Go(kyr)= (

and the Green’s function

gi(k; tyr) 0
9<k;t,r>=( : ) <
0 gu2(k; )
where

gi(k; 1) =k Ly (kt)v, (k) — uy(kr)v, (k) ],
= %1/(— l)lk‘l[wl(kr)wl(——kt)
—wi(—kr)wi(kt) ],

(2.8)

2.9)
w (%) =251 (%),

vy (%) = wng (),

wi()=1(— 1)l ® (—x) = — [v:(%)+im ()],
and 7, ng, 7@ are the customary'® spherical Bessel
functions, spherical Neumann functions, and spherical
Hankel functions of the first kind, respectively. The
solution G(k,r) of (2.6) and (2.1) is's an even, entire
function!”18 of £ for all r. If Ve (0)M9M (1), then,s19
with »=1Imk,

A=P)G(ky)= (1— P)[ k=D sin (kr—3nl)1

Ok~ HDelI7) ] as | k|—o0,

(2.10)

PG (k)= P[— k=) sin (kr—1xl)1 (2.11)
FO(r 1], a5 B e,
and
(A=P)G (k)= 1—=P){[(20+1) 11T »H+1
+0(r*2)}, as r—0, 212

PG (k)= P{[ (20+5) I TrH+1
+0 (@4}, as r—0.

15 See Appendix A for the proof.

16 See, for example L. 1. Schiff, Quantum Mechanics (McGraw-
Hill Book Company, Inc., New York, 1949), pp. 77 ffi. The
functions #; and v; are identical with those used by Walter Kohn,
Revs. Modern Phys. 26, 292 (1954) and are called 7; and #; in
reference 6.

17 The notions analyticity, continuity, etc., when applied to a
matrix valued function, are always meant to hold for each matrix
element.

18 Such a regular solution can presumably be defined under the
weaker assumption Vedn (1) for which (2.6) in general, diverges.
It will, however, in the following be convenient to have an
equation for G whose series of successive approximations con-
verges. Therefore it was assumed that Vedn(0).

19 Throughout this paper, the notations O and o will be used to
mean a matrix all of whose elements are O(--+) or o(---).
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If we define a Wronskian matrix2°
[B; V] =D () VT (r)—2' (r)¥7 (r), (2.13)

which is independent of 7 if both ® and ¥ satisfy (2.1)
(due to the symmetry of V), then

[G; G]=0. (2.14)

An “lirregular” solution 7(ky#) of (2.1) that for all
7>0 is an entire function of % and satisfies the equations

[7;G]=1, (2.15)
[7; 1]=0, (2.16)

can be defined as follows. Let ¢1(k,7) and ¢»(k,7) be
two solutions of (2.1) fixed by the boundary conditions

ik, )=y (k,1)=1, ¢/ (k,1)=y1(k,1)=0.
They are entire functions of % for all »>0. Let
G (k) =M " (k)1 (k)4 Mo" (R)s (kyr),
L1 (k)= — No(k)1 (kyr)+N1(k)ga (k).

In order for I;(k,) to obey (2.15), N1 and N: must
satisfy
N1(B)M1(k)+No(k)Mo(k)=1. 2.17)

Both M and M, are entire functions of k. Moreover,
(2.12) shows that, for every ko, the only vector a with
the property Mi(ko)a=M;(ko)a=0 is a=0. It is proved
in Appendix B that under these circumstances there
exist two matrices Ny and N, which solve (2.17) and
which are entire functions of k. Because of (2.14), the
solution

I(kyr)=[—Ny(k)+A (R)M:" (k) W1 (k,r)
+ N1 (R)+A ()M ST (k) 1o (kyr),
where
A(k)=—Nz(k)N:" (k)+B(k),

and B(k) is symmetric and an entire function of &, is
then an entire function of % for all >0 and it satisfies
both (2.15) and (2.16).
A further solution of (2.1) is defined by the boundary
condition
152 explz(kr—3wl) |6F (ky)=1,

1 0
()
0 —1
If Vem(3), F(ky) is'® an analytic function of k£ in

Imk <0, continuous for Imk <0, except at k=0; at the
latter point,

(2.18)
where

(2.19)

Jcl(k)F(k}r) EFe(k)f); : (220)
with
%y (k) =k (1— P)+ k2P, (2.21)
20 A superscript T will stand for transposition, an asterisk for
complex conjugation.
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is continuous. The asymptotic behavior in Imk<0 is
the following?®:

F(kyr)=exp[—i(kr—1iwl) 16-+0(r 1 1717),
k=0,

as r—o,

F.(0,9)= Q-1 A=P)[r1+o(r2)]
+EH)IPL oG], 1w, (223)

F (k,r)=exp[—i(kr—3x0)16+0(| k| 1),
as |k|—o, r>0. (2.24)

If5 Ve (2), then? PF,(07) exists (for r>0); if
Vem(4), so does (1—P)F.0,). If Vem(3), then
PF.(0,)=0 and® PF,(07) exists; if VeIN(5), then,
for 1>1, (1—P)F,(0,r)=0 and (1—P)F,(0,r) exists.
The same is true for the first derivative of IF with
respect to 7.

The solution F(k,r) satisfies, for Imk <0,

(2.22)

[F(k,yr); F(kr)]=0, (2.25)
and for Imk=0,

[F(ky); F(—ky)]=2i(—1)%1; (2.26)

for real % it also has the property
F(—ky)=(—=1)1F*(kr). (2.27)

By means of the definitions

F(k)=[F (k,r); G (k) JR:(R), (2.28)
F(k)=—[F(kn); I(kr) I35k, (229

G(k,r) can readily be expressed in terms of F(k,r) and
F(—k, r), for Imk=0:

G (k)= (2ik) '3 (k ) (= D)'FT (R)F (—k, 7)
—FT(—k)F (k)]

Similarly, F(k,r) can be expressed in terms of G and I,
for Imk<0:

F(kp)=F'(k)X1(R)G (k,r)+F (k)Xo (kI (ky7).

The function F(k) is of fundamental importance in
the following. It is analytic in Imk <0, continuous for
Imk <0, except possibly at £=0, where

Fo(k) =% (R)F (R)R:(E7),

(2.30)

(2.31)

(2.32)

however, is continuous. The statements following (2.24)
apply to F.(0): If Ve (0)Non(2), then PF.(0) exists;
if Vem(0)NM(4), so does (1—P)F.(0); if Ve (0)
Mo (3), then PF,(0)=0 and PF,(0) exists; if Ve (0)
N1 (5), then, for I>1, (1—P)F,(0)=0 and (1—P)
X F,(0) exists. Furthermore, if Vet (0)(N9M1(1), then

F(k)=140(Fk™"), as | k| > in Imk<0. (2.33)

In contrast to (2.27), F(k) has the property that for

real &
F(—k)=F*(k). (2.34)

21 The functions F (k) and F’(k) of (I) although defined differ-
ently, satisfy (2.28) and (2.29) mutatis mutandis.
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Finally, insertion of (2.30) and (2.26) in (2.14) yields
the relation
FT(R)F(—k)=FT(—k)F (k). (2.35)
The S-matrix? is obtained from (2.30) and (2.35) as
S(k)=F(k)F'(—k). (2.36)
Owing to (2.35) it is symmetric, and due to (2.34),
S(—k)=S*(k)=S"1(k), (2.37)

which, together with its symmetry, demonstrates its
unitarity.

It is well known that for central potentials sufficiently
small at infinity, the asymptotic phase (3log ImS) of
the Ith angular momentum tends to zero at £=0 as
k21 provided there is no bound state (of angular
momentum /) with zero binding energy.?® The general-
ization of this theorem to the present case is given in
the remainder of this section.

It is proved in Appendix A that, if Ve (0)(M91 (2!
+6), then

TmF, (k)= (1— P)O (kM) + P O (k2H+), as k—0. (2.38)

Suppose now that det#,(0) 0. Then, owing to (2.36)
and (2.34)

S (k)= %o (k) [ 144iImF (k) (ReF (k)
X[1—iImF () (ReF (k)% (k)
O k2l+1 O k2l+3 '
_ 1+( (R11) O ))7
O (k2l+3) O (k2l+5)

0. (2.39)

The modification of this statement in case detF.(0)=0
will be given in part (d) of the next section.

3. BOUND STATES AND RESONANCE

a. k#0.—Suppose that for k=%, Imk <0, detF (k)
=0, 50 that there exists a vector a0 for which (2.31)

yields
aF (ko) = aF’ (ko) Ki(ko)G (ko,r). 3.1)

The vector solution aF (ko) of (2.1) thus vanishes
both at 7=0and = = ;at the latter point exponentially.
This means that — k¢ in an eigenvalue of (2.1), or the
energy of a bound state. One can show from (2.15),
via (2.12) and similar estimates for G’, that

I(kﬂ') = (I—P)[(2l~ 1) ! jy—ll__{_o(r_l)]
+ P[(21+3) | !rﬁ(l+2)1+0(1,—(1+2))]’

as r—0;

3.2)
consequently,

limdI (k,r)=0 implies b=0. (3.3)
0

22 See C. Mgller, Kgl. Danske Videnskab. Selskab, Mat.-Fys.
Medd. 22, No. 19, 19 (1946).

28 This theorem was proved rigorously for central potentials
in 9 (20+2), by David S. Carter in a Ph.D. thesis at Princeton
University, 1952 (unpublished).
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It follows, therefore, from the fact that det®;(ks™)0,
by (2.31), that if —kg?, Imko<O0, is a bound state
energy, then there must exist a vector a0 so that
aF (ky)=0, and hence detF (ky)=0. Thus the nonzero
eigenvalues of (2.1) correspond exactly to the points in
the lower half plane where F(k) is a singular matrix.
It is proved in the standard fashion that these eigen-
values are all real. The functions F (k) and F~(k) are
therefore both analytic for Imk <0, except at a finite
number? of points on the negative imaginary axis,
k=—iK;, K;>0, where F~1(k) has poles. As in (I), we
shall now prove that at k= —¢K;, F'(k) has exactly a
simple pole.

Since® [G; G vanishes at »=0, one obtains, as in

(D), (3.1), .
[G(ky); G(ky)]=2k f dG(RNHGT (kD).  (3.4)

On the other hand, (2.14), (2.16), (2.28), and (2.31)
lead to

[F(k,?’),G(k,?’)]=F(k)gcl_l—F(k)leC[‘2
+F (B)RLG (k1) ; G (Ry1)]
+F(k)3€l~l[1<kyr) > G(k,?’)].

Now suppose that the vectors ¢ and b solve
aF (—iK)=0, (3.6a)
aF (—iK)+bF(—iK)=0. (3.6b)
Substitution of (2.31) in (2.25) yields, for Imk<0:
F(R)F'T(k)—F'(k)FT(k)=0. (3.7

(3.5)

Equations (3.6a) and (3.6b) therefore imply

aP (—iK)F'T(—iK)a"
=—bF(—iK)F'T(—iK)a"
=pF' (—iK)FT(—iK)a"=0. (3.8)
Multiplication of (3.5), taken at k= —iK, by a on the
left and by &;(—<K)F'T(—:K)a” on the right then
leads, via (3.1) and (3.4), to

o[F(—iK, r); F(—iK, r)]a”
= 2K f UaF (—iK, )T (—iK, )T, (3.9)

The function F(—4K, r) being real, the absolute value
of the right-hand side increases monotonely, while that
of the left vanishes at = . It follows that ¢=0 and,
according to (I), Appendix A, therefore that F~1(k)
has a simple pole at k= —:K.

We can now reduce the case of bound states to that
without bound states. For that purpose we need for
every bound state a real, symmetric projection P,

2 See (I), reference 19.
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which satisfies?

rangeP,=kernel(1— P,)=kernelF(—:K,). (3.10)

It describes the mixture of angular momenta for which
K,? is a bound state energy, in the sense that if the
ratio of the two components of the bound state wave
function is asymptotically equal to ¢, then

1 —
P.,= (1+C2>'—1( ‘ )
—c c?

This is not directly related to the probability ratio of
the two states in the sense in which the ground state of
the deuteron is a 49, D-state. The connection between
the two strictly speaking, involves the potential.

If {—K.,2}, n=1, -+, L, 0<K <+ <Ky, are the
bound state energies and P, the corresponding pro-
jections fulfilling (3.10), then one defines a matrix
R=R/(k) as follows:

Ro=1,

(3.10)

(3.11)

2K,
Rn(k)=(l—Pnlk : )Rn_l(k), n=1, -, L,

(2aws

where P,/ is again a real, symmetric projection, related
to P, by

rangeP,’=kernel(1—P,’)

=range| Ry—1(—iK,)P R, 1 (—iK,)]. (3.12)
One then forms
Fy(k)=R(k)F (k), (3.13)
and
Sy(B)=R(kE)S(E)R(—k)=Fy(k)Fy(—Fk). (3.14)

It was proved in (I), Sec. 3, that Fy and Sy have all
the relevant properties of F and S: Fy(k) is analytic
for Imk <0, continuous for Imk<O0, except at k=0,
limFy(k)=1 as |k|— ; Sy is unitary and symmetric
and satisfies (2.37). In addition, however, Fy1(k) is
also analytic for Imk <0.

b. k=0, [>1—1It is evident from (2.23) that for
121, F.(0,r) is always square integrable at infinity. It
is therefore again clear from (2.31) that a necessary
and sufficient condition for £2=0 to be the energy of a
bound state, is that det#,(0)=0; i.e., that there exist
a vector a7%0 so that ¢F.(0)=0 and therefore

aF.(07)=aF./(0)G(0,). (3.15)

It is now, however, not true that 2F,71(k) is continuous
at k=0. We shall prove that 22F,'(k) exists at k=0
and, if and only if #2=0 is an eigenvalue, it does not
vanish there.?6

25 As in (I), we mean by the range of a matrix M the set of all
vectors x for which there exist vectors y so that x=yM; the
kernel of M is the set of all x so that xM/=0. By a projection
we mean merely an idempotent matrix, P?= P,

26 We assume in the following that Veat(0)MN a1r(5).
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Consider the system
aF,(0)=0, aF.0)+bF,(0)=0. - (3.16)

By (3.15) both aF.(0,r) and aF,'(0,) vanish at r=0.
Moreover, since F.(0)=0, by (2.31),

BF(0.)=bF . (0)G(0,)+bF . (0)I (0,7),
I

aﬁe(o,r)=a%[m’(k)G(k,r)]k=o+aF’e(o)Ie(o,r). (3.18)

(3.17)

The second equation in (3.16) then shows that aF,(0,7)
+bF,.(0,r) vanishes at =0 and so does its derivative.
Consequently

f(r)=[aF.(0,#); aF ,(07)+bF,(0,/)]—0, r—0. (3.19)

The differential equation (2.1), on the other hand,
yields?”

f'(r)=—2aF.,(0,7)F.7(0,r)a”, (3.20)

which is certainly nonpositive (¢ and F.(0,r) being
real). Now, as r—

[aFe(0,r); aFe(0,1) 1-[aF oo(0,r) 5 aF o0(0,7) 10,

and similarly,
[aF.(0,r); bF ,(0,r) ]—0.

Therefore f(0)= f()=0. Since (3.20) states that f(r)
is monotonic, it follows that f’(»)=0 and hence by
(3.20),

aF.(0,7)=0.

As r— 0 (2.23) shows that
detF.(0,1)— (21— 1)11(2143) llr—+2,

and therefore a=0. The theorem of (I), Appendix A,
then states that the inverse of

M(B)=F.(0)+3#F.(0)
has exactly a double pole at k=0. Since ¥,(0)=0, and

Fo(R)=[1+M7(R)R(E) M (k), (3.21)
where
_ ®R(k)=o0(k?) as k—0,
it follows that
Qo=limk?F ;1 (k) (3.22)
k—0
always exists and
E=0 is an eigenvalue if and only if Qo%0. (3.23)

(The sufficiency follows clearly from the fact that
F,(0)=0.)

The bound state at =0 can now be removed as in
the previous procedure. Let Py’ be a projection that
satisfies (3.10) with respect to F.(0). Then

Ron (k) = (1 — Po”ik_l)2
27 As (D), (3.1).

(3.24)
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will be used in the same way as the other R,’s. We form
Fa(k)=Ro(k)F.(k) (3:25)

and find that F,.(k) and F. (k) both exist at k=0.
One can then write

F(k)=Ri(k)F(k), (3.26)

where
Ro (k)= Ko(k™)Roo (k) Ko (), (3.27)
Fi(k)=%o(k ) F o1 (k)Xo (k). (3.28)

Instead of choosing Py’ symmetric, we make it such that
(1—P)P/P=0, (3.29)

which is always possible.?® With that choice of Py’
Ro(w)=1, (3.30)

and consequently Fi(»)=1. Equation (3.27) with
(3.24) now replaces the first line in (3.11). The matrix
Sy of (3.14) will, if 22=0 is a bound state energy, in
general not be unitary or symmetric. It will be noticed
that in contrast to the discussion in (I), Sec. 3, Py’ is
independent of the S-matrix. For /> 1 one always has

S(0)=1. (3.31)

¢. k=0, I=0.—Contrary to the case of no coupling
between angular momenta, where E=0 never is a
bound state energy for =0 [if Ve (2)]2° and for
121 it is a bound state if and only if f(0)=0, in the
present case £=0 may or may not be an eigenvalue if
F.(0) is a singular matrix. Equation (2.23) shows
that, while PF.(0,r) is always square integrable,
(1—P)F.(0,r) is not. The criterion for a bound state
at E=0 is therefore that PF.(0,0)=0. As before, it
follows from (2.31) that a necessary and sufficient
condition for the existence of a bound state of zero
binding energy is that F.(0)=0.

If detF,(0)=0 we distinguish three cases:

(1) The case of a bound state® and no resonance; by
this we mean (1— P)F,(0)5£0, PF.(0)=0;

(2) The case of a bound state and a resonance at the
same time; then F,(0)=0;

(3) The case of a resonance and no bound state, i.e.,
PF.(0)5%0, detF,(0)=0.

In the following we assume that Ved1z(0) N9 (4), in
which case F,(0) exists, PF,(0)=0, and PF,(0) exists.
We now wish to prove that Q,, (3.22), exists.

28 If the kernel of F,(0) is represented by (1,C), then

PO’ = (%—1 (1)) 5
if it is (1,0), then Py’=1—P; if it is the whole space, then Py'=1.
29 See V. Bargmann, Proc. Natl. Acad. Sci. U. S. 38, 961 (1952).
3 This occurs in the lower row of F,, if /=0. It must be remem-
bered, though, that the first column refers to S-components and
the second column to D-components.
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Consider the system
aF,(0)=0, aF,.(0)+bF,.(0)=0,
aF ((0)+bF . (0)+cF.(0)=0.
Insertion of (2.31) in (2.26) yields
F(R)F'T(—Fk)—F'(k)FT(—k)=2ikl.  (3.33)
If this is multiplied by &;(k) on the left, &;(—%) on
the right, and differentiated, it becomes for =0, k=0,
FL(0)F,/T(0)—F,(0)F,/T(0)—F, (0)F.7(0)
+F/(O)F.7(0)=2i1—P). (3.34)
Multiplication by @ on the left and by &7 on the right
leads, by (3.32a) and (3.7), to
2ia(1— P)a®™= —2bF,(0)F /7 (0)a”
=—2bF,/(0)F,T(0)aT=0.

(3.32a)
(3.32h)

This means that

Egs. (3.32a) imply a(1—P)=0.  (3.35)

Consequently aF,(0) exists. Now consider separately
the three cases distinguished above.

(1) PF.(0)=0, (1—P)F.(0)£0. Then d(1—P)=0
and (3.32) becomes

aF(0)=0, aF,(0)+cF,(0)=0.  (3.32)

The arguments following (3.16) apply equally here and
show that (3.32) implies a=0.
(2) F.(0)=0. In that case (3.32b) reduces to

aF ,(0)+0F.(0)=0. (3.32b")
Similarly as (3.18) we obtain

bF ,(0,9)= b%[Fe’ (B)G (Ey7) Jrmo+DF () (0,1), (3.36)

while (3.18) still holds. One now uses (3.36) in place
of (3.17) to prove, quite as before, that a=0.

(3) detF.(0)=0, PF.,(0)70. In that case the first
line of (3.32a) and (3.35) imply a=0.

This completes the proof that the system (3.32)
implies ¢=0. That statement, however, is a necessary
and sufficient condition® for the inverse of

M (k)=F.(0)+k(1—P)F (0)+3F*PF.(0) (3.37)
to have at most a double pole at £=0. We now write
F.(k)=M(k)+ & (), &(k)=1—P)o(k)+P o(k?),

and
Ri(R)=F ;1 (k)— M (k)
=—[M1R(A+M®R) M. (3.38)
It is proved in Appendix C that, since M (k) has at

most a double pole at k=0, (3.35) is a necessary and
sufficient condition for M~1(k)(1—P) to have at most

3L The proof of this is entirely parallel to that of (I), Appendix
A,

ROGER G. NEWTON

a simple pole at k=0. Therefore M'®R=0(1) as k—0
and we can write

Ft(R)=[1+0(1)JM~' (), as

hence Qo of (3.22) exists.

Moreover, neither in case (1) nor in case (2) can
M~(k) have a simple pole at k=0, because then
(3.32a) would, by (I), Appendix A, imply ¢=0; in
both cases, however, the second component of « is
quite undetermined by (3.32a). Conversely, if M~(k)
has a simple pole at k=0, then (3.32a) must force a=0.
But since PF,(0)=0, the lower row of F,(0) can then
not be zero and PF,(0)%£0; we are then in case (3)
and E=0 is not an eigenvalue. Consequently, (3.23)
holds also for /=0. In addition, in view of the statement
following (3.38),

E—0; (3.39)

limkF (k) (1— P) exists for [=0.

k—0

(3.40)

We are now in a position to remove the singularity
of F, ! at k=0 as before. Again one forms F, (k) by
(3.25), but now

(1—Pik )% in case (1),
Ry (k)= {(1 — ik 1) (1— Pik™), in case (2), (3.41)
(1—Py'2k™1), in case (3),
where
rangePy=kernel (1— Py’)=kernelF,(0), (3.42)
and
(1—-P)Py=0. (3.43)

The proof that F,;(0) and F.;~1(0) both exist is straight
forward and analogous to the previous proof in (I),
Sec. 3. Ry of (3.27) with Ry of (3.41) again satisfies
(3.30).

In case (3), there is a connection between the kernel
of F.(0) and the S-matrix. One can write

Fo(k)=F.(0)+k(1—P)F (0)+3F*PF .(0)
+ (1—=P)o(k)+P o(k?),
F(k)=N_o kR (k), RE)=o(k™),
where N_; and i must satisfy (even if :(0) does not
exist),
N_1Fo(0)=F,(0)N_,=0,
R(0)F.(0)+N_(1-P)F . (0)
=F,(ORO0)+ (1-P)F.(0)N-1=1,
where R (0)F.(0)=1imN(k)F,(0) as k—0. For a modi-
fied S-matrix one then obtains
Se(0)=F.(0)R(0)— (1—P)F ()N
=1-2(1-P)F,(0)N_1=1-2Py", (3.44)
whe_re

Se (k) = JCO (k)S (k)gc() (k—l))

and Py” is a projection which satisfies (3.42) and, in
addition

(3.45)

PP"=0.
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The equality of the ranges of Poand Py, together with
(3.43), determines the former uniquely. For the S-
matrix itself, therefore

S(B)=Ro(E)[1—2P¢"+0(1) %0 (k)
=1-2(1—-P)P/'"(1—-P)+(1—Plo(1)(1—P)
+P o(1)P4+ (A—P)o(k*)P+P o(k2)(1—-P),
and thus, because it is symmetric,3?
S0)=-6. (3.46)

d. Generalization of (2.39).—In case detF.(0)=0 we
now write, for /> 1 and case (1) of [=0:
S(k)=x¢ ' (1—k2Py)[14+4Roo* ImF,(ReF 1) ]
X[1—iRgo ImF.(ReF o) ] (1—k 2Py ) Ko
=% [1+2i TmF, (ReF )~ (1— k2Py)
+ -+ 1%Ko,
where Py'= P for [=0. This leads, for I> 1, to

(3.47)

O (k2l—1) O(k?H—l)
S(k)=1+( ), as k—0, (3.48)
O (k? Z+J.) O (k2 H—3)
and for /=0, since it is symmetric, to
O(k) O
S(k)=1+( ®) ( )). (3.48")
O(k*) O(k).

In case (2) of =0, one writes
Roo(k)= (1—k2P)(1—ik'(1— P))[1—2i(k/k*—1)P]

and proves similarly as in (3.47), if Vem(4459),
0<6<1, that

O(k) O
S(k)=—8 ~ 48"
® +(0(132) O(ks))’ (45
in case (3), I=0, finally
O(k%)  O(k*?) .
S(k)~—8+(0(k2+6) 00 ) (3.48"")

e. The Delerminant—Consideration of the determi-
nants leads to a connection between the S-matrix and
the number of bound states. If one defines an asymp-
totic phase continuously between k= » and k=0, as

% log detS(k)=in(k), (3.49)

then it is shown as in (I), end of Sec. 3, that if m is the
number of bound states (counted twice if more than
one mixture has a bound state at the same energy), then

7(0+)—n()
w(m+%), for =0, if k=0 is a resonance,
= (3.50)

wm, otherwise.

% g is defined in (2.19).
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4. SPECTRAL FUNCTION AND POTENTIAL

The completeness relation is derived as in (I), Sec. 4.
We shall give here only the necessary changes for the
present case of the admixture of higher angular mo-
menta. In the integral on the left hand side of (I),
(4.2), the contribution due to the small semicircle in
(I), Fig. 1, will now not vanish. Equation (I), (4.13)
will therefore be modified to read

§(r) = 2016 f “wdn f " US(OGT (k)
X[FT(R)Ri(k)F (= k) 1'G(R,r)
—2 f T S DG (0,00F A (0.9)

w235 [T asweroc.e.m, @

r—

where @ denotes the principal value of the integral,
G.(r)=G(—1iK,, ), and

Com— QuF /(—iK )= f GCGA (NG T (C
0

_ f wernFen(r)FmT(r)QnT, 4.2)

with
Qn= . limK (B+K.DF (k) (4.3)

F/ (k) =% (k) F' (k)X i(k).

The matrix C, is real, symmetric and positive semi-
definite. Equation (4.2) also holds for Ky=0 and
defines Cy. From (2.31) one obtains

QoFC (0,1’) = COG (0,1’),

so that the last two terms in (4.1) can be combined
into one sum of the form of the last term, # running
from 0 to L. In view of (3.23), Cy has the same con-
nection with a bound state at 2=0 as C, has with one
at k= —1iK,.

In the first term of (4.1),

RLF" (k)R 2(k)Fo(— k)]

=[kF (= k)3 (k) JLkF 7 (R) K1 (R) 1"
For 1> 1 this obviously exists at k=0; owing to (3.40),
it also does for /=0. The principal value sign can

therefore be dropped in (4.1). As a result the com-
pleteness relation becomes

f GT (W ENdP(E)G(v/ Ep)=b(—7),  (4.4)
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or

fo "S5 () = f [ fo wdrff(r)GT(\/E,r)]'

xdp (E)[ fo mdriF(r)GT(\/E,r):I

where the spectral function P(E) is defined by
P(— ) =0,

(w120 (v/ E)LF (/)
dP(E)/dE= LXF(—\/E)]_IC‘C()(\/E), E>0, (4.5)
S C.(E—E,), Eo=0, E<O.

n=0

It is a real, symmetric, positive semidefinite matrix
function of E.
It was shown in (I), Sec. 4, that one can write, for
n>0,
CnZQnCK:l(—iKn)Anscl("'iKn)QnTy (46)
where :

0

A= f PoF () F T () Pody @.7)

is a real, symmetric, positive-semidefinite matrix with
the property that

kerneld ,=kernelP,. (4.8)

In fact, with the notation (3.10”) we can write (in the
case of no degeneracy; if F(—¢K,)=0, then P,=1 and
three parameters are needed to fix 4,).

A= (14)1dP,, (4.9)

where?

i= f ([ Fos () cF o () F

F[Foue(r)+cFaaa(r) ). (4.10)

For n=0, the projection Py to be used in (4.7) must
be a real, symmetric projection, with

range Po=rangePy/, (4.11)

ie., the projection of (3.10") rather than that of
reference 28.

The connection between the spectral function and
the potential via the generalized Gel’fand Levitan
equation is precisely the same as in (I), Sec. 4. If the
subscript 1 denotes quantities belonging to a suitable

3 The relative probability for the (I42)-state is
p=d! owdr(F,.m—i-CFnzz)z,

and depends both on ¢ and d. It can be obtained from the latter
two variables only via F (k).
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comparison potential ¥y, and

S (s)=— f G (W E,s)
Xd[P:(E)—P(E)]G: (v Ey),

then there exists a matrix function  (s,) which is the
unique solution of the integral equation

(4.12)

R(s7)+6 (5)+ f UOGHRUN =0, s<r, (413)

and satisfies

2d/dNK )=V ()~ Vi(r), @.14)

5. CONSTRUCTION OF V FROM S

The potential ¥ (r) can now be constructed from a
given S-matrix, L bound state energies, K,2, and L
real, symmetric, positive-semidefinite matrices A .,.
Except for (3.50), all these quantities are independent
of each other. From A4, one obtains, via (4.8) or (4.9),
P,; by means of the procedures of Sec. 3 one then
removes from .S the bound states and, for /=0, the
resonance at k=0 if S(0)=— &, forming Sy. We then

define . )
Fm(k):gco(;T”:)FN(k)sco—l(;i), 5.1)

SNo(k)=sco(—;_ﬂ;)sw(k)sco—l(k:g). (5.2)

and

The functions Fyo(k) and Fyo'(k) are analytic for
Imk <0 and continuous for Im%< 0. Moreover,

The new S-matrix can be written

k+i

SN() (k) = FNO (k)xg( )FN()'l(‘— k), (54)

—1

and, although in general not unitary or symmetric,
it satisfies

Sno(R)Sno(—k)=1, (5.5)
and
Syo()=1, (5.6)
Swo(—k)=Sno*(k). (5.7)
After the transformation
2= (k-+1)/(k—1), (5.8)

which takes the lower half plane into the interior of
the unit circle, (5.4) becomes, in the notation of (I),
Sec. 5,

MO=2,ON O, (5.9
where, with t=3z for |z]| =1,
M)=1, MEOME =1, M@EH)=M*{), (5.10)
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and
N(z)=(1—P)+ Pz (5.11)

It is proved in Appendix C that if Ve (4+6) and
(2.5) is satisfied, then M fulfills a Holder condition.
The Plemelj theorem,3*% quoted at the end of (I),
Sec. 5, is therefore applicable. Accordingly, Eq. (5.9)
can always be satisfied with a matrix N (z),

Ni;i(z)=08:3"%, (5.12)

the integers w;, or “indices,” being uniquely (up to
permutations) determined by M (). The solution & (z)
as well as the indices are obtainable by solving a
Fredholm equation. Since the present situation is in
general not the “normal case” of (I), Sec. 5, the reader
is referred to references 34 and 35 for the procedure of
solving (5.9) and obtaining the indices. If the latter
have the values 0 and 2, (5.9) and (5.11) together have
a solution and one obtains Fyo(k), Fx(k), and F(k).

Once F (k) is obtained, the spectral function is formed
via (4.5), (4.6), and (4.3). Equations (4.12) to (4.14)
then lead to the potential. The latter will automatically
be symmetric, since P(E) is s0.2¢ If the potential so
constructed is in M (0)NN(S) (for I=0, M (0)MT(4+6)
is sufficient), then it will have S(k) as an S-matrix
and K2, P, as bound state energies and projections.

If the indices do not have the values O and 2, then
there exists no “short range” potential (i.e., e (5)) as
either Fyo(k) or Fyo'(k), or both, will be forced to
have a singularity at £=0.3 So long as Fy¢'(k) is
continuous at £=0, the Gel’fand Levitan equation can
be solved and a potential found. If, however, Fy¢ (k)
has a singularity at =0, then one has to shift the
latter, if necessary, to several different points on the
negative imaginary k-axis (so that at each point
Fyo(k) has exactly a simple pole), where they produce
bound states; at the same time Fyo(k) will become
infinite at 2=0.

One can, in such a manner, always find an F(k) for
which the Gel’fand Levitan equation (4.13) can be
solved and a potential constructed. Unless the S-matrix
is such that the indices are 0 and 2, that potential will
not be of short range and, in addition, it may produce
more bound states than were originally contemplated.?3

The author takes great pleasure in thanking Dr. Res
Jost for many fruitful and stimulating conversations.
Appendix B, indeed, is entirely his work.

3 J. Plemelj, Monatshefte Math. und Physik, 19, 211 (1908).
3% N. I. Muskelishvili, Singular Integral Equations (Croningen,
Holland, 1953), pp. 381 ff.
3 See (I) for the proof.
37 One writes
P 7141

Tzl g1

and thus distributes the extra powers of z onto ®,.(¢) and ®,71(¢™1).
B8 1If F.(k) is O(k™) at k=0, then more bound states will not
alter (3.50).
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APPENDIX A

The purpose of this appendix is to supply a number
of existence proofs and inequalities that are essential to
the support of the body of the paper. All of the esti-
mates below will rest on inequalities satisfied by the
solutions of (2.1) with V'=0. We shall list the essential
properties of these functions first.

The following are well known!®:

uy(x) = [ (2014-1) T4 O (xH43),
v(x)=— (21— 1) N~ 4O (x—++2),
wi(x)= (21— 1) a0 (x~H2), 1>0;
uy(x) =sin(x— i7l)+ O (x 2! m2l),

v;(x) = —cos (x—3n))+0 (x 2% ™™=1), ras| x| —. (A.2)
wi(x) =1le~ 40 (x~le™®).,

If v=TImk, one then easily obtains the following
inequalities®:

}as x—0, (A.1)

[klr \
l%l(ky)l <C3|v|r( ) , (A3)
1+ | k|7 A
1+ k|r\!
| vy (k)| <Cely|r( ) ’ A4
| k|7
1+ E|7r\!
) <CW( ~) : (A.5)
| k|7
The Green’s function obeys the following®:
ro 14-|k[1!
| gi(k; 1) < Cel?it—0 ( ) ,
1 [R|r \ 1 [kr o
for <r. (A.6)

In addition we require an estimate for g;. By considering
separately the cases where |k[{<1 and |E[(>1, one
obtains in a straightforward manner, for Imk=0,

|E|73 ro 1R\
(1+|kfr)2(1+|k[r ’ )

lgi(k; )| <C

i<r. (A7)

For the purpose of proving the convergence of the
successive approximations [Liouville-Neumann series,
or Born expansion] to (2.6) and estimates on G, we
rewrite (2.6):

AG (k)= (k) + f rdeG(k,f)V(t)Q(k;f,r), (A.8)
where ‘

AG(ky)=G(ky)—Go(k,r),
and

o (k) = f LGy kD V()G (k3 1,7)

0

— (U3 (1= P)V () PGo(k)]

+(2143) f U (1= PYV () PG (k). (A9)
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The only part of the estimate on ¢ that requires
detailed consideration is the (12)-term, containing

f(k; tr)=kgua(k; t,r)u(kt)

— (214-3) (Bt tugo (br), t<r. (A.10)

For |k|¢<1 one may use both terms in g separately,
its second part together with the second term on the
right of (A.10); for |k|¢>1 one estimates both terms
on the right of (A.10) separately. In either case one
readily obtains

e <Cel"[T(1J[rk|[1:|,)m(u{rk[ll:;z)'

Accordingly, the (12)-element of the first integral in
(A.9) is, in absolute value,

écgl”“(1+7;k|r)l+2fordtlVm(m'

The (12)-element of the second integral in (A.9), its
only nonzero one, is in absolute value

o) () v

and one easily obtains

1+r’klr)l+2f0rdzf| V()]

Under the assumption, then, that Ve (0),

| (1= P) (k)|

SCeMr( ’ )l+2(1+
14| k|7

Similarly, one obtains,

[ $11] gcelvlr(

I—Hklr) (A.11a)

| P (k)|

4

+3 7 t
1+|k17) jovdtl—klk]z’V(t)l' (A.11Db)

If we now write

SCe"’"(

AG(ky)= 3 G (k)
n=0

where

GO (k) =o(k;1),

G (k)= f UG (k) V (DG(H; i), 131,
0
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and define
7 —1

14| E|r\ 1
E(")(k,f')Ee—'”“( ) [(1—}—
_ 7 14| k|7

N (H— | k[r)2P]G("> b),

4

(1-P)

then (A.6) and (A.11) show that the series > E(™ is
dominated by 2 %,, where

ho(r)=C(|k|+r7),
hn(r)=Cfrdlfhn_1(t)[V(t)lt(l—l—[k]zf)*l, n>1,

which, in turn, is dominated by the series >~ £, where

EO=C(|k|+r),

g(n)zc[frdt(l—}-t)[V(t)|]n/n!, n>1.
Then ’

> e =C(|k|+r1i—1)+C exp[Cdet(l+t)] V(l‘)l].

It follows that if Vet (0), then Y =™ and hence the
Born series of (A.8) converges for all £ and 7. Further-
more, if Ve (0)N9M(1), then AG satisfies a set of
inequalities, which, when resubstituted in (A.8) yield,
for all k£ and all 7,

7 e 7
1— G(k SC [vlr ,
| (A=P)aGkn] < Ce (1+|k]r) (1+1+|k|r)
, 7 +3 r t
PAG(k,r)| < Cel”I” d Al
| PAG(RN)| S Ce (1+|k|7) fo tl—Hk[t (A12)

x(1+m)2w(m.

Since G is now defined by a series of entire functions
of & which converges for all finite £, it is itself an entire
function of k. Moreover, (A.2) and (A.12) show that
for every r< e, as |k|—>w,

(1—P)G (k)= (1—P)[ k=D gin(kr—3ix)1
+O (k= HDelrIn) T,

A.13
PG(ky)=P[— k3 gin(kr—1xl)1 ( )
+0 (ol ],
Also, for every &, as r—0,
(1—P)G(ky)=(1—P)[((21+1) 1) 1]
+0(*)], (A.14)

PG (kyr)=PL((2+5) 1)+ 14-0(rH+4) ].

One now readily verifies that G satisfies the differ-
ential equation (2.1). Equation (A.8) also shows that,
as r—0, im[ G’ (k,r)—Go (k,r) ]=0, and therefore, with
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(A.14),

[G;G]=0. (A.15)

For later purposes we need an estimate on G(k,r),
where £ is real. Differentiation of (A.8) with respect to
yields

AG (k) =T (ky)+ f TthG’(k,t)V(t)g(k; tr), (A.16)
where ’

W (k)= b (br)+ f HAGH) V(OG- (bity). (ALT)

One obtains from (A.10) that
| k|t | k|7
<o) (o).
14| E|¢/ \ 14| k|r

As a result of this and similar estimates on the other
integrals in (A.9), it is easily found that, for Imk=0,

| (1= P)¢ (k)]

éC]k]_lr(wr]/zly)m(Huer;r)’

lPé(km<CIk1—lr(1+r[klr) -

18)

The second term on the right of (A.17) is estimated by
means of (A.7) and (A.12). If Ve (0), then

f (1= PYAGHOV ()G (ks £r)

7 42 7 2
<c|k|—xr( ) (1+ )
1+ |&|r 1+ | k|7

f rdtPAG(k,t)V(t)g' (k;tr)

<CIk!_lr(pr?k[r)M(1+1+r[k]r)' (A-19)

The integral equation (A.16) leads from (A.18) and
(A.19) to (A.20) in the same fashion as (A.8) does from
(A.11) to (A.12).

19)

[(1—P)AG (k)]

<C]]@°|_lr(1+7kp)m(1+1+rg/e;r)4’

| PAG(R,7)| y 3
gclklﬂ’(wlkp) (1+1+[k|r)‘

This completes the inequalities_needed from G(%,r).

20)
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For the purpose of estimating F(k,7), we write

F () = F (k) + f CUF ROV OSEr), (A21)
or wT
AF (kr) = o (k) + f GIAF (k)Y (DG (R; 70), (A.217)
where ’

AFe(k,f) =Fe(k,r)"'FeO<kyr)a
go(k,?’) = fwdiFeO(k;t) V(t)g(k 3 7707

F oo (kyr) =R (1—P)w(kr)+ Pk2wy o (kr)].
According to (A.5) and (A.6), for v=Imk<0,
1+ k| r) 2

r

xf wdt(lgjk“)ﬂ o,

(A.22)
1+|k|7)l+2

4

Xfrwdt(wiikw) vl

AF (k)= 3 F (),

n=0

|(I=P)p(kr)| < ce—mr(

Pt <Ce—'v'f(

If we now write
where
FO (k)= o(k,r),

o) = [ ares )V ks, w21,

and

T(n)(,e,,):e,m(H’!klr)’“_
x![ f ”d;( 1+‘]k“)3w(¢>!]—1(1—-m
Ao o

then 3° T™ is dominated by the series 3 &,, where

£(r)=C, En(f)=wadflV(t)ltén—l(t), nz1.

Then &,(r)=C[C/i=dit|V(t)[I"/n! and ¥ £,<C, if
Ve (1). Consequently the Born series of (A.21) con-
verges for all #>0 and all & for which Imk<0. (For
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k=0, it is required that Ve (3).) Thus, F.(k,7) is, for
all >0, an analytic function of % for Imk <0, con-
tinuous for Imk< 0. Moreover, it satisfies the following
inequalities:

"Hkl" +2
| (1— P)AF (k)| < Ce Ivlr( )
7
0 { 3
xf dt(—~—) v,
- 14 k|t
(A.23)
,k I 7 +2
| PAF (k)| <Ce~lvlr( )
@ t
xf dt( )lV(t)l.
, 1+ k¢
For Imk <0, therefore, as r—o,
Fo(ky)=F o(ky)+o(r=3e ")
= (1k)le %Ko (k2) E+O(r e "i7), k%0, A4
F07)=@- DU (A= P 14oen] AP
+ (243) QI+ 1) PLr214-0(r 4T},
where & is defined by (2.19).
For every >0, as | k|—», Imk<0,
Fhy)=ile-#&+0(| k|7 r).  (A.25)

We now wish to prove the existence of F,(k,) and
estimate it, for real k. Accordingly we differentiate
(A.21) with respect to &:

Fo(by)=v(ky)+ f wth‘e(k,t)V(t)g(k ) (A.26)
Y(kr)=F o(kr)+ f wthg(k,t)V(t)g' (k;rh). (A.27)
Now ’

—P)F.o(k, s -
| (1= P)F ,o( )]\{C k| (|40 121,

| PFoo(kr)| < Cr k| (|| +r )M

The inequalities (A.7) and (A.23) yield for »27,>0,
]kl S k0< ©,

(A.28)

f C U= PY R DV ()G (ks 1)

<C (H_[k') fdm]V(t)!

f dIPF (kt)V ()G (k; 7,)t

SC(1+Ikl )t+2f dt’ZJV(‘)I(ll_lIklt)

—i—lik]t)
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Therefore, for 72 70>0, |k| Kko< o,
[A—=P)y (k)|
Cr,1=0 if Vean(4) and if Ve (s),
sj Cr([k|+r0)1, i Vanr(),
(Cr(|k]+r 1) k], if Ve (s),
| Py (k)]
Cr([k[4rH, i Vem(2),

<
Cr(| k| +r )| B, if Ven(3).

(A.30)

The inequalities (A.30) lead to estimates on F,(k,r),
via (A.26) in the same way as (A.22) leads to (A.23).
For the existence of PF,.(07r) it is sufficient that
Ve (2), while for that of (1—P)F.(0,) we require
Vem(4). If Vem(3), then PF,(0)=0 and PF,(0,r)
exists; if Ve (5), then, for I>1, (1—P)F,(0,r)=0 and
(1—P)F,(0,7) exists. The same is true for F,(k,7) and
therefore for F,(k), if in addition Ve (0).

For the purpose of further estimates it is convenient
to introduce an integral representation for F(k). We
write

Fe(k) = [Feo(kyr) 5 G(k,f):l—f—[AFe(k,f) 5 G(k)r):'
The last term vanishes as »—. Since, moreover,
I:Feo(kyr); g(k} Zyr):|=F60(k)t)y
[Fo(k,f) 5 Pul+2(k7)]=kP)

one obtains from the integral equation for G, (2.6),

and

r=1+ [ CULE o)V (OGT (B)
— QU3 PY () (1= P)]

+(214-3) f Ca 1PV (f)(1—P), (A.31)
or

F(k)—1= j -xdt[Fo(kJ) V(DGo™ (k,t) K1 (k)
— (QU+3)EPY (1) (1—P)]

U3k f “dt PV () (1—P)

1

+ f wtho(k,t)V(t)AGT(k,t):}Cl(k). (A.31)

(For the convergence of the last integral we require
Ve (0).) If Veam(1), then (A.12) shows that the last
term in (A.31") is O(k™2) as |k|—. The first term is
O(k™) as |k|—oo, if VeN(0). Therefore, if Ve (0)
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No(1), then
F(k)=14+0(k™), as |k|— o in Imk<0. (A.32)

We further wish to estimate the derivative of F (k).
The first term in (A.31’) contains expressions such as
k_1¢22 (k), where

©22 (k) = f dt V22 (t)wl+2 (kt)ul+2 (kt) .
0

The boundedness of ¢ is readily proved. For the
derivative we write

, (— 1)1/2(1—9{0—95

uy(x) =
x
(—1)aor (1

+x

[ even

2
) sinx—+a; (),

H+1
) cosx+a;(x), Iodd,
wy(x) = e~ By (),

and easily prove the following inequalities (for real x)
from (A.2) and (A.5):
1—{—x)l
x b

[BOI(x)i =0,

an

lau(x) [ <C

(1+—x)l+;’ [B:(x) | <C(

xl
C‘l/ < C—-“_")
@I <C

(1)
18/ ()] <O,

>1.
REs)

We now have

@ i}
¢22<k) = f dt tsz(f) ‘6—kt[ap|_2(kt)wl+2(kf):|

kt +2
) Bur2(kt)
1-+kt

9 Bt o\ M2
— (—1)2g—ikt sinkz‘—[ (———) Bz+2(kz')] }
okiL \14-k!

for even /, and a similar expression for odd /. The first
and third terms are O(k™) as |k|—oo if Ve (0)
X (O(F?) if Ve (1—¢)). Consider the second ;

xi1(@)=Bu(x)[x/ (1+=)

is bounded, and

— (_ 1)1/26—2ikt(

[xd' @) | <o/ (14 [=])2
Therefore, with | k[=¢,
| x1(k(t+8)—xu(kt) |
=m|x/ (k)| <o/ (14 || 1)< o/ (t] R]).

One then proves precisely as in (I). (C.5) to (C.7),
from (2.5) that the second term in ¢y is O(F%) as
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| k|- . Therefore
¢22(k)=0(k7?) as |k]|—.

One proceeds similarly for

©o0 (k) = fwdtVn (t)wl (kt)ul (kl),
poz (k) = fwdem(t)wz (ktywry2(ki),

©20 (k) = f dtVy (If) [’LUH_Q (kt)%l (kt) - (2l+3) (kt)_lj.

@20 Tequires a little extra care; there one sets
L
)‘]"'Yl(x):
14-x2
wi (%) = (21— 1) Na—4-e g, (),
and obtains

Wipa (%) (%) — (2043)x 1= — (21+3)

“l(x)=[(2l+1)u]—1(

axn

1+xl+2
+ (2043) N~y () + £ o () e oy (),

whose integrals exist separately. The first two terms
contribute O(k™) to the k-derivative, and the last
O(k7?).

Consequently, the first integral in (A.31) yields,
when differentiated with respect to k£, 0 (k%) as | k| — .
The derivative of the second is clearly O(k=3); that of
the last consists of two parts:

For |k| 2 ko>0, by (A.5) and (A.12),

f "B RV ()AGT (k)

scfwdth(t)l (4 | B[ || 2K C7 [ ]2
if Vei)'fl((])ﬂm(l);

<ClR[,

f C RSV ()ACT (k)

by the use of (A.20). Therefore it follows that
F(k)=0(k"%), as |k|—o in Imk<0. (A.33)

The function Fyo(k) of (5.1) combines the features
of F.(k) at the origin with those of F(k) at infinity.
It is continuous and has a continuous derivative for
all real %, and it satisfies (A.32) and (A.33). It was
proved in (I), Appendix C, that therefore Fyo(%), when
transformed to the unit circle, satisfies a Holder
condition, (I), (C.15).
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Finally, the behavior of F,(kr) near k=0 must be
examined. From (A.21) we obtain

F (k) —F (0,)=F s (k,r)— F oo(0,7)

+ f UF0,)V (LG (ks r,)— G (0;7,0)]
+fwdi[Fe(kJ)—Fe(OJ):]V(t)Q' (ks 7.t)

+f P 0.0V (O[S (k; 70 —5(0; 7,0)]
fdt[F (B — 0,07V ()G 7). (A.34)

We use this equation for /=0 only, and multiplied on
the left by (1—P). Regarding (A.34) as an mtegral
equation for F,(k7)— F.(0,7), we estimate first the in-
homogeneity. For 72 7,>0, |k| <ko< oo, if Ve (44-6),

| (1= P)F (k)= Fua(0sr)]] < Cr|sinkr] <Crvi| ],
] “at(1= PPV (LG (ks ) — G (03 7,)]
o - k|2
e ave <CR,
o SRy

r

[ (= PPt P 00TV (G (5 1)

|k|t?
(1+]kl9*

N

<Clk]f 4|V (t) | —

kyr,)—G(0;7,0]

e RIE
| ave|——
J ol RENPIrY
) t 3

C /AR t
+ Y1kl Hv o (1+|k|t)

1/1%]

<cf dt 49| V(1) | | B]®

+cf dt 1| V(1) | [R]9<CT [ B,

1/1k]

where we have used the mean value theorem and (A.6),
(A.7), and (A.30). In the same manner as previously,
one then obtains from (A.34) by successive approxi-
mations, that, if Ve (4+96), then

| A= P)[Fo (k)= F.0,) ]| <C[E]*, (A.352)

ROGER G. NEWTON

for I=0. It follows from (A.30) and (A.26) that
Ve (44-6) also implies (A.35a) for /> 1, and

| PLF (k)= F.(00]] <C|R|*  (A35D)
for all I. As a consequence,
Swo(k)=140(k?), as k—0

and then, as in (I) Appendix C, after the transformation
(5.8) to the unit circle, Sy satisfies a Holder condition :

[ M (1) =M (t:)| S A|ti—1o] (A.306)

provided that Vet (44-68) and V obeys (2.5).
A further theorem is obtained by taking the imagi-
nary part of (A.31):

ImP, (k) = — B2+ () f wdtGo(k,t)V(t)GT(k,tj. (A.37)

If Ve (0)N9M(2/+4), then it follows that

(1—P) ImF,(k)=0(k*), as k—0, (A.38a)
and if Ve (0)NIN(2146), then
P ImF, (k)=0(k*5), as k—0. (A.38b)

APPENDIX B

In this Appendix, we shall prove an ideal-theoretic
theorem which is needed for the purpose®® of defining
an “irregular” solution of (2.1) as an entire function
of E.

All matrices in the following are understood to be
matrices over the ring of entire functions of a complex
variable z (i.e., all elements are entire functions). The
subsequent three theorems were proved by O. Helmer.*

Theorem 1—Every finitely generated ideal (in the
ring of entire functions) is a principal ideal* :

al=[ul.

The function p is the “largest common divisor” of
the set {ai,---,a,} and we also use the notation
[as,* - - @ J=u. The common zeros of {ai,---,a,} and
their multiplicities determine u.

Theorem 2.—If Jau,- - - ,an}=u, then there exists an
(nX#n)-matrix with the vector (ay,---,o,) as its first
row and whose determinant is u.

Corollary—Every matrix A=||as|| can be made
triangular by means of a left multiplication by an

{[al,aZ! o

® See the paragraph after (2.14).

© O, Helmer, Duke Math. J. 6, 351 (1940); and Bull. Am.
Math. Soc. 49, 225 (1943).

4 Here is a reminder of the definitions: An ideal is a set with
the property that if it contains «, and 8 is any member of the
ring, then it also contains Ba; it is generated by the set {a, * - -, ar}
if every member of the ideal is a “linear combination” of ay, - - -,
with coefficients in the ring. A principal ideal is an ideal generated
by a single element. We use the notation [y, - -, ar} for the
ideal generated by the functions {ai, - - -, ar}. The ideal generated
by the unity is, of course, the whole ring.
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invertible® matrix 7T':

Bll 612 Bln

0 .
B=T4=| - ﬁ?“’ ﬁ? .

0 0 Ban

Proof—We prove this by induction. For n=1 the
statement is trivial. Let [aias,- - ,aa]=p and
> arori=p, with {oq,- - - ,@,J=1, which is always pos-
sible; let 7'; have the vector (o, - +,a,) as its first row
and let T, be invertible. The matrix 714 has then in
its left upper corner a divisor of all elements of its first
column. By means of a subtraction of suitable multiples
of the first row from the other rows (which can be
accomplished by left multiplication by an invertible
matrix), a matrix of the following kind can be obtained:
w B L.

0
c A

0

One then applies the induction hypothesis to 4,.

Remark.—If the first column of A vanishes, then
there exist invertible matrices 7" and 7" so that

0 B2 PBis Bml

0 0 n
B=Ta=|7 0 Pl Pl

N

and

0 0 0 oo 0

0 B Bos' Bai
B'=T'A4=|0 0 B B’ |

00 0 Bun!

Theorem 3 (Elementary divisor theorem).—To every
matrix 4 there exist two invertible matrices T3 and T,
so that

-,

€1
€2

TlA T2=N=

where ¢; is a divisor of €y1.

We can now prove the following

Theorem.—Let My and M, be two (nXn)-matrices
with the property that for every z it follows from

Mi(z0)a=0 and My(z0)a=0

42 We call a matrix 7 invertible if 7! exists and is a matrix
over the ring of entire functions.
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that ¢=0. Then there exist two matrices N; and N so
that
NiM+NoM,=1.

In other words: the left ideal M =M ,M,]} generated
by M, and M, is the entire ring.

Proof—Again we proceed by induction. For n=1,
the theorem is equivalent to Theorem 1.

Clearly, [T:M1S,ToMST=MS, if T: and T, are
invertible. We assume the same about S. Due to
Theorem 3 and the corollary to Theorem 2 we may,
then, assume that the generators of NS are of the form

-

€1
€9 O
. Qir 012 Qin
0 «

€1 22 Q2n

M=, , My=\ . .
0 0 0 Olnn

0

L

The hypothesis of our theorem evidently still holds for
My and M. If it is applied to a column vector whose
only nonzero component is the first, it follows that
[er,c11]=1, i.e., there exist « and 3 so that ae;+Bai=1.
With these one constructs the matrices

(@ O 0‘l B 0 -+ 0
0 |
An=1- 1 ) A=

A21: A22: . 1

0 )

The matrices

M"=AuM/+A4,MY,
for which
My =AM —A1My,

o =AM+ AssMy,

Mo=—AaM"+ A1 M.,

generate the same left ideal as M’ and M. Both are
triangular:

-

1 Boas Pas Baiy
0 €2 0 A 0
M1"= 0 0 €3 e 0
. . . - ’
0 0 0
(0 al2” 0513/, . aln”
0 g’ ' -0 g
M2”= 0 0 0133” e Oé:in” )
0 0 0 cnn”
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In both matrices one now subtracts the first column
multiplied by Baix from the kth column, which corre-
sponds to an allowed right multiplication. This diago-
nalizes M+, does not change M»”, and transforms the
ideal IS into WS;. Finally one transforms M,
according to the remark after the corollary to Theorem
2, in such a way that ¢S, is generated by

1 0 0 0
o ww) @ o o)

The [(n—1)X (n—1)]-matrices M;©® and M,©® again
satisfy the hypothesis of the theorem and the latter
thus follows by induction.

APPENDIX C

Theorem.—Let M(3) be an (nXn)-matrix valued
function, analytic in a neighborhood of the origin and
detM ()0 for all z in that neighborhood, except
possibly at z=0; furthermore, let M~(3) have at most
a double pole at z=0; and let 7 be a constant (#X#n)-
matrix. Then a necessary and sufficient condition for
M~(2)T to have at most a simple pole at =0 is that

ROGER G. NEWTON

the system
o aMoy=0, aM+bM,=0, (C.1)

where Mo=M(0), M 1= (dM/32) .0, implies aT=0.
Proof—If we expand
MG)=M+Mz+---,
M (2)=N_sz >+ N_1z "+ No+- - -,
then the matrices M; and V; must satisfy
MoN_3=0, MN_1+MiN_,=0,
MoNo+MN_1+MN_s=1,

and the same equations with the order of M and N
reversed.

Suppose that M7 has a simple pole at z=0. Then
N_,T=0. Multiplication of the last equation in (C.2)
by a on the left and 7" on the right then yields, by
(C.1) and the second and first equation in (C.2),

al= (hMlN_sz - bMolV_1T= leN..zT= 0.

This proves the necessity. The sufficiency is obtained
immediately from the first two equations in (C.2) with
the order of M and N reversed.

(C.2)



