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The Green's functions are vacuum expectation values of time
ordered products of field operators in the Heisenberg representa-
tion. They give us vital information about the nature of the
interacting particles and quanta represented by these field oper-
ators. It is shown that the Fourier transforms of the Green's
functions (for up to four operators} are expressible as parametric
integrals involving invariant energy denominators and real, scalar
weight functions which are termed the spectral functions. Rela-
tivity, causality, and some other fundamental assumptions of field
theory are required to derive the result.

The spectral functions have a simple physical interpretation,
and completely specify the structure of the Green's functions. The
equations of motion which hold between Green's functions of
different order can be translated into the corresponding relations

between the spectral functions. Renormalization can be carried
out explicitly, bringing the equations for the spectral functions
into a manifestly renormalized form. The causality condition also
serves as a means of obtaining renormalized quantities without
recourse to the usual subtraction procedure. The observed masses
and coupling constants occur in the equations for the spectral
functions as external parameters 6xing the boundary condition.
Xo unobservable bare masses and couplings, nor the (infinite) re-
normalization constants ever appear in the equations. These
quantities, however, are shown to be expressible in terms of the
spectral functions.

The Green's functions involving more than four field operators
are n'ot considered in this paper.

1. INTRODUCTION

' ~N the quantum theory of interacting fields the nature
&. of field operators in the Heisenberg representation
seems to be of interest and importance, since these
operators correspond to physically observable quan-
tities, and there have been various attempts at the
study of the Heisenberg operators which are free from
the limitations of perturbation theory. Kallen, I,eh-

mann, ' and Gell-Mann and Low' have studied the struc-
ture of the Green's functions like Dp', which is defined
for a scalar field by

Ds ' (x—x') = (0 j P (q (x), q (x')
j 0),

~(»x') =(qj&(j(x),j(x')) j p)

M(k+/, p, q)

~fe isa'+ilzo(p+k —
q l)

(2~)4 ~

XM(k+1, p, q) (dk)4(dl)4,
(1.3)

r vt+(k+1, p)vs+(k+l, q)p,
diaz dcrdP,

(k+&+ap+ pq)'-+m' —ie

a previous paper4 where the Fourier component of a
quantity which is related to the scattering matrix for
a meson and a particle, was expressed in the form

where j0) is the actual vacuum state and P the time
ordering operator; they have been able to show that
Ap' can be expressed, quite independently of the details
of interaction, in the form

j p) or
j q) being the one-particle state of momentum p

or q which is assumed to have no spin. In achieving this,
the causality principle was emphasized in addition to
the above two conditions. It is characterized by the
requirement that two observables (Heisenberg oper-
ators) must commute outside of each other's light cones.

It can be seen, however, that the tools used in deriv-
ing Eq. (1.3) are essentially equivalent to those for Eq.
(1.2). Indeed, the causality requirement, as in the case
of the Kramers-Kronig relation, ' should generally mani-
fest itself in a relation between real and imaginary com-
ponents of matrix elements, or between quantities like
(81 j (A (x),A (x') }j e) and (m j t A (x),A (x')q j t1)c (x—x')
which compose the matrix element(m

j P(A (x),A (x'))
j n).

For the Green's function 61," the relation followed
automatically from the two conditions mentioned
above, but in the case of 3E it had to be recognized
as such.

It is a very interesting question to ask whether one
can analyze, along a similar line, the structure of a more

1
~.'( —")= ~

'""-"'&.'(p)(dp)',
(2')4 ~

(1.2)

'(p)s= i — —v(m')dm',
ps+ms —se

where the function v satisfies certain conditions. In de-
riving this result, two physical requirements are to be
made: (1) the theory is i.orentz invariant, and (2)
positive energy states form a complete system in the
Hilbert space.

A generalization of the above idea was attempted in
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general variety of quantities, namely matrix elements
of time-ordered products of more than two Heisenberg
operators. These quantities play an important role in
a covariant description of quantum states in field
theory, and the renormalization problem can best be
treated in this way.

In fact, it has been pointed out in NI that the re-
normalization not only secures finite results but also
satisfies causality requirements, and that conversely
by demanding causality in a certain way one could
automatically remove divergences. ' The point is that
in the lowest approximation, the imaginary part of
a self-energy or a scattering matrix (the damping
term) turns out to be finite although the real part
without renormalization may be divergent. The causal-
ity relation between the two parts will force the latter
to be finite and well determined.

In pursning this end, one finds that the method
followed in M is not quite sufhcient for our purposes,
and more physical insight is needed. It seems thus
worth while, as an orientation to the solution of the
prob1em, to point out here the following observation.
Let us consider the relation between the real and
imaginary part of a matrix element using the funda-
mental formula of perturbation theory. Suppose we
want to calculate the matrix element &b~S~a) of a
certain scattering process. This will be given by

&blHln)&nlHI ~)
&bi~I &=&blHI~)+2 + ", (14)

E, E„+ip—
where H is the interaction Hamiltonian, and the E„
are the free energy eigenvalues. The small imaginary
quantity ic indicates how to handle the poles of 5 in
accordance with the boundary condition. If the particles
concerned can be described by real fields (no spin, no

charge), we may take the individual elements &n~H~m)
to be real (for the interactions allowed in field theory).
Thus the imaginary part of 5 will appear if and only if
there occur intermediate states with the same energy
as the initial state, or in other words, only if competing
real processes, which may be the same as the initial
or final state, are possible in the intermediate stage. "

The above formula does not show immediately the
relation between the real and imaginary components
since &n

~

H
~
ni) may depend on energy and momentum

in general; nor is it of a relativistically covariant form
which one would desire. Nevertheless, it is interesting
to see that these ideas, which have a definite physical

' It is true that a convergent theory does not always satisfy
causality as in the case of the so-called damping theory, which
gives rise to singularities of matrix elements not allowed in a causal
theory. But the previous paper suggests the possiblity of ending a
convergent and causal theory which will coincide with the ortho-
dox renormalization theory.

7 Rigorously speaking, there will be, of course, energy shifts of
the particles due to interaction (self-energy) so that we have to
interpret E„as the energy of the observed free particles.

meaning, can be carried over to a relativistic formula-
tion, partly thanks to the "simplicity" of quantum
field theory.

In the next section we shall first give the definition
of the quantities which we are going to study, and the
equations of motion satisfied by these quantities. In
Sec. 3 we write down explicit formulas expressing the
Green's functions of the first few orders in terms of
certain real functions which may be called the spectral
functions. Relativity, causality, and some other prop-
erties of field theory will be exploited to determine the
general character of the spectral functions without going
into the details of the interaction. In Sec. 4, we then
translate the equations of motion holding for the Green's
function into those for the spectral functions. Diverg-
ences will arise during this procedure, and it will be
shown how the causality consideration again enables
one to get the correct manifestly renormalized equa-
tions of motion which involve no formal infinities and
could in principle be solved without fear of encountering
divergences of the usual kind. Formulas giving the
relation between the various renormalization constants
and the spectral function will be found in the Appendix.

O'Ye~A' &4'

p (~pA~pP~+IJ 0'iP~)

giV'Vpr A'pp '

(2.1)

We have adopted natural units A =c= 1, and x„
=—(x, y, s, it=ixp). P stands for the Dirac nucleon field
with two isotopic spinor components. ~; are the usual
three vector components of the isotopic spin operator,
and q; the corresponding ones of the meson field.

The Hamiltonian density of the system easily fol-
lows from the Lagrangian (1) by introducing the
canonical variables and the commutation relations in
the usual way:

+-', (, ~++ & p, B y, +ti'p;q;)+g, 4y,4p;, (2.2)

(4-(x), A (y')) = (v4)-t b. b(» —y'),

Lpp, (x), m, (y')$= $qp, (x), Bq, (y')/Bxp'$=i8, ,b(x—y'),

where n, P refer to the spinor components and s, t to
the isotopic spin components. The Heisenberg equations

2. GREEN'S FUNCTIONS AND RELATED QUANTITIES

In the present paper, we treat the symmetrical
pseudoscalar field coupled to the Dirac nucleon field,
although this does not mean any restriction on the
theory itself. The Lagrangian density of the meson-
nucleon system is
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of motion for the field operators are

7sBsg+KP+gzV»q P~Q'=0)

—B„gy„+aP+giPy»;y;=0, (2.3)

(& 0')p'=gsV'Y 4'

The nature of the Heisenberg operators is the main
subject of our concern. I,et us introduce the following
quantities which give us vital information about these
operators. '

T(,yP1)=—(oI TQ-(*)A (y)) Io&
= e(xy)(0I J'Q-(x), A~(y)) Io),

T(si,s'i) = (o I T(o '(s), v» (s'))
I o)

= (0 I
J'(s"( ), o ( '))

I o),

T(*ys) =—(o I TQ (x),4 (y), o '(s))I 0&

=.(*y)(0

le�(4

(x),4(y), o;(s)) I 0),
T(*y«') =—(ol T9 (x),ii(y), o, (s),o, ("))IO)

= e(xy)(0 I
I'(P(x),

W(y), o '(s),o;(z'))
I o),

T(»xsyu s) —= (o I
TQ (xt),1t (xs),0(yt), 4(ys)) I o)

= e(xtxsytys) (0 I P(P(xt),
&(x ),0(yt), 0(ys)) I

o).
Here IO) is the vacuum or the lowest energy state of
the total interacting meson nucleon Geld; P means the
time ordering of the operators, and e(x,y), etc. , is the
sign function which takes the values ~1 according as
the permutation (xo,yo)—+P(xo,yo) is even or odd; the
spin and isotopic spin indices of the operators may be
suppressed when not necessary. Alternatively we may
write

T(xy) =0(x—y)(olii (x)p(y) I 0&-|(y —x)(0 I P(y)P(x) I
0)

=e(x- y) E- (0I4 (x)l ~&&~lit(y)I 0)
—8(y —x) Z- (0lit(y)l ~&(~14(x)l 0&,

T(«') =0(s—s')(oI ~(s) ~(s')
I o&

+l7 (s' —s) (0 I 9 (s') p(z) I 0)
=0(s—s') P„(OI io(s) Ie&(el io(s') I0)

+0("—s) 2- &o I o (s')
I ~&&~ I o (z) I o&,

(2.5)
T(xys) =0(x—y)tl(y —s)(Olid (*)4 (y) o (s) I 0)

—|(y —x)0(x—z)(oil(y)P(x) p(z) Io)
+i7(x—z)|i(z—y)(0I4(x) o (s)&(y) I0)+

=0(x—y)0(y —s) 2-, - (0I4(*) I~&

X (~ I P(y) I ~&&ml o (s) I 0&—",
1+e(x—y) 1 xo—yo&0

e(x—)=
2 Xo—yo(o,

s G. C. Wick, Phys. Rev. 80, 268 (1950); J. Schwinger, Proc.
Natl. Acad. Sci. U. S. 27, 452 and 455 (1951).See also E. Freese,
Z. Naturforsch 8a, 776 (1953).; P. T. Matthews and A. Salam,
Proc, Roy. Soc. (London) A221, 128 (1953);K. Nishijima, Progr.
Theoret. Phys. 10, 549 (1953); 12, 279 (1954). The notations do
not necessarily agree with those used by these authors.

where e, m run through a complete set of states of the
meson-nucleon field.

The T. 's give, so to speak, a Ineasure of the correlation
of field quantities at different space-time points. In the
absence of interaction, T (x,y) and T (s,z') are the
I'eynman propagation functions Ss (x,y) and As (s,s')
for the nucleon and meson respectively; in the presence
of interaction, they are the quantities 5&'(x,y) and
As'(s, s') which were originally defined by Dyson' in
the perturbation theory. The T's of higher orders de-
scribe more complicated correlations of more than
two field quantities, and are closely related to what
Schwinger' has generally termed Green's functions.

A higher order T contains a part. which derives from
lower order correlations, so that it is convenient to
introduce further the irreducible correlations p".

p(xy) = T(xy), p(ss') = T(ss'),
p (xys) = T (xys),

p (xyss') = T (xyss') T(xy) T (ss—'), (2 6)
p (xrxsy]ys) T (xgxsytys)+ T (xtyt) T(xsys)

—T(x,y, )T(xsy, ), etc.
We shall refer to all the quantities introduced in this

section simply as Green's functions when no confu-
sion arises.

If we make use of the interaction representation and
Feynman graphs, the meaning of the p's is clear,
p(x~ xzyt y„st s„) corresponds to the totality of
graphs in which there are i+m+n external lines start-
ing at x~, x2, s„, and all these lines are connected
with each other through the network of internal lines.

The Green's functions of diferent order are related
by equations of motion which are obtained by differ-
entiating them and making use of Eq. (2.3):
(y B+~).p (xy)

= —i8 (xy) —igysr, p (xyz' j)8 (x—s') (ds') ',

(—V'd+~) vp(xy)

i 3(xy) ig p—(xys'j)y—s,b(y —s') (ds')',

( —p') *p(ss')

=i8(ss') ig ~' tr(psr—,p(xys'))
0

(y8+ It),p (xyz)

(2.7)
X8(x—s)8(y —z) (dx) 4(dy) 4,

(0 —p').p (xyz)

igJ ( —p(*y) trl:V»'p(x'y')j+p(xy')r»'p(x'y)

+p(xx' s,yy'&t)(y ')s, -)
X3(x'—s)8(y' —s) (dx')'(dy')'.

' F. J. Dyson, Phys. Rev. 75, 486 and 1736 (1949)."E.Freese, Nuovo cimento 2, 50 (1955).

ig ~I y»—,[p(xy) p(ss'j )+p(xyzsj')]6(x s') (ds') 4, —
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Under the assumption of adiabatic switching at t= & ~,
and the boundary condition for the vacuum, they can
be converted into integral equations:

p(xy) =SF(xy)+g) Sp (xx')y&r, p (x'ys'j)

X8(x' —s') (dx') 4(ds')',

p(si, s'j) =8,,6F(ss') —
g Ap(ss") tr[y ~5;p( xy sj)]

X&(x—s")8(y—s") (dx)'(dy) 4(ds") 4,

p (xys) =. g S&(xx')»7i [p(x'y) p (ss'j)
J

+p (x'yss' j)]5(x' —s') (dx') '(ds') '

=g I Ap(ss'){ —p(xy) tr[»r;p(x'y') j

(2.8)

+p (xy') y57.;p (x'y) +p (xx'ns, yy'Pt) (y6r, )e&, ,)

Xfi(*' s')b(y—' s') (dx—') 4(dy') 4(ds') 4

It is to be noted that the p functions of higher order
than the first do not have inhomogeneous terms in
their equations of motion.

In the following sections we shall analyze the nature
of the T's and p's up to four external lines. These are
of particular interest since it is they that cause infinities
in the actual calculation, and also because p(xyss'), for
example, describes the scattering of a nucleon and a
meson which has direct physical signi6cance. "

The problem of renormalization, which has not been
discussed so far, is usually dealt with by starting from
renormalized fields and a renormalized Lagrangian:

L= Z2[f y„—B„Q+ii~j+Z25i,~
$Z 8[i)p &pi ~p pi+ p v i pi) 2Z 8~p pi pi
Zlg&4'76&i4'ipi Zigipi ipigkipa

(2 9)

We will not describe this procedure in detail here since
we approach the problem in a difkrent fashion. In fact,
we shall be treating physically significant. renormalized
quantities only, and. we need not be meticulous about
the distinction between renormalized and unrenormal-
ized quantities since the infinite constants which charac-
terize their difference will not occur explicitly in our
equations. We shall regard all the Green's functions
and operators as renormalized ones, but treat them as
if they obeyed the equations of motion for canonical
observables, with, however, observed masses and
coupling s.

"The scattering matrix is obtained essentially by the adiabatic
limiting process

lim p (eyes').
XO) ZO~ eo

QO, gO ~ —00

See reference 20.

3. REPRESENTATION OF THE GREEN'S FUNCTIONS
BY MEANS OF SPECTRAL FUNCTIONS

In accordance with the ideas outlined in the intro-
duction, we start out with the following fundamental
assumptions.

(I) I.orentz invariance and other invariances which
are inherent in the theory. As was discussed in NI, it
is important to note that the Green's functions, which
are T-products of operators, should not depend on the
choice of the time axis used for the time ordering. This
is guaranteed by causality (to be mentioned below)
which insures the independence of field quantities
(commutability or anticommutability) for spacelike
points.

(II) Completeness of the positive energy states. In
addition, we will also assume naturally that the one-
nucleon or meson state is stable. But we do not neces-
sarily exclude the existence of bound states.

(III) The adiabatic switching of interaction. This
has always been necessary if one wants at all to talk
about interaction between particles. It must be recog-
nized, however, that its exact meaning is not a uniquely
defined one, and one will get different connections be-
tween the perturbed and unperturbed field quantities
according to different definitions of the adiabatic
process. We want to use it in the simple physical sense
that the 6eld variables behave as essentially free when
they are far apart from one another, and these essen-
tially free fields should serve to dePne the physical
constants (the "observed" masses and coupling con-
stants). This should be enough for our purpose of end-
ing relations between observable quantities only. On
the other hand, the connection between unrenormalized
and renormalized quantities is in principle to be ob-
tained by the unrealistic process in which the coupling
constant itself is turned on and off instead of separating
the particles from each other. It is also to be noted that
the bound states do not cause any difFiculty since we
are not asked to treat them by perturbation once the
physical constants are fixed.

(IV) Causality. This will be the main tool in deriving
our results. But we use it here in a disguised way which
is not immediately recognizable as such. We postulate
namely that, apart from spin and isotopic spin matrices,
the imaginary part of the Green's functions arises
through vanishing denominators which occur if energy-
conserving processes are possible in the intermediate
stages appearing in Eq. (2.5). The conditions I and II
then say that the energy-momentum of such an inter-
mediate state must form a timelike four-vector with
positive time component. This suggests that the rela-
tivistically invariant form of the energy denominator
and the nature of its singularity are determined by the
time-ordered character of the Green's functions. Cau-
sality is reQected in all these points in an implicit
fashion: The timelike energy-momentum vector will

guarantee the noninterference of measurements outside
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the light cone; and the positive energy condition and
the time-ordering will fix the analytic behavior of the
function with regard to each energy denominator.

The implication of these arguments will become clear
as we go over to the actual application below.

A. Modified Propagation Functions e(xy)
and e(zz')

'We begin with the simplest cases of p(xy) and p(ss')
as an illustration though the result is already known. '
We observe that, in the 6rst place, the invariance under
the inhomogeneous Lorentz transformation, charge con-
jugation, and isotopic transformation requires the
Fourier transforms

p(PV) = ' p *'* "vp(*y)(«)'(dy)'
(22r) ' "

1
p(kk') = ~' p-'"'-*"'"p(ss') («)'(«')'

(22r)s ~

to be of the form

p (Pr22, ePi) = se (P+q)e.~L2P'ypr (P')+ po (P')l.p,
(3.2)

p(kz, k'j)= —28 (k+ k')8;;p (k'),

where the spin (cr,p) and isotopic spin (s,f,2,j) indices
are explicitly written down. The graphs corresponding
to these quantities are of course two external nucleon
or meson lines of energy-momenta p, q= —p or k,
k'= —k which we measure for convenience always in
the "out" direction.

Following the assumption (IV) let us next ask the
question: under what conditions will they give rise to
real processes?

(1) If the incident particle is a real particle, it can

go through the same real state without interaction. In
this case

p2+ K2 () k2+ ~2 —0

where I(: and p are the masses of the real nucleon and
meson respectively. (2) If the energy Ipol or Idol of
the incident virtual nucleon is large enough, it can split
into a real nucleon and at least one real meson"; simi-

larly if .
I
ko

I
ol'

I
ko

I
is large enough, the incident pseudo-

scalar meson can split into at least three mesons. The
condition for this to happen can be written in an in-
variant way as

p'+ (a+u)2&0,
k'+ (3p)2&0.

We thus conclude, according to (IV), that the p's must
have terms of the form

1/(p2+ 2222), 2I= r, or 222) it+ p, (3.3)
1/(k +222) 22= u or 22) 3IJ,,

"We excluded here the existence of a bound meson-nucleon
system. In case such a bound system exists, vy(u) will have an
additional point spectrum between s' and (~+p)2.

which become singular in case a real process (1) or
(2) is possible. To determine the character of the
singularity precisely, we invoke the assumption (II)
together with the decomposition (2.5). Since the energy
of the intermediate states is positive definite, the
Fourier component of a function p(x, y) must behave
like exp( —ilko(xo —yo)l). So we conclude, just as in
the case of Sv and Av, that Eq. (3.3) should actually
COntain 1/(P2+2222 —ie) and 1/(k2+222 ie—) T.huS We

can write
(" vi, (u)

pi, (p2) = — du, X=0, 1
~ o p'+u

(" v(w)
p(k') = — dw,

~ o k'+w

(3 4)

Q=—S—Se,

where the real functions v have the property"

vi, (u) = vi, e (u —K )+fX (Q)e(u —(K+p) ),
(3 5)

v(w) = voe(w —«2)+g(w)e(w —(3y)2).

We also note that

vg(u) =- Impi, (—u),

v(w) =—Imp( —w).

(3.6)

On the other hand, from the decomposition (2.5) and
(II) and (IU) it is again easy to see that

e, ((spy p Imp, (ps)+l pImpo(p'))
=& &ol~t-I p&&pIA lo&e(p)

—& (oI A I

—
P&&

—PIC-Io&e( —P), (3 7)

8;; ™p(k)=+ (0I o, l k)(k I 22;Io)e(k)

+2 &o I o I

—
k&&

—k
I 2 'I 0»(—k),

where the summation extends over all the spin states
with the momentum +p or +k. The second equation
indicates'

v(w) &0.

For vi and vo we observe that P=g*y4, and

(1/w){p I &olp..l p) I'e(p) —2 I &
—pip. .lo&l'e( —p)}

=p»i(p') —h 4)-vo(p'),

choosing the rest system for p. Thus both sides must
have the same sign as po'.

'(P)Lpovi(P') (V4) vo(p'))&0,

which means'

vi(u)&0,
I pol vi(u) =u*'vr(u)&

I
vo(u) I, (3.9)

since the expectation value of p4 lies always between
—1 and+1.
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More information on v is to be obtained by consider-

ing the boundary conditions. If we assume, according
to (III), that the interaction can be switched o8 adi-

abatically at t= + oo, then p(xy) and p(ss') should go
in this limit over to the propagation functions for free
incoming and outgoing fieMs:

where

Zs '= v(tv)dtv =1+ g(tv)dtv& 1,

Z,—'= "vi(u)du=1+ f, (u) du)1,
(~+a) '

(3.15)

On the other hand, the initial condition on the behavior
of the p's for equal times may be checked by the relation

e(~y) p(~y) I
'o=»= «I (4 (~),&(y) ) I » I

'o=»,

8
e(ss') p (ss')

Sp zp =zpl (3.11)

* (014( )4(y) Io)
gp~ te
gp~ QO

hm (olf«4'(x)P;„'(y) lo), etc." (3.10)
gp~ 00

gp ~—QO

which are the renormalization constants introduced
by Dyson in relation to the unrenormalized fields P„,
P„, and q obeying the proper commutation relations:

P =Zs'P, P =Zs'*P,

p~= Zg'q7.

It is clear from the above result that the boundary con-
dition at infinity is more convenient than the initial
condition since we can deal with the renormalized
quantities directly and thus the functions v should be
finite. They should also satisfy

v;(u) d„(
0 --, q s' 0

v(tv)
(3.16)

since the right-hand side is the commutation relation for
the field variables.

Although we have thus two conditions at hand, we
should primarily use the condition at infinity since our
derivation of the v's was based on the over-all behavior
of incoming or outgoing waves. Consequently we as-
sume that the asymptotic fields P', P and q' are nor-
malized in the usual way so that

;(*y)(ol T(yo(~),yo(y))lo)= s,i i(~y),
(o I T(&,(s),„("))I

o)= ~,,~.& 1(ss ),

where the right-hand sides are the ordinary Feynman
functions with mass I(: and p, respectively. This leads to

without which Eq. (3.4) would be meaningless.
Mathematically speaking, Eq. (3.4) expresses the

fact that p(k') —=p( —i ), etc., have no poles in the upper
half of the complex plane as functions of t'

r" p( 0')—
p( —i) =— — df', t real, (3.17)

2tri ~ „f' i ie——

since Imp( —i) =s vg') =0 for real i (0 (or i;„) In.
case the condition (3.16) is not satisfied, we can still
take, for example, a function

f(—t)=—p( —g)/(i —a)", 4s=positive integer, a(f';„,
Py =i Pp = —K)

(3 13) such that

(3.18)
The field operators being thus normalized, Eq. (3.11)
is no more the commutation relation for canonical vari-
ables since the adiabatic process is in general not a
unitary transformation. Indeed we must conclude
from Eqs. (3.11) and (2.9) that

(ol {4-(~),Ai(y)) Io) I
o=»=zs '~.~(v4) s~(x—y),

(
Bq, (s)

- (3.14)0,p, (s') 0 =Zs '8,,8(z—z'),
~zp — ~p=up

'3 lim* means the switching off of the interaction at +~; in
other words, (r4

~ /~0), etc., should vanish for a11 ri except for the
one-particle states. We do not mean, however, that the particles
turn into "bare" particles. The incoming and outgoing waves are
equal since they are renormalized waves without the self-energy
effect.

and express it as

or

v(tv) (a+0') "
p(k')=

I I
dt's

k'+e (a—to)

( +pa)n (sg p
n.—i- (a)-

(3.19)
(ti —1)! & Bal .a+&'

Thus p(k') is not completely determined by the imagi-
nary part alone; the second term on the right is a poly-
nomial in k', and to omit (or separate) this term
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physically means some sort of renormalization of p. In
our formalism the boundary condition for v will serve
to fix it. The "renormalized" p has a factor (k'+a)",
and behaves as 0(k'") for large k'. In other words,
p(zz') has derivatives (of order &2e) of the delta func-
tion at the origin.

The Green's functions p(xy) and p(zz') do not have
singularities of the above kind. But the quantity

Next we ask, as before, for the condition of producing
a real process. In the first place, an incoming external
line p, q, or k by itself can give rise to such a process
just as in the case A. This means that pgq must have
factors of the form

~ )
~ )

~ )

p +mi zE q +m2 2E'k +m3 ze

(zz') —= (o I &(igkv5rA (z),igloos A (z'))
I o), (3 2o)

which is related to p(zz') by
mi m2 ——K or &K+@,

ts3= p ol +3@
(3.28)

1 v*(w)
M(k )= —8, (k + )

k'+w (w —p')'

i*(w) = (w —p')'i (w) =—ImM( —w).

(3.22)

This corresponds to the choice a=+', m=2 in Eq.
(3.19). We shall also meet with this situation later.

B. Three-Body Green's Functions

Let us take the three-body Creen's function

p(ez) =(0I T(4 (x),Pb), ~'(z)) Io), (3 23)

and define its Fourier transform

p(pqz) =
(2~)"

( —p')'p(zz') = i(Cl —p')8(zz')+M(zz') (3.21)

has the representation

(again excluding bound states). Next, it is possible that
any two of the incoming particles together produce a
real process by interaction (scattering). This would
mean that there should be factors of the form

(p+q)'+m4' ie (p+—k)'+m5' i~ (q+k)—'+m6' —ie

But the conservation law (3.25) just reduces these
factors to those in Eq. (3.28) so that we get no new ones.

In order to proceed further, it is necessary to consider
the equations of motion for p(xyz): By differentiating
it with respect to x, y, and s successively, we obtain

(v~+ ~).(—v'~+ ~)v( p')*p(xyz)—
= —ig~,.g (x—y) S(x—z)

+ ig2p, ,(0 I
7'(4p, (x),P(y)) I 0)p, ,c(y—z)

+i&5''(0I T(4 (x),4~~b)) I o)v».~(*—z)
—ig'&sr (o I T(~ (x),kv»A (z)) I0)&(x—y)
+ g'v;(0I7'(0e'(*), 4 (x),0v 4()) I0)v ~ .

(3.29)

X I e '"' '~v '"*p(xyz)(dx)'—(dy)'(dz)'.

Because of the conservation law

p+q+ k=0,

(3.24)

(3.25)

Now we could apply the same argument as above to
the T products appearing on the righthand side, and
could conclude that they must contain the same fac-
tors as Eq. (3.28). Hence the original piq. must neces-
sarily contain the three factors simultaneously. In
other words,

p(pqk) is a function of three scalars p', q', k' in addition
to the spin functions ys, (py)y~, ys(qy), and r, . y5 reflects
here the pseudoscalar nature of the Geld p;. We may
thus generally write

p(p~s, qP&, k;) =ie(p+q+k) Z L(~p~)"~:( iq~)"'3.e—
X,X'=O, l

X (r;),ipii (P', q', k'). (3.26)

Under the extended charge conjugation/ —+Cg, g—&C 'P,
y,~—

&p;, p(xyz) goes into —(C 'p(yxz)C) r; this means
for p(pqk)" the invariance under p&—

&q, y~ —y so that
p),~ must be symmetric:

piv (P',q', k') =pi ), (q', P', k'). (3.27)
'4 The spin matrices are transformed according to 0—&C 'OC,

with C 'Y„C= —y„~, C 'r; C= —7.;~, etc,

vip~ (zKw)
p (P'q'k') = i

— dudvdw, (3.30)
(P'+ u) (q'+ v) (k'+ u)

which is the desired spectral decomposition.
According to Eq. (3.28), vg, has a point spectrum at

the masses for real particles, and a continuous spectrum
extending upward from the thresholds for various reac-
tions. By Eq. (3.27), it satisfies the symmetry condition

Vip~ (QVW) = Py~g(VSW) . (3.31)

To see the implication of the boundary condition at
in6nity, we again let the fields P, P, and p go separately
to + ~ or —~, and suppose that they turn into almost
free fields there. In this case the only interaction which
can be measured by these waves will be that of the type
igiPp»gq, where g defines the observed coupling con-
stant. To be more precise, we mean by the adiabatic
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customary de6nition of renormalization due to Dyson'
gives g'.

procedure that only the 6rst term of the right-hand. side
of Eq. (3.29) remains (understanding that contribu-
tions of the same type from the rest have been incor-
porated into it). Thus

Vyg~ (24SW) = gVy) z 8(24 K )5('V K )8(W g )+ ' '

C. Four-Body Green's Functions

There are three four-body functions which do
lim p(pqk) = i—gSV(p)i&sr;Sv( q—)&v(k), (3 32) not vanish identically. They correspond to meson-

nucleon, nucleon-nucleon, and meson-meson scattering
from which it follows that respectively.

As the 6rst example, we take

with p (xyss') = T (xyss') T(xy—)T (ss'),

and its Fourier transform

(3.38)

To find the relation between renormalized and un-
renormalized quantities a systematic study is needed
since it is more complicated than in the previous case.
Deferring the details to the Appendix, we quote here
only the main result which gives the unrenormalized
charge go.

vii(24sw)d24d'vdw =gZiZ2 Z2

=goZ2 Za '.
(3.34)

As is well known, there is in general an arbitrariness
in defining the observed coupling constant, so that the
above definition of g, Eq. (3.33), is not the only possi-
bility, though it seems to be the most natural one in
our scheme. A different quantity could be obtained, for
example, in the following way. Suppose we take the
equation of motion

( —~') 2~(xys)
= (o I T(4 (x),0(y),igkvsrA (s)) I o), (3 33)

and let tP(x) and P(y) recede to + ~ and —~, respec-
tively. We then get the relation

p+q+k+k'=0, (3.40)

we have six independent scalars of the momenta, for
which we adopt

P2 q2 k2 kz2 (P+ q)
2 —(k+ kz) 2

(p+k)'= (q+k')' or (p+k')'= (q+k)'

as will be found convenient below. In addition, there
are three scalars formed with the Dirac matrices, which
may be chosen as

ipse, iqy, i(p+—k, y) or i(p+k', y),

and the two isotopic tensors 8,, and r,;= $~„r,]/2i.
p should be invariant under charge conjugation C:
p~q, y~ —y, r,,~—r...' obviously it is also invariant
against the interchange C': k&—+k', i~j, but we can
easily see that CC'=1. Thus we may write the general
folm of p as

p(pqkk') = zvz zqv—z7zz— 4—z2'p (—XySS )Z

(2qr)" &

&& (dx) '(dy) 4(ds) 4(ds') 4. (3.39)

In view of the conservation law"

(plig&»r'4 I
q&=—k2+P2 (—K)"(—K)'

Vip~ (KKW)

Xdw(pIip4r, —q), (3.36)

p(pqkk') =i 5 (p+ q+ k+ k') I,1+C')

&& 2 (ipse)"'(ip+»)" (—i')"'(ir)"'
X=o,l

Xp~i~2xsx4(P2, qq, kq, k", (P+q)', (P+k)'). (3.41)

where
I p) and

I

—
q) represent one-nucleon states and

vq&, '(K«w) the magnitude of v at the point spectrum
u=v=w'. This is nothing but the matrix element for
the "current" igpy22. ,$, and we may define the charge
as the coeflicient of iy2r; in the static limit P= —

q, k=0:

( «)&,+X' ~2
g—:~

—Vyiz (KKW)dW

~zz ( K)X+X' ~2
=g+ ——vg), '(KKW)dw. (3.37)

4«2 w

g' is thus directly related to an ideal measurement
whereas g does not allow such an interpretation, since
a real nucleon cannot absorb or emit a real meson. The

We can then apply the argument of real processes to
p) 1" ~4 and conclude that it must have factors

p'+ u q'+ 8 k'+ w k"+w'or, (3.42)
(p+q)'+Ni (p+k)'+s" (p+k')'+s2'

24, s=«2 or )(K+p)2, w, w'=14' or )(3p)',
si) (2p)', S2= K' or ) (p+K)'."

'5 Since p represents the irreducible correlation, no subdivision
like p+q=0, 0+k'=0 can occur, which is the reason for taking
p rather than T.

1 The thresholds for x, m', and s1 are characteristic of the
pseudoscalar meson theory.
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which gives a factor exp[ —i
~ (ps+ ko) (zo+zo —yo —zo')

) 7
similar to the previous cases.

Since p(xyzz') obeys an equation of motion

The indicated behavior of the denominators at a singu-
larity is universal. To show this for 1/(p+k)'+ss, for
example, we may choose xo, so&yo, sp ol sp, SOCp'p, so',
so that

h~+«). (—V'~+«). ( —p')s( —p')* p
=g'{6(VV Z)—8(y Z'—)y, r,p(Xy)ysr;

+ (z&—&z', i+j&)-)+, (3.43)

2'(zy»') =2 (PI T(0'(z) ~'(z)) Ir&&(&l 2'(4(y) ~ (z')
I o&,

Xp) Sop QQ) So

P (P~ 2 (P(y) &,(z)) (r1&(ri~ T(P(z) &.(z)) ~P&
the first four factors always occur simultaneously, but

n the last one is missing for the first term on the right of
xe, zs &ye', zs' Eq. (3.43). At any rate we may write

v«1" 1 4(srvww $1$s)dQdvdwdw d$1d$s
Pxj ~ ~ ~x4—

~ (p'+~) (q'+8) (k'+w)(k"+w) ((p+q) +.—,)((p+k)s+$, )'
(3.44)

if we understand that v~~" ~4 may have delta functions
at infinity: $13($1—~)= 6(1—~/$1) and/or $s8($s —~)
=3(1—~/$s).

On the other hand, the boundary condition for
p (xyzz') should enable one to define the direct four-body
interaction of the form f,~rpP+i fsPy„r;,Prp, r)„rp,+
as the value of v at the point spectrum I, v=&', gr,
m'= p', si, s2= ~.Since we exclude the existence of such
an interaction, however, v is zero at this point. '

The other four-body functions may be treated in a
similar way. p(ztzszsz4) is simpler since no 7 matrices
are involved. The result is

p(k, k,k,k,) = —s3(p k,)-, Q 3(s,s,)3(s,s,)

Xp(ki', ks', ks', k4', (kt-+ks)', (ki+ks)')) (3.45)

where p(kis ) has the same structure as Eq. (3.44):

V K q'R@V+04$ySq
P=

g (k,s+ tV,) [(ki+ks)'+31][(kt+ks)'+8s]

Xg dw,"d$1d$s, (3.46)

and Pi runs over the permutations of 1, 2, 3, 4. In this
case v does not have the delta functions 8(1—~/$1)
and 8(1—ao/$s) provided that the meson-meson direct
interaction ()1/4)q, syjs does not really exist (which
means that the renormalized )1 is zero). In case )1 is

finite, v should have a point spectrum

v'(w;)3(1 ~/$—1)0(1—~/$s)+
(3.47)

v'(w, ) =2) g, 6(w, —p,s)+
whereby X is exactly de6ned. On the other hand, the
unrenormalized )ts is expressed by (see Appendix)

v'(w, ) g dw, =2)tZ4Zs '

=2XOZ3 '. (3.48)

As for p(xx'yy'), we have two sets of y matrices and
three independent momenta which give 2&3=6 scalars
of the form (py); in addition, five scalars may be formed
out of the q 's as is familiar in the P-decay theory. In
the isotopic space, there are two scalars 1 and v 7-'.

We put accordingly

p(PP'qq') =3(P+P'+q+q')

X-.(1+0)(1—I') P ('P,)"('P ~) o„
v=1

X{[i(P+P', p+q")]"', [i(P+q, 'r —p')]"')0,'

X (—i')1'(—iq'p')1'(r' r )"
Xp " (P',P",q', q", (P+P')', (P+q)'). (3.49)

O„O,' stands for the five scalars 1.1, y„y„', etc. ; I'
means the permutation pcr$~p'n'$', and C the charge
conjugation p~q, p'+-+q', y~ y, q'—v —&', 0„~0,'. —
p~~. ..~7 may be written as before

v&1"'x7(QQ vv $1$s)diced@ d'vdv d$td$s

(P'+ ~) (P"+~) (q'+V) (q"+V)[(p+p')'+3.][(p+q)'+ Vs]'
(3.5P)

with similar point spectra as in the case of p(xyzz'),
namely 3(n «'), 5(u' ——«'), 8(v—«'), 6(v' —«'), and
3(1 ~/$1) ~

4. RELATlON BETWEEN THE SPECTRAL FVNCTIONS

So far the structure of the Green's functions has been
determined in a way which reflects to a large extent
only the fundamental assumptions of field theory. Now

we are going to take full account of the equations of
motion and see how they are translated into relations

analysis of Eq. (3.43) (or the relation between diferent v functions
to be discussed later), and is not of the nature of a boundary
condition for v that can be imposed at our choice.

'r We can also show, on the basis of Eq. (3.43), that V(1—~/ss)
does not occur at all, and at I, v=K K' K' =p $1= ~ $2=K',
~ is exactly given by the lowest perturbation result:

vt„), g'v„, „,'Z (n... ,
«——')3 (v «')8 (rv —p')— —

XZ(rv' —p )8(1—+&/$1)Z(s2 «))—
o ( „)S—4—13 is

1''')'4 K K

where g is the constant dered in (ii). But this will need a detailed
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between the various spectral. functions introduced in
the last section.

According to Sec. 2, there are a set of equations which
connect the Green's functions of different order. If we
substitute the parametric representation of the Green's
functions developed in the last section in these equa-
tions, we should be able to obtain the corresponding
equations of motion for the spectral functions v. In
explicitly carrying this out, we naturally meet with
divergences due to the singularities of the Green's func-
tions, making the results meaningless unless they are
renormalized. Since in our representation of the Green's
functions their dependence on the relative coordinates
or momenta is clearly exhibited by the energy de-
nominators, such a renormalization procedure can be
carried through explicitly without tampering with the
v functions, and the ensuing relation between the v

functions will be in a manifestly renormalized, diverg-
ence-free form. We will discuss this procedure for each
equation successively.

(i) Let us begin with one of the lowest order
equations:

(y„a„+s).p (xy)

i o(xy) i—gy, r; p—(xys, ') 5 (x—s') (ds') '. (4.1)

Fxo. 1. A self-energy diagram
corresponding to Kq. (4.3}. p-ki

(Fig. 1)
gz fQ(p) =

~ y, r,SF(p k)y, r,—Ap(k)dk
(2zr)4 ~

3g'i
f i(p k, y—)+14

dk,
(2zr)' ~ L(p —k)'+rP](k'+p')

I),( x)= zr ( y„B„—)'6 p&"& (x)5h p& "& (x), (4.4)

if we put u= I~', w =p', so that the renormalization could
be carried out by the standard methods. Instead of
doing this, however, we will again make use of the
causality requirement in a trick originally due to
I.eh mann. '

Iq(p) is the Fourier component of the function

oing to the momentum representation and using the where Ap'"', A~'"' are the Feynman propagation func-

form u1as Eqs (3 2) (3 4) (3 2 6) an d (3 30) w e ge t tions w ith th e m asses gu an d gm, and are defin ed
conveniently as

(zpy)" »(u)
i, (ipy+14) du

aJ p+u

i+ o(p'+ —k p) dp'dk-r
(2zr)'

t p, r, (zp'p)"y, r, ( zqy)"'»—g (uvw)

(p"+u) (q'+ v) (k'+ e)

3g= —i+ dk
(2zr)4 ~

r L
—z(p —k, ~)]"(—zqv)"'»~ (»~)

X l dudsdzo. (4.2)
l (p —k)'+u](q'+8) (k'+e)

Assuming that the integrations in k and the other vari-
ables can be interchanged in order freely, we may first
carry out the integration

( z(P k, ~))"——
I~(p) —= dk, X=O, 1, (4.3)

(2')' ~
l (p —k)'+u](k'+tv)

which is obviously divergent logarithmically. It is
formally equivalent to the lowest order self-energy

(-~.~.)"~.&"'(*)=9( ) (-y.~.)"~&""( )
+0(—*)(—y.~.)"~'"' (*), (4 ~)

a,&-~ (x)=0(*)S&"~+(x)+S(—x)Si"~-(x),

0,+(x) being a function containing only positive or
negative frequency part:

h~"~+(x) = I 0(&k)8(k'+u)e'"*dk. (4.6)
(2zr)' "

We now ask for the "imaginary part" of Iz(p) which
expresses possible real processes. In the present case,
a real process would mean that the incident wave of
four-momentum p(pp) 0) splits up into two "particles"
of mass gu and gs, four-momentum p k(pp —kp) 0), —
and k(kp)0). Such a process certainly corresponds to
the first term of

0 (x)L (—y„a„)'6'"'+(x)]9(x)h~ "~+(x)

=0(x)l (—y.~.)~'"'+(x)]~' '+(*)

«(x)
+ L(-y.~.)"~'"~'(*)]~&""(*),

2
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which itself is part of I&, (x). If pe(0, we have simply to instead, we have to invoke the boundary condition
change 5+ into 6 . Thus (3.13) to renormalize v correctly. Thus

1
"Im"1~(p) = —

it (—iy, p —&)"
2 (24r)

x Lo(p)0(p-&)0(&)+0(—p)0(&- p)i)( —&)]

&&&((p—e)'yn)S(u'+. )du. (4.7)

After some calculation (see Appendix 2) it leads to

"Im"Ii(p)

1 5(u, w, —p')
K'(u, w, —p') (—ipse)]"

S7r —p'

3g 1
vi(u) =S(u —«')+

SxQ—x~Q —
D

5(u'wu)
X Eg,i,I (n wu) vgii(u 'vw)

(u «')—' 5(u'wn)
+! ! Eg,y (u'w7))

Ev —~' 'V

X vga, ~ (u uw) du d'rdw,

25(u, w, —p')

= (L(V'u+V'w)'+ p' jL(&u V'w)'+—p'3} '

V' p'& V'u—+V'w
=0, otherwise

(4.8)
3g 1 f'

vp(u) = —«8(u —«')+
Sm~ Q—z2~ Q—8

5(u'wu)
X E»i, (u wu)vip~(u ow)

(4.10)

1 t u (a+p') "S(uwu')
1.("'(p) =-

Sir' ~ p'+u &a—u'~ u'

y $C (nwu') (—

ipse)

$'du'. (4.9)

Since 5/u' 1, C 1 for large u', 44 must be )1, and
a(Qu+Qw. We put the result into the righthand side
of Eq. (4.2). Remembering that p= —q, we have now a
product of two factors

1 1 1 p 1 1

p'+u' p'+8 n —u' & p'+t4' p'+8)

As the last step, we divide Eq. (4.2) by (ipse+«), and
again the "imaginary parts" of both sides may be
compared for a given p, and thus the relation between
the s's obtained except at the point e=h.". At += l~.",

C(u, w, —p') = (—u+w+p')/2p'.

S/2 is the area of a non-Euclidean triangle formed with
the three sides of length Qu, Qw, g—p', and C is the
ratio of the projection of the side gu onto g—p'
to g—p'.

Once the imaginary part has been calculated, it is
now easy to obtain the whole "renormalized" Iq by
means of the formula (3.19):

t u —«') ' S(u'wn)
+! ! E»q (n'wv)

& n —«'

X vpi, (u'uw) du'dvdw,

( —1
Eric, (u'wu) =!

C(u'w—u) «C(u'wu) u j
K —u

E»,.(u'wu) =!
& C (u'wu) u C(u'w—u) u«)

It has been so designed. that, with a= If.
" and m=1 or 2

depending on the individual term, the integrals in Eq.
(4.10) are convergent, reduce to zero for u = «',
and that vi satisfies the condition (3.16) if a similar
condition holds for vq}, . The second point is essential
for the correct renormalization according to Eq. (3.13).
The factor 1/(u —v) in the integrands is to be inter-
preted as the principal value.

The equation of motion for p(zs') may be treated in a
similar way. We have namely

( —p'),p(ss') =i8(ss') —
gg t tr[y4r, p(hays')]

&(b(x—s)8(y —s) (dh) 4(dy) 4, (4.11)

or substituting the parametric representation,

$2+u2„..p., ()
q diagram corresponding ~ +W

to Fq. (4.18).

Zg
"o(p+q+k)dpdq

(2ir)4 ~

t. tr[iy, r, (ipy) "y,r, ( i qy)"'j-
x ~

(p'+ u) (q'+ 0) (k'+ w)

X vii, (unw)dudndw, (4.12)
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which is of the same nature as Eq. (4.2). We quote the As for p&, itm. ay further be divided into two correspond-
final result only. ing to the two terms of Eq. (3.41):

3g
v(~) =3(~—«')+

8)—p,
2 2m2 ~ BJ—'R

5(ustv)
X — %,~ (ut tv) v«&, (ut«v')

p(p'qkk') =6(p'+q+k+k')(1+C) (ip'y)'&

X («(p'+k, y))"'(—iqy)"'(r)"'p~, ...g„

which we call p~' and p~". Let us first consider p~". We
have to carry out the integration"

( to —««' q
' S(usw')

+! ! Pq«(umv')
(w' —p,') w'

X vga~ (u'vw) dud vd&,

(4.13)

Ig(pqk) =
(2«r) 4

dp'dk', (4.18)
(P"+u) (k"+~)((P'+q)'+sr)

1 0
!Hq«(ustv) =!

(0 -', (tv —u —v) l

(ii) The three-body Green's function p(xys) obeys
the equations of motion

(y 8+ «),p(xysi) = ig, ' —ysr, [p(xy) p(sis'j )

which is similar to the lowest order vertex part repre-
sented by the Feynman diagram I'ig. 2, so that we
would expect to find Iq in the form

E~(ap+ &q), V)"

(p +ur) (q'+Br) (k«+ur)

Xf(uyvtBlr)durdsrdtvr. (4.19)

+p (xysis'j ))8 (x s') (d—s') ',

( —««'),p(xysi) =ig ~[—p(xy) tr! p»;p(x'y'))

To obtain directly the renormalized finite expression
for Iq, we again avail ourselves of the method used in

(4 14) connection with (i). Iq is the Fourier component of the
quantity

+p(xy') Vsr'p(x'y)

+p (xx'ns, yy'Pf) (y», )p., ,)
X6 (x'—s)3 (y' —s) (dx') '(dy') ',

of which we will consider here only the first equation.
Going over to the I'ourier component, we get

(«ps+«) p(pqk) = «gy» p(q) p' (—k)~(p+q+k)

+ — p(P'qk«kj')8(P'+O' P)dP'dk' —. (4.15)
(2~)' ~

We may divide p into p and p~, corresponding respec-
tively to the two terms on the right-hand side. Inserting
the expression for p(q) and p,;(k), Eqs. (3.2) and (3.4),
we find easily

«p'y «

p. (pqk) = «g8 (p+q—+k)
P2+ «2

t (—i')"v), (s)v(tv)
dsd«v, (4.16)

(q'+ 8) (k'+ e)

or using the representation Eqs. (3.26) and (3.30) for
p(pqk),

v.g, (ustt) =g( «)' "b(u —«')v-«. (s)v—(tv) (4.17).

I.(xys) = —L(y.~.)'~v'"'(x —y))
Xa, (x—s)~, (y—s). (4.20)

Let us then ask for that part of Iq where all the three
internal lines p', k', p', +k contribute to real processes.
Suppose that ps) 0, ks(0 (or ps (0, ks) 0), and large
enough to create real processes. In this case the internal
"real" particles must be moving in the direction (o&

opposite) indicated in Fig. 2. Since p' and p'+q point
to opposite directions seen from the external line g,

g cannot create a real process under such circumstances.
This means that when the two denominators p"+u,
k"+w become zero, the third does not, which amounts
to a certain restriction on the range of the values of e, z,
and s». At any rate, the "imaginary part" of Iq arising
from the above mentioned process comes, using Eq.
(2.5), from the e-independent part of

—2 g(~ (x—y))0(~ (x—s))e{~(y —s))

X/(y„cj„)"5& &~(x—y))A& &~(x—s)b&'"+(y —s)

1ae(x—y) 1&e(y—s)
L(V.~.)"~'""(x—y))

2 2

X~&-&+(x—s)~& &+(y—s), (4.21)
'~ In case s&——&e, it reduces to the type of Eq. (4.3).
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which leads to

1 1—— I"[0(p)8(-k)8(p )8(p+q)8(k )
2x 4~

+8(p)0(k)8( P-)8& P -q)-8( k-)j
X (zP'V)"b(P"+u) b((P'+q)'+s, )

Xb (k"+w) b (P'+ k P)dP—'dk'. (4.22)

finally get

f(uiviwi) =
167I 5 (B1V1W1)

(B1V1W1) [(VB1+VVl+V W1)

X (Qui+V'v, —V'wi)

X (v'ui —V'»+v'wi) (4.27)

This must be equated to the corresponding "imaginary
part" of Eq. (4.19):

. , | [z(~p+bq, ~)3'
"Im"I1——(izr)' ~ f(BZZliwi) dV1,

q +'Vi

Evaluating Eq. (4.22), we get (see Appendix 2):

"Im"I1————,', (0(k)0(—p)
Lz(~'P+b'q, 7)3"

+0(—k)0(P))—
S(ui,wi, —q') (4.24)

45 1Z =2(ui+B—W)q + (Bi—q
—Wi) (u —

q
—si),

45 b = 2(u q
—si)ui+ (Bi—+B—w) (Qi q wi).

5 is de6ned in Eq. (4.8), and the arguments ui, wi, —q'

subject to the condition

V Bi)V B+Vw, gwi)V $1+1/W,
(4.25)—q'& (v'» —v'B)'.

Equation (4.23) is still of an integral form, and we do
not know the domain of v» yet. But if we make an
analytic continuation of —q' to the unknown domain
of v1, Eq. (4.24) should acquire an imaginary part due

to the pole at » ie On —the . other hand, Eq. (4.24)
becomes imaginary only if —q' is such as to make the
factor under the root sign in S [Eq. (4.8)j negative, or

(v' +v' )'& —q'&(v' -v' )'. (4.26)

Hence the domain of v» should agree with that of —q'

above, and comparing these new "imaginary parts" we

X (—V'ui+V'»+V'wi) jl,
45*'a =2 (Bi+u —w) vi —(ui+ v, —w,) (u+v, —s,),
4S b= —2(Q+'Vi —$1)ui

(ui+B—W) (Bi+Vi—Wi).

5*/2 is the area of an Euclidean triangle with the
familiar relations

V'Bi+ V'vi& V'wi&
~
V'u, V'v—, ~,

V'Vi+V'Wi& V'Bi&
~

V'V, —V'W, ~,

V'wi+V'Bi& V'vi)
~

V'wi V'u—, I,

(4.28)

which limit the domain of the variables together with
the restriction

V Bi)V B+V W, V Wi) QS,+gw,
(4.29)

V'v, )V'u+V's, .

The last condition simply indicates the threshold values
of —p', —k', and —q' for creating real processes.

We thus obtain

A, (pqk) =
16~'

[z(QP+bq) 'r)3 dQidvid'wi

(p'+Bi) (q'+ vi) (k'+wi) 5*(uiviwi)

which is certainly convergent [without use of the
modified formula (3.19)$ because of the triangular rela-
tion (4.28). The 0 factors in Eq. (4.24) have dropped
out also because of the triangular relation which elec-
tively takes care of them. Iq being thus determined, we
substitute it into the equation for

[Z(~p+bq ~)3"'(zpV)" (—ZqV)"'(~)"'
(ip&+ ~)pv" (pqk) = g'rv~,

16zr' (p'+ ui) (q'+81) (k'+ 18,) (p'+ S,) (q'+8) (k'+ W )
I

V11 "X4(u'Vww SZSZ)
X- duid'vidwidudvdwdw ds1dsz. (4.31)

5 (Q1V 1W1)

We put the representation (3.30) for pv" (pqk) on the left-hand side, divide the whole thing by ipse+~, transform
products of factors like 1/(q'+81)(q'+8) on the right into partial fractions, and compare both sides (or their
imaginary parts) for a given set of p', q' and k'. We shall not write down the ensuing relation between vv11 "(uiviwi)
~nd v&1" x4(uztww sisz) since it is too complicated due to the spin matrices.
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We are left with ps' that corresponds to the first term of Eq. (3.41). The integral to be considered. is now"

('p'~)"'I: (p'+k») j"'3(p'+k' p)—
Ii,i) s(peak) =— ' dp'dk'

(2m)' ~ (p"+u)(k"+w')$(p +g)'+si)L(p'+k)'+ "j (4.32)

which contains four denominators. A Feynman diagram for this is given in Fig. 3, where four external lines p, k, k,
and —p —2k =q —k come in. We assume the representation

t fi(ap+bq, &))~~[i(cp+dp, p)]"'—Ab(2 —&i—li&)
Jxyx2 g (utv iw t)du id v idw i.

(p'+ui) (k'+wi) (q'+ vt)
(4.33)

To the simultaneous "imaginary part" for the three
denominators of Eq. (4.33) with Ps) 0, ks(0, (P+k) s=
—qo&{), for example, corresponds the following part of
Eq. (4.32):

Im I'A x

2(s-i)'
~'p'. )" &'(p'+k, »~"*b(p"+ )b(k"+ ')

(2~)4 ~

X&((P'+q)'+») &((P'+k)'+») &(P')&(k')

X (0(p'+k)(l(p'+ V)+0( p' k)e( —p"—V) &— —

Xb (p'+k' p) dp'dk'. —(4.34)

By a procedure similar to that for Eq. (4.22) as ex-
plained in the Appendix, this yields

Iin Isp=g(utviwi)

1

64 ~S*(u...w, ) ~

X5(u+w +'vi+wi si—ss—ui)—
X8(gut —gu —gw')

Xp(gwt —+st—gw')8(gvi —gw' —ass)

+0(g ]—au Qsn)8(gv, Q—S,—Qu)$, —

4S*'a=2 (ui+u —w') vi

—(ui+vi —wi) (u+vi —si), (4.35)

4S*'b= —2 (u+vi —si)ui

Finally, we piece together the equations for v, v~',

and v b" to get one for the total v~), . The renormalization
has not been completely taken into account since v~),

may not yet satisfy the required boundary condition
(3.33). If we "correct" it to the value Eq. (3.33) we

get the properly renormalized equation. The remaining

part of the spectrum is already correct, and will not
be aBected.

S. DISCUSSION

p —q
(or—

A

'=)

The significance of what we have achieved here seems

to lie in. several points. To begin with, the Green s

functions which have rather complicated transformation

properties have been expressed in terms of the v func-

tions, or spectral functions, which are real scalar func-

tions depending on scalar variables only. The Green's

functions thus obtained satisfy the various requirements

of 6eld theory, including relativity and causality. It can

easily be seen that the formulas given in 5I for some

scattering matrices are compatible with the present
results. Our new representations are more general in

the sense that they show the complete dependence of

—(ui+u —w) (ui+vi —w,),

4S c= —2vi(wi+w —'vi —u)

—(ui+'vi —wi) (Si+ui 2vi —wi —u—),
4S*'d=2ui(si+ui —2vi —wi —u)

(u],+vi —'wi) (w i+'w —'v i—u),

A

p'+k ~I

k

O )I

gA and B
/

l

P

2k= —(Q+ui+ vi w si —ss')+—2ac—ui

+2bdv, (ad+bc) (ui+vi w—i)—
' In case sI ——~, the integration reduces to the type of Eq.

(4.18).

Fio. 3. A Feynman diagram corresponding to Eq. (4.32). The
arrows beside the lines indicate the direction of motion of the
"free" particles when the real processes corresponding to the
"imaginary" part considered in the text are realized. These real
processes occur across either set, A or 8, of broken lines (inter-
mediate states).
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the matrix on all the variables. The results of NI follow
from the present ones, but the converse is not true. "

As a matter of fact, our derivation of the formulas in
Sec. 3 is not to be regarded as a proof; if we start from
the fundamental assumptions I to IV, we do not know
a priori whether we may use Eq. (3.17) rather than
Eq. (3.19) to express the general Green's functions in
terms of the v functions. Thus in order to confirm our
formulas we would have to show that they are actually
consistent with the equations of motion connecting
different Green's functions. This was done in our paper
up to the four-body functions.

One undesirable character of the old formulas was
that the density functions p introduced there did not
seem to be uniquely defined, and there was no physical
reason to prefer one over the other. In the present case,
on the other hand, the v functions have a well-defined

meaning since they may be related directly to. matrix
elements of the "real processes. "

As for the problem of renormalization, we have at-
tained two remarkable results. One is that the equations
of motion for the v functions are in a manifestly re-
normalized form, and involve only renormalized con-
stants. The other is that renormalization can be per-
formed by making use of causality, together with the
boundary condition for the field operators at infinity, "
instead of going through the usual subtraction pro-
cedure. To put it more precisely, the real (or dispersive)
part of a renormalized Green's function is determined
from the imaginary (or absorptive) part via causality.
Part of the imaginary part is connected with the
corresponding part of different Green's functions via the
equations of motion; the rest is theoretically at our

disposal, being of the nature of a boundary condition
(or inhomogeneous terms in the equation) which is
fixed by the given fundamental constants, namely the
masses and the couplings, and which finally controls all

the quantities. The definition of the coupling constant
is more or less a matter of convenience, and there is no

absolute reason to prefer one to the other"; it would

be sufhcient if the relation between different coupling
constants were known.

The equations of motion for the v functions are the
fundamental relations in our theory, which should pro-
vide us with all the necessary information about the
system, though we do not know yet whether they have
meaningful solutions at all. Neither are we quite sure
whether the present renormalization is completely
equivalent with the usual one. In the lowest approxima-
tion it seems to be the case (except for the slightly
different definition of g), but it is well known that a
self-energy operator calculated to a certain approxima-
tion can give rise to spurious singularities of p(xy) or
p(sz') which may violate causality. It would thus seem
that causality is necessary as an additional requirement
to perform a consistent calculation if one believes in
microscopic causality at all.

Kallen" has investigated the nature of the renormal-
ization constants, and has shown in particular that we
run into contradiction if all the constants are assumed
to be finite. In the present paper, not much attention
has been focused on this problem since we have been
trying to do away with unobservable quantities. The
relation of the v functions to the renormalization con-
stants is discussed brieQy in the Appendix.

To make a complete study of all these points men-
tioned above, it wouM be necessary to extend our
formulation to the Green's functions of all orders which
are connected by the equations of motion. This will be
done in a separate paper. Though somewhat compli-
cated, there seems to be no essential difficulty. It
mould also seem possible to give a similar formu-
lation for the relativistic wave functions such as
(0~ TQ (x),p(z), ) ~I') which have been studied ex-
tensively. ' Among other things, the bound state or
scattering problems may be handled convenient]y in
our formulation, and a new insight into the boundary
condition may be obtained.

The author would like to acknowledge his gratitude
to Professor Goldberger and Dr. Freese for their interest
and enlightening discussions.

20 The quantity

34'(»1»(P+&—4—1)=J (P I
T (i'(*)i~(z')) I

V)e'"' "*(d*)'(~*')'&

j;(*)=rggv, r,4 (*),
introduced in Nl Eq. (17}corresponds to

lim (k apts)(l +p )vr(iPpyK)p(P, —4, k, l)(iqy+K)up, —
i@7+a =0
iqy+lr =0

where N~ and v„are the initial and final spinor wave functions. If
we take spinless fields as was done in NI, we shall see that the
terms p& and pa in the numerator of Eq. (1.3) are missing, which
could not be derived in general from the earlier considerations.

~' Ideas related to ours have also been developed by H. Lehmann~
and W. Zimmermann, Nuovo cimento ll, 416 (1952), Lehmann,
Symanzik, and Zimmermann, Nuovo cimento 1, 205 (1955). The
significance of causality in the problem of renormalization has been
noticed by Stueckelberg. See for example, E. C. G. Stueckelberg
and T. A. Green, Helv. Phys. Acta 24, 153 (1951}.

's G. Kallen, Nuovo cimento 12, 217 (1954}.

APPENDIX

1. Renormalization Constants

In order to study the various renormalization con-
stants we must start from the renormalized Lagrangian
(2.9) which leads to the equations of motion

(VB+z)P= igZs 'Z,—p, q,g 3„P, —

(& p')~'=igZs 'ZrP—VsrA

~P g' ~~3 ~4gi+I,

and the commutation relations

{4' '( ) A ( )) =Z '(7 ) p& 8( )
A2

Lq;(r), ByA,.(r')/Blj=iZs '3;s5(r —r').
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pretending convergence of each integral on the right.
Comparing this with the right-hand side of Eq. (A3),
we see that the first terms of Eq. (AS) must correspond
to the first terms of Eq. (A3) since the other terms
wouM have no singularities of the delta-function type
if they were finite. Thus

The equations of motion for the Green's functions
become thus

(»+Kp)p(xy) = iz—& '6(x y—) ig—z& 'Z&p»;

x&ol T(q,e( ),O(y)) Io),

(& —zao')p(«') =zzo '~(s s )+zgZp 'Zi (A3)

x(olT(A»;4(s), q;(s')) Io)
—gZ,—'Z4(0

I
T(qo;qoa'(s), 4P, (s')) I O) etc. ,

where we have put

Kp= K+5K) Z4p =Z4 +544,

denoting the mechanical masses.
Ke will treat all the constants Z; ', Sf', and bp' as if

they were Qnite quantities. Taking the Fourier trans-
forms, we substitute the parametric representation on
the left-hand side. But this time we rewrite

vi(u)du=Z, ', —
) v(w)dw=Z, —'. (A6)

(v~+ Ko)*(—v'~+Ko), p(xy)
zzp '(—pre+—Ko)8(x y)—

—(gzp 'Zi)'(o
I
T(so~'q &(x) 4'go~ q (y)) I o)

( —po'). ( —uo') "p(«)
= z (~—44') 8 (s—s')

—(gZ;~Z, )P&OI T(4~,.A (s),yV,.A ("))IO)
—az;pz, s,,s(s—s')I &ol q„z( ) lo)

+2(OI q,«a(s) IO)j
—9gzp-'Z, Z4I &0 I T(q, q az(S),gy»P(S')) I0)

+(OI T(y~...y(s), q, q „p("))IO))

+(~zp 'Z4)'(oI T(q'q a'(s), q q 4'(s')) Io).

f (ZP'r) v]+ vp

i(iPy+K) —dzt'

p+u
(A7)

= —z vgtN

(AS)
t' (zP'r) (Kvi+Pp)+ (Bvi+ KVp)

z
p'+u

r' Za
—w

dw=i pdw+z, ————vdw,
k'+e

i (k'+44')
k+e The equations corresponding to Eq. (AS) become

(A4)
Next we differentiate Eq. (A3) once more and obtain

p (ipV)v, +vo
( zpzr+Kp) — du= z (zpp+Kp)vidu+z (Kvi+vp)du

PP+ Z4 J
t' (zpy) & (K'+u) Pi+ 2Kvo)+ &2Kuvi+ (K +u) vo)

z du, (AS)
p'+u

—i (k'+Z4p')
k'+e

t (po' —w)'
dw = i (k'+14 p') v dw i— (ZZp' —w) vd—w —i — vdw.

k'+e

Comparison with Eq. (A7) leads to

or

zaooz, '= I v(w)wdw+ScÃzo 'Z4,

()c=—,'(ol 4V, (x)q, (x)lo)= I I
— dwdk.
k'+e

If we take beforehand the Kick product'

(Kvl+vp)du 0, or Kozp '= —
~ vo(u)du,

r

(goo —W) vdW= SCUZZ 'Z4,

(A9)

Now let us consider the three-body Green's functions.
The equations of.motion read

(&8+Kp)P (xys)

= —zgZ,
—&Z, &OI T(p, ~,qA(x), 4(y), q, (s)) IO)

= —zgz;~Z, I v...&0
I
T(q, (x),q, (s)) I

o)

x(o
I T(4 (x),4(y) lo)+

( —po') p(«')
=' z 'z &o I T(4( ),4( ),0,&( )) I o)

='gz;~Z, L&ol TQ(x),y(s)) lo)~,.;
x&olTQ(.),p(y))lo)+ "3,

fqp' &pa 2p' &qoa ) 4qo'ooa&ao'qoa)

+&q")&q")+2&q'q )'1,

in the Lagrangian, the term with c will be absent.

(»+ o).(—y'~+'), ( y)
= (gZ,

—~Z,)'~,.,&0 I
T (0«;(x),4 q, b),q;(s)) I O)yo.a

+gzp 'Z&y»;"p(x y)— —

X&0 I T(qo;(x), 4p;(x)) I 0), etc. (A10)
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Finally we take p(sl s4) which obeys the equation

FIG. 4. Vectorial relation
for the ilitegral {A15).

( —uv') p(si «)
=Xz 'Z (Ol T(4p lp, e, y, lp, &p ) IO)

+i@tOIT(4v4r'4(sl), 42, 44)Io)+
=~Z3 'Z4I:2(OI T(~lio~) IO)&OI T'(~'4 3) IO)

x(OIT(4;44)IO)+ . 3
+la(OI &(~t»r4(si), 4 2, ~4) Io)+ . . (A13)

Substituting the representation Eq. (3.46), we con-
clude that

(ip&)'»&'( iq&)"
4 (zPy+ Kp) vllidudvdw

(p'+ u') (q'+8') (k'+ w)

y4r, (—iqy)
l'

vU, I dud vdw+'
(q'+ ll) (k'+ iV)

(A11)

This, being dependent only on q' and k', must corre-
spond to the first term on the right of the first of Eq.
(A10). Thus

vg ~ (uvw)du= gz2 Zlplv~(v) p(w).

In a similar way we get the following set of relations

vl, (uvw)dv=gz2
—

Zivl(u) v(w),

(equivalent to the above)

Jt vip (uvw)dw=gza lzlvl(u) vl (v),

(&~+~V).(—V'~+xo). ( —»') p(xy')

=i(Rz 'z )'(gz 'z )&

X (o I
7'(~t 4; (x),A l (y),0~4r4 (&)) I o)»"

+i (gzg 'Z, )'Z3 'y—lr;
x(o I

r g«, (x),P(y)) IO)~...~(y—.)
+i(gz2 'Z, )—'Z, 'yvv-;.

x(0 I
7'9 (*),p&, (y)) I 0)~...s(x—)

—i(gz2 'Zl) (gze ')rsvp

x(OI7'(&, (*),y~...y(.)) IO)~(.—y)
—i';lz; z,y,s(x—y) s(x—s).

Substituting the representation for p(xys), we proceed
as before. For example

J
P (w,}dwl= 2&Z4Z3 'v(W2}v(W4) v(w4), etc.

t v (W,)dwldW2 ——2P,Z4Z3 'v(W3)v(W4), etC.

t v'(W;) dW, dw2dW4 2XZ4——Z3 'v(W4—), etC.

(A14)

v'(w;) g dw, =2XZ4Z3 ',

v' being defined in Eq. (3.47).

(ip'7) "0(~p)0(~ p') 0(~0)~(p"+u)

X8(7v'+w)8(p'+74 p)dp'dk. (A—15)

The three vectors are related to each other as shown in

Fig. 4. The delta functions in the integrand demand
that the length of the vectors p' and k be kept fixed as
well as the vector p itself, so that the triangle pkp'
has a fixed shape and can rotate in the four-dimensional
space around the vector p. We may thus write Eq.
(A15) as

0(ap)
~.=Z, ( p'~)"e(~p')~(~&)

a 4(uw)i ~

xi{I
p'I —gu) s(l u'I —Qw)dz, (A16)

2. Evaluation of Some Integrals

There is an easy way of evaluating the integrals in
Sec. 4. First let us take Eq. (4.7). Let

v)l(uvw)d'vdw=gz2 Z3 Zlvl(u)~

J vll(u&w)dudv gz2 Zlv(w)y

vll(u vw)dudvdw= 'gz2 Z4 Zl,

which are consistent with Eq. (A6).

(A12)

where I' is the apex of the triangle opposite the vector
p. The integration may be factorized into two, namely
that within the plane of the triangle and that resulting
from the rotation of the triangle (or the point I') in a
two-dimensional (space-like) space orthogonal to it.

For X=O, the first integration gives the Jacobian

(uw) ~/S,

which is the ratio of the area of a square with the sides

gu and gw to that of the parallogram (denoted by 5)
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1 (Nw) ' irh2 2rh2 2rS
42rh2 = = =, (A17)

5 hg —p' —p'
~o=

4(lw) ' S

and 5 may be expressed in terms of the three sides of
the triangle:

formed with the vectors p' and k. The second integra-
tion gives the surface area of a sphere

4mb',

where h is the height of the triangle seen from the
base p. Thus Fro. 5. Vectorial relation

for the integral (A21).

kr /'(

p+q ~ h/P' /(

P" (P'k)

(p'k) k'

(p&2+ k2 p2) 2

=p"k'— . (A18)

8i ——C(iPy) 82,

p2+ p'2 —k2 p2+ w 2i (A20)
~= (pp')/p'= —2p' 2p2

Next take the integral in Eq. (4.22),

te(a p)e(wk)|t(a p')e(a p'+q)0(ak')

We have not been careful about the indefinite character
of the metric in Minkowski space, but do is obviously
a positive definite quantity. From physical considera-
tion, on the other hand, we must have Q—P2) +2i+gw
which is contrary to the usual relation for the three
sides of a triangle. 5 must then be

= (L(v'~+v' w)'+P'll:(v'~ —v'w)'+P'3) ' (A»)

For X=1, the vector P' in iP'y gets simply projected
onto the axis p as a result of the second integration,
so that we get

The vectorial relations are shown in Fig. 5. This time
the three vectors p, q, k and the lengths of the vectors
p', k', p'+q are fixed, so that the shape of the tetra-
hedron in Fig. 5 and its base pqk are fixed, while the
apex I' is movable with one degree of freedom in the
four-dimensional space. The integration may be factor-
ized into that within the space of the tetrahedron and
that in the complementary (space-like) space. The first
yields the Jacobian

(Nws) '*/5

where 6 is the volume of the parallelopiped formed with
the vectors p', k', p'+ q. The second gives the perimeter
of a circle

2vrh',

where h' is the distance between I' and the base plane
pqk. Thus

(Nws)~ P h P h
y 2m.h'=

8 (uws) ' 6 4A 25h' 2S (A22)

Z=Z ~(~p)e(~k),

5 being the area of the base triangle.
The factor iP'p in 8i' goes, as before, into its projec-

tion onto the plane Pqk, so that

Xti(k"+w) a(p'+ k' p) dp'd k'—
8(ap)8(wk)

+ 8(2iws)

(A21)

&,'= Ei(ap+bq, y) jap.

a and b are determined from

(PP') =aP'+a(Pq), (qP') =a(pq)+&q'

together with

(A23)

x (ip~)" i'(I p'
I

v'~)&(l p'+q
I

s—)—
xb(l k'I w)8(p'+k' p)dp—'dk'. —

(PP') = (P'+P" k")/2= (P'+w —~)/2

(p'q) = —(p"+q' —(p'+ q)')/2 = (—q'+ u —s)/2, (A24)

(Pq) = (P'+ q' k')/2. — —


