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Quantum Calculation of Coulomb Excitation. I*
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A complete quantum mechanical treatment for Coulomb excitation is presented. Angular correlations
as well as total cross section are developed. The reduction to a form suitable for computation of the radial
Coulomb integrals which are needed to evaluate the transition matrix elements is discussed in detail. The
relation of the quantum mechanical treatment to the classical treatment is established, and it is shown that
the results may be presented as the classical result plus a quantum mechanical correction.

INTRODUCTION

~COULOMB excitation of nuclear levels is an old
~& concept in nuclear physics which was first con-

sidered in the pioneer work of Cockcroft and Walton.
The study of this process has advanced considerably
both experimentally' and theoretically' since that time.
Interest in Coulomb excitation was further stimulated
by the work of Bohr and Mottelson' who indicated the
importance of the role played by electric quadrupole
excitation. Numerous experiments have since verified
this conclusion.

The increase in the number and accuracy of the
experiments has brought about an increased need for
accurate theoretical discussion of Coulomb excitation.
Ter-Martirosyan' has treated the problem from the
classical point of view. In this work the charged par-
ticles are considered as traveling in definite Kepler
orbits with the Coulomb field causing the nuclear
transition. To be valid this approximation requires that4

rl —=ztzse'/Av))1.

For many experiments, however, q 3. This approxi-
mation further requires that the energy absorbed by
the nucleus be small compared to the energy of the
incident particles. The second requirement results from
the fact that A~0 implies Aco=E —+0, so that no
energy loss is considered in the classical treatment.
For both large and small bombarding energies, there-
fore, the classical approximation fails. '

*Work performed under the auspices of the U. S. Atomic
Energy Commission.
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Huus and C. Zupancic, Kgl. Danske Videnskab. Selskab, Mat-fys.
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22, 284 (1952)7, has also given classical calculations that apply

3

The present experimental results on the total cross
section have, nevertheless, been in agreement with the
classical predictions. Not only is the shape of the
excitation function reproduced, but in several cases
the absolute cross section has been measured and found
to be in excellent agreement. ' It should be noted, how-
ever, that the agreement exceeds the accuracy ( 10%)
of the experiments.

In addition to measurements on the total cross section,
one may also measure angular distributions to obtain
further information concerning the Coulomb excitation
process. A particularly desirable measurement considers
the directional correlation with incident beam of the
gamma rays emitted by the excited nuclei, averaging
over emergent particle directions. Calculations on this
process have been made using Ter-Martirosyan's
methods. ' Although there are still only a few experi-
ments of this type, , the results seem to be clear cut. It
is found that the measured results' deviate quite sig-
nificantly ( 20%) from the classical predictions, in a
region where the total cross section shows good agree-
ment. For some cases the anisotropy measured is larger
than predicted. Since external influences always tend
to -diminish the anisotropy, this may indicate that the
classical approximation is at fault.

Several quantum calculations' "have been made to
test the classical approximation. However, these cal-
culations have neglected energy loss. Breit and col-
laborators' numerically calculated the total cross
section for q=8.156 and found excellent agreement
between the quantum and classical result. Biedenharn

for the case where d E~E, but numerical results are not available.
The statement is meant to apply only to calculations based upon
no energy loss as given in extensive tabulations of the report by
K. Alder and A. Winther, CERN)T/KA-AW-1, October, 1954
(unpublished).
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and Class" employed the exact Coulomb integrals for
no energy loss, given in Sec. II, and found that the
classical approximation was in excellent agreement with
the exact results for g&3. For the directional correla-
tions, however, this calculation predicted larger aniso-
tropies than the classical treatment.

Since these considerations indicate that the classical
approximation is inadequate, it appeared reasonable to
attempt to take the Coulomb 6eld rigorously into
account in a quantum mechanical treatment. " In this
connection it is of interest to note that for dipole
transitions, the problem was effectively solved in
parabolic coordinates by Sommerfeld" many years ago.
The cases of greatest interest are, however, the more
complicated quadrupole transitions. For multipoles
higher than the dipole it appears futile to attempt the
integrations in parabolic coordinates, and recourse to
the spherical representation is indicated.

In the following, therefore, the problem is formulated
in the spherical representation and expressions for both
the total cross section and angular correlations are
obtained. The formulation of the angular correlation
problem is considerably simplified by recognition of the
formal analogy to the correlation problem in the internal
conversion process. "For internal conversion, transitions
between a bound state and a continuum state must be
considered, whereas here the transitions are between
two continuum states. Moreover, for the 6nal state,
there is no coherent mixing of different angular momenta
because it is assumed that this state is not observed
experimentally.

The second part of this paper is concerned with the
problem of evaluating the radial Coulomb integrals.
Since the excitation and correlation involve in6nite
sums over angular momenta, of the radial Coulomb
matrix elements, it is necessary to estimate the number
of L's which enter in a signi6cant way. To a sufficient
approximation this can be done as follows. For the
quadrupole case the radial Coulomb matrix element is
of the form [jo" drr 'Fz(ri, ,krr)Fz(qs, ksr) j'. For large
values of L, the magnitude of the Coulomb function
Fz(ri, kr) at the classical turning point, kr~L, varies
as L"'." Because of this slow variation the crude
estimate is made that the amplitude of FI. is unity for
all L beyond the turning point. Inside the turning
point, the functions Fz, behave roughly as (r/L)
Thus, the contribution to the integral from r&L is of
the order of I. ' Outside the tu.rning point, the Coulomb
functions Fl, oscillate. If one neglects the phase dif-
ference between the two FI.'s and takes their product to
be of the order of unity everywhere, one obtains an

"A preliminary account was given by L. C. Biedenharn and
M. E. Rose, Oak Ridge National Laboratory Report, ORNL 1789,
September 1954 (unpublished).

'2A. Sommerfeld, Welleemechueik (F. Ungar Publishing Com-
pany, New York, 1947).

"Rose, Biedenharn, and Arfken, Phys. Rev. 85, 5 (1952).
"Biedenharn, Gluckstern, Hull, and Breit, Phys. Rev. 97, 542

(1955).

overestimate of the outside contribution to be of the
order of L '. Thus one gets as a rough estimate that the
integrals are, in general, of the order of L '. Using this
estimate in the summation for the total cross section,
it is clear that the sum will involve, in the limit of large
L, a summation over terms of. the order of I.[js" dr
Xr—'Fz(r)r, krr)Fz(res, ksr) j' L ', and thus this part of
the sum will be of the order of L '. For good accuracy
one, therefore, needs about one hundred terms and it
is clearly essential to simplify the work as far as pos-
sible. Direct numerical integration of the radial integrals
does not appear feasible, since the Coulomb functions
oscillate and many oscillations must be integrated
before asymptotic formulas are applicable. It would
thus seem most desirable to use the properties of the
Coulomb functions to cast the required integrals into a
more tractable form.

This is, however, not a very straightforward task.
The range of physical interest has the parameter
p =k;/kz o—f the order of unity. Typical experimental
values are 1&p&1.1. But for p 1 the integrals do not
have simple properties. A simple example of such
behavior is a6'orded by the related spherical Bessel
function integrals, to which the desired integrals reduce
in the limit of zero nuclear charge. These are cases of
the Sonine-Schafheitlin discontinuous integral. " It is
possible, nonetheless, to get useful rapidly converging
series in the region of p 1. The necessary development
for such results are presented in this paper. In addition,
various recursion relations are also presented. The use
of the recursion relations makes it unnecessary to
compute the integrals for all values of L. Rather, the
integrals may be computed at appropriate intervals in
L and the recursion relations used to bridge the gaps.
However, repeated application of these relations causes
great loss in numerical accuracy, so that they can only
be used over a very limited range of L.

The classical orbit calculation results from the
present quantum treatment under the simultaneous
limiting process ri

—+ Qo; p —+ 1; ri(1 —p) ~ )=finite.
I rom the series results for the Coulomb integrals one
gets in this limit confluent forms, which are the series
form of the classical integrals. It is interesting also to
obtain this result in a more elementary fashion without
the necessity of using series, and this is done in the
concluding section. Sommerfeld" has discussed a closely
related limiting form for the electric dipole case to
obtain Kramer's approximate bremsstrahlung formula. "

The radial Coulomb matrix elements should be
valuable in problems other than Coulomb excitation

'and it is hoped that the present discussion will be of
more general interest.

Numerical calculations of electric quadrupole excita-
tion have been completed and submitted for publication.

"W. Magnus and F. Oberhettinger, Specgl Fgnctiogs of
Mathematr'ca1 Physr'cs (Chelsea Publishing Company, New York,
1949), p. 35.

"H. A. Kramers, Phil. Mag. 46, 836 (1923),
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I. FORMAL DEVELOPMENT

The Coulomb excitation problem can be schemati-
cally described as the following process. A (Coulomb-dis-
torted) plane wave of spinless particles, of wave vector
ki and charge zr is incident upon a nucleus of charge s2.

By means of the electromagnetic coupling between the
nucleus and incident particles, the nucleus undergoes a
a transition from a state J,~; to a state J~vr~, and the
incident particles emerge at infinity as a (Coulomb
distorted) plane wave of wave vector k2. Here J, 2r

represent the nuclear angular momentum and parity.
We seek to find erst: the total cross section for this
process, averaged over the directions of k2, and second:
the directional correlation with respect to the incident
direction ki of a subsequent nuclear radiation, again
averaging over the directions of the emergent particles,
k~. The center of mass of the system is considered to
be at the nucleus.

Total Cross Section

The electromagnetic coupling can be expressed in
terms of the interaction energy density between the two
transition charge and current systems (nuclear and
bombarding particles), that is:

Hint (3N ' C2 ' ]P+gN ' PPg) ~

Here j~ and j~ are the current operators for the nuclear
and particle systems, respectively, and similarly the y's

are charge density operators. The 6 and g are dyadic
and scalar Green's functions for the infinite domain
with outgoing waves at infinity. Introducing a multipole
expansion for the Green's functions, " and assuming
that the bombarding particles always remain exterior
to the nucleus, one may write for the I.th magnetic
multipole the interaction energy density,

Hr, ' &=42r +2r( —ik) jN LL(L+1)]—'
Xj i(krN)(&I'i *(ON,&N))

X jp.
l L(Ly 1)]—:k,&'&(kr) I.l,.~y,y)

and for the Lth electric multipole,

HI &'&=42r pir il L(L+1)3 ljz, (krN) jN V
XI,V, *(eN,yN}k 't.L(L+1)j-

Xki, "'(kr) jp ~XLI r,~(0,&). (2)

Here the jr.(kr) are spherical Bessel functions, the
hr, o&(kr) are spherical Hankel functions, and k is the
wave number for the virtual gamma quantum absorbed
by the nucleus. The operator I is the rotation operator,
L= —irXV. The coordinates rN, HN, QN refer to the
nucleus and r, 0, ttt are the coordinates of the bombarding
particle.

The usual perturbation treatment then leads immedi-

ately to the result for the total cross section for excita-
tion by electric (e) or magnetic (22') multipole of order L

' J. M. Slatt and V. F. Weisskopf, Theoretica/ E'uclear Physics
(John Wiley and Sons, Inc., New York, 1952), Appendix B.

k2 f 2m/
err, &'"&=42r—

l l pJ df2l(&2(k2tr)eel
kr& 52)

XHd' 'l+,$1(kl r))l' (3)

In Eq. (3), P denotes the appropriate summation
over final states, and averaging over initial states for the
nucleus (wave functions %r and 0';, respectively), and
f is a unit vector in the k direction. The (Coulomb-
distorted) plane waves for the bombarding particles are,
for the incident state:

(' 22rt1i

pi(ki, r)=l —
l

e'"" iPi( i711 1 z(klr ki'r)),
(e"2t—1i

(4)
with 212 —=zis2e'/Avi, and for the emergent state:

( 22' 2
&2(k2, r) =

l l
e"2' iPi(it12, 1; —i(k2r+k2 r)),

(&)
with q2 defined analogously.

These latter wave functions are exact wavt functions
for a particle of charge sj in the field of a fixed charge s~

as discussed in detail by Sommerfeld. "They reduce to
distorted plane waves at infinity, with the appropriate
outgoing and incoming spherical parts respectively. The
wave function p2 will be observed to be the time and
space-reversed emergent wave, so as to have an in-

coming scattered spherical component. "
The integral over the nucleus is evaluated formally

in terms of reduced matrix elements. " That is, for
magnetic multipoles,

(+rlL~(L+1)1 *&~(k&N)jN &I"~ *XNAN)l+')

cP,Lz, ; w—,mm, ) (fll~Llli),

and for electric multipoles,

(+rlk-'LL(L+1)j-'j. (k )j»«l'. *(&,e ) l+')
C(~'L~r; ~,fl'-f~f) (—j'll «lli) (&).

The projectile wave functions are expanded in the
spherical representation, with the result":

ei (0'l &0)

4 (k,r)=E L4 (2i+1)j'*
L, m her

XPt(gi, kir)D„O'(fi)i'F't (0,$) (8)
and

&
—i(0i'—~ro)

1t2(k2, r)= Q L42r(21'+1)]l-
k2r

XPt (q2 k2~)D o'(f2)*i'I't '(0,&). (9)

Here D „' are rotation matrices. "
It is useful now to introduce the reduced matrix

elements for the transition multipole between th e

"S. P. Lloyd, Phys. Rev. 81, 161 (1951)."E.P. Wigner, Grlppemtheorie (Friedrich Vieweg und Sohn,
Braunechweig, 1931).
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various angular momenta of the bombarding particles.
For magnetic transitions, we have:

(
F i (ti„k,r)

'(eA)
k2r

X
1
LL(L+1)$—'*br, ' (kr) jp LF'r, (H,y) 1

F t(tlt, ktr)
x rp(M))

her

—=Q(/', /, Lm)C(L//', Mmm'), (10)

and for electric transitions:

F ((ti„k,r)
I'i "

(tl)@)
1
k 'Ll (L+1)j 'hr, &" (kr)

k2r
F i(rtt, ktr)xi'vxr. r. y, s)~~

' r,-e,s))
kyar

=—Q(l', /; Le)C (L/l', Mmm'). (11)

The evaluation of these reduced matrix elements is
given in Appendix I.

The indicated operations in Eq. (3) can now be
carried out. After some manipulation, the total cross
section is found to be:

(k~) 2If+1 (fll (e m)Lilt)' p32ir'mk) '
o~(, l —

1

t. ki) 2J,+1 2L+1 E 5' )
X P (2/'+1)

l
Q(l'/; L(e,m)) 1'. (12)

In the long-wavelength approximation the reduced
multipole matrix elements assume a simple form. The
total cross section has a more recognizable form in this
limit, and for the electric quadrupole transitions we
have the explicit result that:

t'ks~ )2fz+1~ (8sstssme'y '
~"'=4~1 —

I I 1(fll "II/)'1
4kt) (2J;+1) 0 Sk,k,h' g

l (l+1)(2l+1)
xp r '«F t(ni, ktr)F t(ns, ksr)

(2/ —1)(2l+3) &,

beam, and the emergent beam as well. In practice this
latter direction is unobserved and corresponds to the
directional correlations averaged over this direction.
Calculations for such correlations, using classical tra-
jectories, were given by Alder and Winther. '

The calculation of this directional correlation is
greatly facilitated by the result" that if one knows the
y —y correlation for the nuclear transitions charac-
terized by the angular momenta J& —& J& —& J3 to be,

W(0) =P, A„F„(cos/i),

then the directional correlation for particle emission
replacing the y transition J~ —& J~ is given by

W (0) =Q, A.a„P,(cose),

where the u„are "particle parameters" independent of
the nuclear transitions. The problem for the directional
correlation is thus reduced to solution by standard
techniques. The solution is, however, even more im-
mediate if one notes the close formal similarity between
this Coulomb excitation problem and the internal con-
version problem. Except for the fact that the present
problem involves both initial and final particle states
in the continuum, the two problems are precisely the
inverse of each other. The calculation given below
exploits this similarity, and does not reproduce details
given by Biedenharn and Rose."As discussed there, the
particle parameters are the ratio of the tensor param-
eters of the projectile to the tensor parameters of the
gamma ray it replaces, normalized so that ao ——1. To
obtain the tensor parameters of the projectile we couple
the tensor parameters of the observed initial state and
the tensor parameters of the unobserved final state. The
latter, being random, are scalar.

The tensor parameters of the initial state" are:

R, (vq; /P) =4prL(2/+1) (2/'+1) j'*(—) ' i'—
XC(ll'v; 000)e't'&-"'&D p" (ft). (14)

For the 6nal state we have the simple result:

Rr(vr/) =8Pp5Pp.

Using the previous definition, Eq. (10), for the
reduced multipole matrix elements, one finds that the
coupled tensor parameters, for a pure multipole transi-
tion are:

3/(l —1)
r 'drFt(tlt, ktr)F t s(rip, kpr)

2(2/ —1) &p

-2 R(vq) =Q Q(ll; Lm)Q*(l'l; Ipr)L(2/+1)(2/'+1)]-:

XW(/lvL; LP)R, (vq; /P). (15)

3(l+1)(l+2) -2

/ Ftl (rlkrltr)F l+2 ('Q2 ksr)-s
2(2/+3) — p

Directional Correlation
(13)

If the nuclei excited by the bombarding particles
upon returning to their ground states emit gamma rays
with a half-life short compared to the reorientation
times of external perturbing fields, these gamma rays
will be correlated with the direction of the incident

2'L. C. Biedenharn and M. E. Rose, Revs. Modern Phys. 25,
729 (1953}.This result is originally due to S. P. Lloyd, thesis,
University of Illinois, 1951 (unpublished).

2' Eofe added in Proof.—In the preliminary work of Biedenharn
and Rose" the phase factor i' ' in Eq. (14) was accidentally
omitted. This error was propagated in the work of Biedenharn
and Class" but affected only Eq. (6) and I'ig. 2 of that paper
(an erratum has been submitted). The equations in this paper
have been corrected accordingly.

Unfortunately an equivalent error (of different origin, however)
was contained in the calculations of Alder and Winther~ 7 invali-
dating their results for a2 and a4 (but not b0). This led to a spurious
agreement between the classical limit for a2 in reference 10 and
the no energy loss result for u2 in reference 7.
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1 9/(/ 1—) (l—2) (/ —3)
b4 P(l —2, l)

16 & . (2l+1)(2/ —1)'

The tensor parameters of the gamma transition whose
observation is replaced by the particle transition are:

R, (vq) ( )'+z—+'C(L I, v; 1 —1 0)D,o"(f). (16)
36(2/+ 1) (/+2) (/+1) (/) (/ —1)

12Thus one immediately obtains for the particle param-
eters, the result:

(
(2/+3)'(2/ —1)'

9(l+4) (l+3) (l+2) (l+1)
P(l+2, l)

(2l+1) (2l+3)'
—60 cos(o ~ o

—o i)I(/, /)I(/ —2, l)

a, (L,m) = (P (2l+1) (2/'+1) ( )'C—(ll'v 000)/~'

)&e'&" "&Q(EE Ls)Q*(E'E; L~)W(l/vL; L/')}

y ( ( )I+'C—(LI v; 1—10)P (2l+ 1)
~ Q (/E Lx)

~ }
(/+1) (/) (/ 1)(—l—2)

X +210 cos(o g 2
—o't+o)

(2/ —1)'(2l+3)

(/+2) (/+ 1) (/) (l—1)
X I(l—2, l)I(/+2, l)

(2/ —1) (2/+ 1)(2l+3)

(/+3) (/+2) (/+ 1) (/)—60 cos(o'~ —o'~o)
(2/ —1)(2l+3)'

The index x denotes the type of multipole, i.e., electric
(e) or magnetic (m).

By virtue of the vector coupling relationship, the
values of l, /' are restricted to lie between E+L and

~
E—I.

~
. Hence in the triple sum over /, l' and E only one

of these represents an infinite summation. Moreover,
parity eliminates approximately half of the values
available for I or 1'. Since the total cross section itself
was a singly infinite summation, it follows that both the
total cross section and the directional correlation are
tasks of about the same level of difficulty, with the
primary task the rapid evaluation of the reduced multi-
pole matrix elements for Coulomb waves.

For the long wavelength limit, the particle param-
eters assume a much simpler form. Conhning attention
to the experimentally interesting electric quadrupole
case, the explicit results are found to be

XI(/, /)I(/+2, /) . (22)

The o.
& in Eqs. (20)—(22) are the Coulomb phase

shifts, aq ——argc F(/+1+irt~)j, and the radial integrals
are defined as

I(l,l') =—)~ r 'drF ((rtg, kyar—)F ( (rio, kor).
0

(23)

ao(2e) = bo/bo,

a4(2e) = b4/bo, (19) Limitations of the Present Treatment

In this treatment there are several approximations,
and it is essential to make clear the errors involved.
First there is the question of replacing the multipole
moments by the long-wavelength approximation. The
parameter involved here can, for an order of magnitude
orientation, be taken to be (r, , /X„q), where r„, is the.
classical turning point radius given approximately by
(L'+rt')**. For low angular momenta, this parameter
ranges from 1/100 (for 4-Mev protons exciting 100-
kev radiation on Z=50) to 1/5 (for 4-Mev alphas
exciting 500-kev radiation on Z=50). Except for the
radial current contributions in electric multipoles, this
parameter enters as the square; it is clear, however,
that there will exist cases where the error is not neg-
ligible. For suKciently high angular Inomentum the
error is always large, but since the dominant contribu-
tions are from L ri (except for E1) this need not
introduce appreciable error. For cases where retardation
is appreciable, the contribution of the higher terms
gives rise to matrix elements which can be evaluated
by the methods given below, and, in fact, these cor-
rections are generally simpler to evaluate than the
lower order terms. Because retardation eBects may be

l (l+1)(2l+1) 3/(l —1)
ho=a I'(/, /)y P(/ 2,l)—

(2/ —1) (2l+3) 2 (2/ —1)

3 (l+1)(l+2)
P(l+2, l),

2 2/+3
(20)

3 (l—2) (/ —1) (/)
P(l—2, l)

(2/ —1)'

l(l+1) (2l+1) (2l—3) (2l+5)
P(l, l)

(2/ —1)'(2/+ 3)'

3(/+ 1)(/+2) (/+3)
P(l+2, l)

(2l+3)'

l (l—1)(/+1)—6 cos(o-(—o i 2) I(l 2, l)I(l,/)—
(2/ —1)'

l(l+1) (l+2)
6 cos(o i—0 ~o) I(l+2, l)I(l,l),

(2/+3)'
(21)

The sums are over all positive values of l including

(18) zero, with the understanding that I(l,l') =0 if /+/'(1.
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important, the accurate form for the multipoles has
been given in Appendix I.

The neglect of electronic shielding is another possible
source of error. The parameter involved here is the
ratio of the Bohr E shell radius to the turning point
radius. For 2-Mev protons on Z=50, this parameter is

1/30 for L=O. For increasing L, however, the com-
parison is less favorable, and, in fact, becomes sizable
for I. 20. Drell and Huang" have carried out an
estimate of the screening eKect for 2-Mev proton
bremsstrahlung on Z= 50 and find the correction
negligible (&0.1 percent). Since the large angular
momenta contribute far more prominently to dipole
bremsstrahlung than for quadrupole excitation" their
result indicates that shielding may be safely neglected.

The effects of penetration of the nucleus have been
neglected, and this is possibly important for S wave
particles. For 5-Mev protons on Z=50, the nuclear
radius is about one half the turning point radius and the
penetration of the order of a few percent or less. This is
a rather extreme case., but it indicates that, in the
vicinity of resonances at least, the I.=O contributions
might have to be altered by the addition of irregular
components. This constitutes a refinement of the theory
that seems somewhat premature, but it is well to bear
in mind the possibility of such effects.

The assumption that the nucleus defines the center
of mass may be a serious source of error. Although it is
easy to calculate the particle multipole moments in
terms of the true center of mass, this is no real help
since the nuclear absorption takes place with multipoles
based upon its own center of mass, and the error caused
by the non-coincidence of these two centers still arises.
The eGect is particularly bad for alpha particles on
light nuclei. For such cases, in the center-of-mass system,
the effective dipole moment will almost vanish, yet the
translation of the remaining multipoles to the nuclear
center-of-mass system will reintroduce dipole terms.
The approximation is thus poor in some cases of in-
terest. Although corrections can be made for this effect,
attention will be'restricted to larger A( 100) where
the error should be of the order of one percent or less.

Finally it should be mentioned, for completeness,
that spinless particles have been assumed. For the case
of protons, the spin magnetization should enter the
magnetic multipoles significantly; for electric multipoles
the change is generally insignificant. This eBect may
be treated by using the spin magnetization current in
the magnetic multipoles, as discussed in reference 17.

II. RADIAL COULOMB INTEGRALS

In this section, explicit integration of the general
Coulomb radial matrix element (rl,u; L) is discussed.

22 S. D. Drell and K. Huang, Phys. Rev. 99, 686 (1955).A pre-
liminary account of this work appears in Bull. Am. Phys. Soc.
30, No. 3, 28 (1955).

"Similar considerations show that estimating errors in WEB
calculations by comparison to the Sommerfeld bremsstrahlung

(m,e; L,) is defined as

(m, m; L)=—
eJ p

drr "F—,(q, ,k,r) F,+ (q, ,k,r), (24)

where 0&p =—ki/ks& ae, and rl=rli Althoug. h on physical
grounds p is restricted to values greater than or equal
to unity, it is convenient to discuss also cases with p
less than unity. This enables one to restrict m to be
zero or a positive integer. Since the integral must con-
verge at the origin, the inequality 2L+3+m —N)0
must hold. In addition from the vector addition rule
one has generally that mph' —1, but if retardation
corrections enter, m may exceed m —1.

In order to transform the integral into more useful
forms, it is necessary at this point to introduce ex-
plicitly into the integral the convergence factor e '".
For all values of s such that Res)O, the resulting
integral is then uniformly convergent. The limit s —+ 0
will be taken in the final answer, and it is this limiting
operation that introduces the discontinuous behavior
at p= 1 discussed in the introduction. The integral with
the convergence factor s is denoted by (m, rs;L;s).
Employment of the Euler-type integral representation
for the confluent hypergeometric functions, " inter-
change of the order of integration, and integration over
the r-coordinate yields a double contour integral form
for the matrix element:

~ (&+) (&+)

(m, e;L;s)=K du t

Jp p

Xde[s+i(1+p) —2i(r+pu) j" '~
)(ulr 4y(u 1)L+iqsrl+m ~pq(s 1)L+m+ppn (26)

results Lsee K. Alder and A. Winther, Phys. Rev. 96, 237 (1954lj
should not necessarily be conclusive.

'4 Tables of Coulomb Wave Furzctiozzs, U. S. National Bureau
of Standards, Applied Mathematics Series 17 (U. S. Government
Printing OfFice, Washington, D. C., 1952).

"Erdelyi, Magnus, Oberhettinger, and Tricomi, Higher Trae-
scerzderztal tiunctioes (McGraw-Hill Book Company, Inc., New
York, 1953), Vol. 1, p. 272. We shall in the sequel denote this
reference as HTF-1.

where k~ and k2 are respectively the "incoming" and
"outgoing" wave numbers. The parameter g is given by

il =—sisse /kv,

and the Coulomb wave function'4 is defined in terms of
the conQuent hypergeometric function to be

Fl.(g,r) =Cr, (ri)r~'e '" iFi(L+1 i'; 2L—+2; 2ir),

with the normalizing factor

CI, (q) =2~e ""~F(L+1+irl) t/I'(2L+2).

A more convenient form in which to treat the integral
of Eq. (24) is

, f
(m, e; L) = k," '~ drr "Fr, (rl,pr)Fr+~(prl, r), (25)

p
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g —( 1)mg n—1 L+122L+m—2e—iweil+p)

I'(2L+3+m —zz)

X
sinhzrzl sinhzrprt I

P (L+1+irt) I I I'(L+m+1+zprt)
I

The many-valued functions appearing in the integrand
are made analytic by taking their principal values. The
symbol Jet'+& signifies a loop which begins and ends
at the origin and encircles the point 1 counter-clockwise.
In the case at hand, both loops can be considered closed
contours encircling the points 0 and 1 of the integration
variables.

The double integral appearing in Eq. (26) is readily
expressed in terms of Appell's double hypergeometric
series" Fz(ct,P,P'; y,y'; x,y).

The result is

;I; )= —y, ,"—'/4 ') 'C ()C
xi'(2L+m+3 —zz)l s+z(1+p)]"—'~ —'

XFs(a,P,P'; y, y'; x,y), (27)

where n=2L+m+3 —zz, P=L+1 irt, P—'=L+m+1
iprt, y—=2L+2, y'=2L+2m+2, x=2ip/Ls+i(1+p)]

and y= 2i/Ls+i(1+ p)]. For calculational purposes, the
double series (see Appendix II) for F& might be thought
to be useful. Since the series form of P2 converges ab-
solutely only for

l~l+ lyl = l»p/Ls+z(1+p)]l+ I»/Ls+z(1+p)]I &1,
it is evident, however, that the limit s —+0 can never
taken and the series is, therefore, only of formal interest.
Any transformation of the series which does not have
the character of an analytic continuation cannot alter
this conclusion.

For analytic continuation in a single variable, e.g. , y,
the theory of the Gauss hypergeometric function can be
used to advantage. Such transformations, however, are
insufhcient to treat the case p~1. For the parameters
given in Eq. (27) with the specialization m=zz —1, the
desired analytic continuation has been given by Appell
and Kampe de Feriet."It will be shown below that the
specialization, m=e —1, is not necessary, and that all
cases of interest for Coulomb excitation can be worked
out directly.

The special case m=e —1 with m=0, was treated by
Sommerfeld, "who obtained the result:

(0,1,L; s)
1

CL(rt)CL(prt)I'(2L+2)I s+i(1+p)] z~z
4~'

Here n, P, P', are as defined in Eq. (27), with m= zz —1
=0. For p 1 the usual theory of the hypergeometric
function can be used to obtain series in the variable

p

s+z(1+p) —2z(v+pu)] L z+

=ft(V) +fs(V) (29)

The evaluation of fi(v) yields

fi(v) =2zri(2zp)~ 'L—~ '

I' (I.+1+iii)
X

I'(L+m+3 —u+z~) I'(u —m —1)

(2L+m+3 —zz) i(m+2 —zz) &,

X
lt!(L+m+3 —zz+irt)),

s+i(1jp) —2iv "
(3o)

The notation

(~).—=~(~+1)(~+2) (~+V—1)=I'(o+V)/I'(~)

is used in the series above. It will be noted that fi(v) =0
for e «& m —1, and is a terminating series for e)m —1.

The integration over v (for the fi(v) contribution) is
carried out next. This is found to be

(&+)

j G7Vf (v)vL+ p" (v —1)~"+
0

=4zri( —) + sinhzrprl(2ip)"
—'~ —'

Series Applicable for Small Energy Loss

The analytic continuation of Eq. (27) is now obtained
in a form which read;ly permits the conQuences required
in the classical limit. For convenience the order of
integration in Eq. (26) is inverted. It is seen that the
integrand as a function of u has branch points at 0 and
1, and a pole at Ls+i(1+p)]/2ip (v/p—). For m&zz 1—
there is also a pole at I= ~. The integral over u can be
evaluated in the usual way in terms of the two poles
outside the original contour encircling the singularities
at @=0and n=1. The contributi'on due to the pole at
infinity is called fi(v), while the contribution of the
other pole is called f,(v). Thus,

F(L+1+izl) II'(L+m+1+zprt) I'
X

I'(L+m+3 zz+irt) I'(zz m —1)1'(2L+2—+2m—)

(2L+m+3 zz) i,(m+ 2 e) i (L+—m+ 1 iprt—)„—
xZ

x,p tz! (X—tz)!(L+m+3 —zz+irt) i (2L+2+ 2m) „
(s+i (1+p) q

" f'
xl

2ip ) Es+i(1+p) ~

pS+Z(1 p) ~
L 1+re|S+Z(p 1)

—
q

—L 1+rpq—
&s+i(1+p)] &s+i(p+1))

—4pxp+'.F
I

pp' I. (2g)
s'+ (1—p)')

26 HTF-1, p. 224. Some properties of the Appell functions are
given in Appendix II.

'7P. Appell and M. J. Kampe de Feriet, Fonckoes hypergeo-
metrzgzses et hyperspherigzses (Gauthier-Villars, Paris, 1926), p. 43.
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The double series in Eq. (31) is a terminating series in
both A. and p with 0&~p&&X and 0~&X &~n —2—m.

The evaluation of the contribution due to the re-
maining pole is somewhat more difficult, and, in contrast
to the foregoing, does not lead solely to a polynomial.
It is readily shown that

f2 (v) = (22') (2ip)+

r (Ly1 —i~)
Xr (2L+3+m n)r—( L —ig+—nm ,—1)—

s+i(1+ )—2iv
—L—m+ —2—&

2zp

s+i (1 p)—2iv—~"+" 2+'&—

2zp

X2Fil —m+n —1, 2L 2 m+—n;——
FIG. 1. The null contour D on which Jp is defined. At the point

A, argv=o. The outer portion of the contour schematically
represents a circle of infinite radius.

L i q m+—n —1;— —s+i (1+p) —2iv)
(32)

2zp

The contour on which J), is defined is a loop encircling
the points v=0 and v=1 in the positive sense. Con-
sideration of the null contour D illustrated in Fig. 1
shows that the integral J), may be expressed in the form,

For m&m —1, the 2F& function above is represented by
a terminating series consisting of (2L+3+m n)—
terms. In the special case m=rs —1 the series consists
of a single term equal to one.

In order to carry out the remaining integration over
v, it proves useful to employ the series form of Eq. (32):

tt'sinh2rn (p —1)q

sinh2rqp

p
1(-'—:V—' &8)+I

dvL
00 0

dv[ ]
(i+)

dvf (v)vL+m happ(v 1)L—+m+ip2 —p p j (33)

where

P —~(2i)m —2L—m—2pm+i —n—) ( )i

r(I.+1—i&)
X

r(2I,+3+m n)r( —I. i&+—n —m 1)— —

(n m 1)i(n ——2L——m —2)i
X I34)

l~!(n —L—iq —m —1)i

where

l(~s.p .s&)+1

dv[ ], (36)
1

VL+m happ(V 1)L+—m+Ip2

( 1 p iS$ El m 2+%+Lp'
xlv — +—

I

2
(37)

( 1+ iS ) L m 2+m i,p+'A— —— —

xl v — +—
I2)

p
(&+)j — dVVL+m Ipp(V 1)I+m+ip2—

1+p iS q
L-m 2+~ '2+"

xlv — +—
I

2 2&

2$ ) L m 2+p+i2- ——
P

xl .— -+—
I2)

The first integral on the right-hand side of Eq. (36) is
understood to be a positive circle of large radius. The
phases are determined by the requirement that the
integrand be real and positive as v approaches infinity
along the positive real axis, with the cuts as shown in

Fig. 1.The second and third contours on the right-hand
side of Eq. (36) terminate at 0 and 1, respectively.

Evaluation of the integral over the in6nite circle is

(35) readily accomplished, and leads to a polynomial.
Writing the result in terms of an Appell function for
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brevity, we 6nd that

dv[ ]=2 sinhfir))(1 —p)](—)"+"

r (n+X —1—i2) (1—p)) I'(n —1+2))(1—p))
X r (2n+X —2)

XF2([3—X—2n], [L+m n —X+—2+i))],

[L,+m n i—))+—2]; [2—n —X+ii) (1—p)],

[2—n —i)) (1—p)]; ['-', is+-', —-', p],

L
—l' + l —l p]) (38)

We must now perform the integrations

[(s+kp—
2 &s)+j

0, 1

A simplification results from the fact that

2 3 2

J

t(—'-'p —'~s)+1

JVf (V)VL+m —
happ(V 1)L+m+ipq

complex conjugate

H 2+k p—k & p)+)

dv f (v) vL+m

happ

(v I) L+—m+ Ppn (39)

r (I.+m+1 —ip)))
X

r (L+m+2 —n —i)))r[n+i))(1—p)]
XI',(,P,P'; ~,~'; ~,y), (40)

It is, therefore, necessary to perform only one of these
integrations, e.g. , Jl)'(l lp l")+', which we shall denote
as J&&'). In a straightforward manner we finally arrive
at the result:

(p —1 isq " '+'«' p'

I),&2) =2m-i( —)'+'i -+—
iE2 2)

where

n=2 —n —A+i))(1—p), P=L+m+2 n+—ii)
P' =L+m+1 ipi—), y= 2—n —)i+i2) (1—p),
y'= n+i)) (1—p), x= ,' -—,'p-+-,'is, y= ', ', p

-—', i-s.—-
In passing to the limit s —+ 0 in the integrals obtained

above only J~(') need be examined critically. In this
case, the factor (-,'p ——',+-', is)" '+'2&' » has a different
limit for p)1 than for p(1. The two limits are:

lim( —',p ——',+-,'is)" '+'«' »
s~0

i2p —2l" "'""" f» p»
(41)

i

ip 2
i

1+~—20 P) (
—

) +ie PO P—) f—or p(1
The polynomials given by Eqs. (31) and (38),

together with the nonterminating double series given
by Eq. (40) constitute, when introduced into Eqs. (26),
(33) through (36), the desired results for (m, n; L) valid
in the vicinity of p 1. Before explicitly exhibiting this
final result, it is useful to note that the polynomials of
Eqs. (31) and (38) are not, however, expressed in the
most convenient form (although the present form does
have the advantage of a more straightforward deriva-
tion). The present form, for example, does not exhibit
the barrier penetration in a simple way.

A more useful result is obtained by utilizing in the
integral over the infinite circle, Eq. (38), not the function

f, (v) alone, but rather the sum f, (v)+f2(v). The latter
function is expressible as a hypergeometric function
regular in the vicinity of inanity, and thus greatly
simplifies the results. To compensate for the addition
of the term in fi(v), we must alter the coeKcient of the
polynomial, Eq. (31), into which this term integrates.

It is convenient to give separate designations to these
various contributions to the matrix element (m, n; L).
Let us define:

(ni, n; L) =A (ni, n; L)+B(m,n; I.)+C(m, n; L), (42)

where A and 8 are the polynomials discussed above.
A arises from fi(v) and B arises from f, (v)+f2(v). C is
the nonterminating series part. Collecting the various
constants that enter, one finds explicitly that:

e' )'p " r(L+m+1+ipV)
A (m n. L) —~in—m2n —ipn —L—m—2k n—1

s)nh~&(p —1) r (Ly 1+2&)

r (L+1+iV) r (2L+3+m —n)
Xr (L+m+3 —n+ii)) I'(2L,+2ni+2)r (n —m —1)

(2L+m+3 n)),(m+2 n)), (L—+m+1 ip—)))p (1+p) "( ——2 p
"

xp (43)
)2!(X—)i)!(L+m+3 n+i2))), (2L+2m+—2)p & 2p ) &1+p)

B(m,n; I.) =2rk2"—'e-: «'—p)

X
Slnhvr))(p —1) ),p

I'(L+ 1+m—
ipse) r (2L+m+3 —n)

p 2L+I') n—3
'—n—m

r(L+m j1+ipi)) r(I.+3—n —
ipse) r(2I.+2)r(m 1+n)—

1 (L+1—i)))),(2L+ni+3 —n)),+p(2 —m —n)),~p f'1 —p ) "

X!(2I.+2)), p!(L+3 n ipi)))+p ——& 2
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C(m, n; L) = pfP P Xn—1 Lr+m+2 —n —~m'g(1 —
p~e '

2 sinh7rg (p —1)

i"--~ (p —1)/2
~

' ~'- &

XRe exl ~(2«+~i .-(~) «—(~) ~—~+-6m) )
I' (n+ iq (1—p) )

(e—m —1)q(m —2L—m —2) q (
xQ p ")&F,

~
2 I—X+—iq(1 p)—, L+m+2 n —X+—ig,

X!(~—I.—i~—m —1),

L+nz+1 i—»; 2 n —X+—iq(1 p)—, I+ig(1 p—);, ~
. (45)2' 2)

It will be noted that although A (m, e; I.) and
8 (m,l; L) are written in the form of terminating double
series, C(m, e; L) is in the form of a trip1e series, except
in the case m=e —1, when the terminating sum over )
reduces to a single term. The advantage of the triple
series form is that it permits the confluence required to
obtain the classical limit. This point will be discussed
in detail in a later section. An alternate expansion for

f, (v) leads to a double series for C(nz, e; L), which does
not, however, exhibit the confluence required for the
classical limit. Since the procedure is very similar to
that already used, we give only the result, Appendix
III. For cases where I., g are not too large, this double
series form is of value for computational purposes.

Results for Syecial Cases

The polynomials A(nz, e; L), B(m,e; L) defined by
the terminating series given in Eqs. (43) and (44) are
much simpler than would at first appear. Cons:der, for
example, the terms that enter in the quadrupole excita-
tion. Here m=3 and m=o or 2. For m=2 and v=3,
the term A (2,3; L) vanishes, and we have only
B(2,3; I.) entering. This is found to be

kg' F(L+1+iq) ~g(1—p')p~+'
B(2,3; L) =— ~-,' 7rrl (1—p)

6 I'(L+3+ipg) 2 sinh~q(p —1)
(46)

For the matrix element with m=o, m=3 both A and
8 enter. These are found to be

r (Ly 1yz»)
A(03 L)=k'p' 'e *"«' » ———— —

r (L,y 1pi~)

X (47)
sinh7rg(p —1) 2L(L+1)(2L+1)

F (L+ 1+i')
g (0 3 ~ I)— k 2~~ wq(1—p)

I' (I+1+spy)

mgp~+'
X (48)

sinh~q(p —1) 2L(L+1)(2I.+1)

The special case for no energy loss (p=1) is a limit
that is of some interest. ' " Unfortunately, however, it

is apparently not possible to sum the required series
(which are 3F2 functions of unit argument) in general.
It is, nevertheless, relatively easy to get the desired
results for definite choices of m and e.

The particular case m= ~—1 is, as usual, exceptional.
Here the general result for p=1 is immediate. If one
puts p= 1 into the arguments (but not the para, meters)
of the equation for 8, then the required sums can be
done by the Gauss formula for the hypergeometric
function. The result is:

lim(e —1, n; L) = k" ' 2" '
p—+1

[I'(e—1)]' F (L+1+iq)
X

r(2e —2) r(L+Ny«)
(49)

In the remaining cases where m(e —1, the result for
p= 1 must be obtained by a limiting process. This can
be illustrated by the example for the matrix element

(0,3; L) The term. s A and 8, given above in Eqs. (47)
and (48), cancel for p=1, if the sinhvrq(1 —p) in the
denominator is disregarded. The required limit then
yields:

lim(0, 3; L) = [2I.+1 7rq-
2L (L+1)(2L+1)

+iq+(L+1 iq) i,q% (L—+1+—iq)], (50)

where %(x)= d/dx[logF (x)].
It should be pointed out that the use of the recursion

formulas given below provides an alternative procedure
for obtaining explicit results for p=1.

As will be shown in general in the concluding section,
the Coulomb matrix elements go over into the classical
orbit integrals in the limit q, L —+ ~, p —+ 1, q(1—p) —+

/=finite. The results given for the quadrupole matrix
elements provide a nice example of this. Thus:

4(q/k)
—'(2,3; L) —& e

—'/6,

4(q/k) '(0,3 I.) -+
—', (e'—1) '[1—(e'—1) ' tan '(e2 —1)&], (51)

where e= [1+L'/p']'* —=eccentricity of the Kepler
orbits. The terms on the right side are exactly the
classical orbit integrals for )=0.' '

The electric quadrupole matrix elements may be
given in the following form suitable for calculation in
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the vicinity of no energy loss:

irgkgp~2(1 p—')e| "~ I'~ I'(L+1+jul)
(2,3; L) =

12 sinh~q (1—p) I' (L+3+

ipse)

~k 2(] p)2pI+le —swUII —p~

2 sinhirg(1 —p)

)&Im exp[io r, (it)
r[3+i~(1—p) $

( q)]X& (—1+'q(1—p),

L+1+iq L+3 ipse;——1+i'(i.—p),

3+irl(1 —p); -', —-', p, -,'—-', p), (52)

m-pqkg'

(0,3,L) =
2I.(L+1)(2L,+1) sinhirg(1 —p)

1'(L+1+ipq)
X —L~——,' ~'f (1—p)

I' (L+1+ig)

I' (L+ 1+inst)
p ~I&-,' ~q (1—p)

I' (L+

1+ipse)

~(k2—ki)'e —l ~~'—&~

2 sinhm. g(1—p)

p '"Ikp —
k I

'"" "exl (i~~(~)—i«(pn)}
XIm

I' (3+in (1—p))

convenient to use the basic defining relation, Eq. (24),
directly. The fundamental relations for the Coulomb
wave functions'4 are:

Ld)~pP'~(n, p) 3= [L'+n'3'F ~ i(~ —p)

[(—L'lp)+~IF ~(n,p), (54)

ei )(L+1)'
(L+ 1) I..—(&,p) =

~

dp
'

& p )
[(L—+1)'+n'j F~i(n, p) (55)

These relations imply the three-term recursion relation
for the I r, (rl, p), and thus the three-term relation pro-
vides no new information. By partial integration of Kq.
(24), and the use of Eqs. (54) and (55), four equations
satisfied by the (m, n; L) are obtained. Only three of
these are independent and one thus obtains:

(
(2—m —m) (m, e; L)+kigi~ —

~ (m, e 1;I)—
E I.+1 L+m)

+ — [(L+m)'+&P3'(m —1, m 1;L—)
L+m

[(L+1)+ai2)'(m 1, e 1;L+—1)=0, —(56)
L+1

(2+m —e) (m, n; I.)
1 1q—~(m, ~—1; I.)

&L+m+1 L&

kg
+—[L'+qP$'(m+1, e—1; L 1)—

L

)&F3~ L+ig, L—

ipse,

L+—1+—iq,

p —1 1—pPL+1 ipse; 3+i'(1——p);
2p 2

(53)

k2
[(L+m+1)'+qP$l

L+m+1
)& (m+ 1, m 1;L) =0, (57)—

+kiril + l(m, I—1; L)
KI.+1 L+m+1)

kg
[(L+1)'+gP]l(m —1, m —1;L+1)

L+1Recursion Relations for the Radial Matrix Elements

Equation (53) uses the double series form given in ( + +m
Appendix III. This form is most useful for values of L
and g which are not too large. (A rough criterion is that
~L+ig'(1 —p)/2 1.) For larger values of I. and q the
triple series form given by Eq. (45) is to be preferred.

Recursion relations in the variable L are of great
value both as a primary means of generating radial
matrix elements from a few initial values, and, in cases
when such a procedure is not advisable because of
cumulative error, in checking values obtained by other
methods. One can obtain recursion relations in many
ways, either from the power series or from the various
integral representations given earlier. "It proves most

"P. Appell and M. J. Kampe de Feriet (reference 27), give
various contiguous relations for the Appell functions, from which
recursion relations may be derived.

k2
+— L(L+ +1)'+~ '3*'( +1 —1;L) (58)

L+m+1

In obtaining Eqs. (56) to (58), the integrated con-
tribution from both the origin and infinity has been
discarded. This implies that 2I.+m+1 —rs) 0.

One may regard Eqs. (56) to (58) as expressing
inter-relations among the three operations of changing
the indices, m, m and L by integers. The desired recursion
relations will result upon suitably eliminating the
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unwanted changes in the indices m and e. Two general
relations involving a common value of m, but diferent
values of m and L, may be obtained immediately from
these equations. These relations are:

kg(1+m —n)
[(L+m)'+n ']'(m —1 n; L)

k&(1+m —n)
[(L+1)'+nP]l(m —1, n; L+1)

(57) enables one to eliminate the (&1, n —1, L)
elements in terms of elements with m=0. That is,
elements with ms=0 can be expressed in terms of other
elements with m=0, but differing in ~z and L. Two inde-
pendent relations can thus be obtained by this type of
procedure, namely:

(n —2)kini
(2—n)'(O, n; I.)+ (0, n —1;L)

L(L+1)

+kl'g 1

(2I.+1)(1—n) —m

L(L+1)

kgk2
L(L+1)'+up] L(L+1)'+n ']'

(L+1)'

and

X (0, n —2; L+1)—kp+k22
(2L+2m+1) (1—n) —m

(I.+m) (L+m+1)
(m, n, L)

p1 1
+kPnPI —+ I (0, n —2; I)

EL' (L+1)')k, (1—m —n)
[(L+m+1)'+nP]l(m+1, n; L)

L+m+1 kgkg
+ [L'+rIP] [L'+rl ']'(0, n —2; L 1), (61—)

Q2ki(i —m —n)
[L'+nP]'(m+1 n. I. 1)=0 —(59) and

2k in'(2- n)
(2—n) (2L+3—n) (O,n; I.)+ (0, n 1;L)—

L 1

[(L+m)'+n2']l
L+m

1+m —n 2I +21m —n
+ 2kikg

L(L+1)'+nP]'[(L+1)'+n~']'
(L+1)'

2L+1 ki
(m —1, n; I.) [(L+—1)'+gP]l

L+m+1 L+1

1+m n2L—+2m+1 2L+m+n
X

ki
X (m 1, n; L—+1)——[L'+nP]-'

L

1 m n—2L,+—2+m —n 2L+2m+1
X

L+m+1 L+1

X (m+1, &; L 1)+ [(L+m—+1)'+»']'
L+m+1

1—m —n 2L+1 2L+m+n
X

I.+m L+1
X (m+1, n; L) =0. (60)

The latter relation is of particular interest for
Coulomb excitation since it relates matrix elements
diGering by two units in m, which is just the condition
imposed by conservation of parity.

Consider now some special cases of the above rela-
tions. For m=o, Eq. (58) gives a relation for (O,n; L)
and (0, n —1;L) in terms of (&1, n —1;L). But
introducing m=1 into Eq. (56) and m= —1 into Eq.'

X(O, n —2;L+1)

( 2kPnP $—
I

kp+k22+ I(o, n —2; L). (62)
(L+1)~)

For the particular case of m=3, it will be noted that
the left-hand s des of Eqs. (61) and (62) are the same to
within a factor. In this case, one therefore finds the
three terms recursion relation:

2kgkg
[(L+1)'+n ']'[(L+1)'+n ')'*(o 1 L+1)

L+1
2L+1

[(ki'+k2') (L) (L+1)+2kpn p](0,1;L)
L (L+1)

2kgkg
+ [L'+nP]'[L'+nP]'(0, 1;L 1)=0. (63)—

L

This simple relation merely expresses the fact that
this matrix element may be written in terms of an
ordinary hypergeometric function. This is the Som-
merfeld result given previously. The above recursion
relation will prove useful in the work that follows.

For n) 3, Eqs. (61) and (62) in general yield a com-

plicated five-term recursion formula, which, however,
will not be given here.

In the electric dipole case the matrix elements that
enter are (&1, 2; L). Although it might at first appea, r
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that these are also Appell functions, Eqs. (56) and (57)
show they are expressible in terms of ordinary hyper-
geometric functions. For example, Eq. (56) with m=1
and m=2 gives:

k2
(1,2; I.) = [(L+1)'+ri ']-:(0 1 L)

L 1

kg
[(L+1)'+~P]'(0,1; L+1) (64)

L+1

The case (—1, 2; L) is obtained by interchanging ki
and ks in Eq. (64). Once again the electric dipole case
shows great simplicity.

For the electric quadrupole case one has in addition
to the (0,3; I.) matrix element discussed above, the
matrix elements (&2, 3; L). A four-term recursion
relation can be found in this case. Since the subsidiary
relations that lead to this result are also of interest, the
derivation will be given in more detail than would
otherwise be the case. The desired element has m=2
and m=3 and if these values are introduced into Eq.
(56) terms with e= 2 but m= 2 or 1 arise. Equation (57)
shows that m= 2, I= 2 is expressib1e in terms of m = 1,
ran=2 which, as given in Eq. (64) above, thus implies
that the desired element can be related to the (0,1; L)
element. This relation is found to be

4(L+1)ks[(L+2)'+ii ']'(ks[(L+3)'+ri ']'(2 3 L+1)
—ki[(L+1)'+riP]'*(2,3 L)}

= (kP —ks )([2k ri +kP(I+1) (2L+3)
—kP(L+1)](0,1;L+1)—2krks[(L+1)'+riP]'*

X[(L+1)'+i']r'(0 1' L)). (65)

This result is itself of interest. For the special case
ki ——ks (no energy loss) the right hand side vanishes and
the resulting two term relation for (2,3; L) can be
solved to give, within a constant, the result previously
obtained in Eq. (49). For krAks the relation yields

(2,3; L) in terms of a finite sum over L of the (0,1;L).
Since the latter are more readily calculated than the
(2,3; L) themselves, this may provide a useful calcu-
lational procedure.

Using Eq. (63) in Eq. (65) yields the desired four
term relation satisfied by the (2,3; L):
2k k '[(L+3)'+riP]l[(L+4)'+g ']'

X [(L+5)'+rlss]* (2 3 ' L+3)—k [(L+4)'+ii '7*

X [6kPriP+3 (kP+ks') (L+3)'
+ (kP —kss) (1+3)(L+4)](2,3; L+2)
+kr[(L+2)'+riP]'[6kPriP+3(kP+ks') (L+3)'
—(kP —kss) (L+2) (L+3)](2,3; L+1)
—2kPks[(L+1)'+riP]'[(L+ 2)'+ri P]'

X[(L+3)'+ri ']*'(2)3 L) =0. (66)

The result for (—2, 3; I.) is obtained by interchanging
ki and ks in Eq. (66).

An equation for (0,3; L) that is the analog of Eq.

(65) can be obtained. The result is

(I+1)(L+3) (2L,+5)kik, [(L+2) '+ri ']l

X[(L+2)'+& '7'*(0,3; L+2)
—(2L+3)[kPii P ((L+1)'+ (L+2)s)

+ (kP+kss) (I-+1)'(L+2)'](0,3; L+1)
+L(L+2) (2I.+1)ktks[(L+1)'+riP]&
X [(L+1)'+ass]'(0,3; L)

= —(3/4) (I+1)(L+2) (2L+3) (kP —kss)'

X (0,1;L+1). (67)

This agrees with the earlier results obtained in Eq.
(50) for the special case ki ——ks, and, just as mentioned
in connection with Eq. (65), may provide the basis for
a useful calculational procedure.

It is clear that the relations, Eqs. (56) to (58),
provide a basis for determining recursion relations in I.
for the (nz, e; L). The above results, however, are suf-
ficient for the electric dipole and electric quadrupole
cases. As a calculational tool the recursion relations are
only useful over a limited spread in I., since the un-
avoidable cumulative error will eventually dominate.
For good accuracy in the fi.nal result contributions for
I. 100 may be expected to enter, so that it is clear
that a straightforward use of recursion relations is
inadvisable.

Classical Limit and Quantum Corrections

It is obvious that classical results will be obtained
from the quantum results given above by letting A —+ 0.
In the case at hand, this reduction applies not only to
the complete answer but termwise to the various parts
of the calculation as well. This is not unexpected since
it is well known that the various Racah functions that
enter the formulas for the a„go over into the Legendre
polynomials of the classical result. The limit A —&0
which carries the Coulomb integrals into the classical
Fourier integrals over the orbits appears here as the
limiting process 1—p —+ 0, L,ri ~ eo and limri(1 —p) =—P
is finite. This limit process cannot be carried out directly
for the Coulomb integrals in the form given by Eq. (24);
rather it requires the use of the analytic continuation
into the region p~1. By utilizing Eqs. (43)—(45), the
limit process can be carried out immediately, to yield
series which can be identified as the classical orbit
integrals. These series, which are conQuent forms of the
Appell functions, are given in Appendix IV.

It is more direct, however, to proceed from the
double integral Eq. (26) and thus obtain an expression
for the complete classical limit" which is readily gener-
alized to include first order quantum corrections.
Instead of expanding the n contour to infinity in Kq.
(26) and considering the contributions from the two
poles as was done earlier, the I integration is performed

"Sommerfeld, reference 12, Appendix 16, has carried out a
similar transformation (emp1oIdng steepest descents) to compare
proton bremsstrahlung with Kramer's semiclassical calculation
(reference 16),
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on the original contour to give

(m; nz; L; s) = (—) 2 sinhzrg (—2i) "—' —"—2K

~

I"(L+2&+1) (

X
I'(2L+2)

p
(&+)

d2121L+m i pn—(~ 1)L+m+I.pn

J0

(—p)"(L+1+ig)1, (zz —zlz —1)1,

ll!(2L+2)1

"—L—I—X—izedZS

X 2+—-,'(1+p)
2

-—I+i'—m+n —2'LS

X 2'+—-'(1—p)
2

(69)

with the use of a Kummer transformation. In order to
obtain an expression suitable for the conQuences
required in the classical limit, the v contour is trans-
formed to a contour starting at infinity and encir-
cling the origin counterclockwise by the substitution
v= 1/(z+1), with the result

~ (1+)

d~( )
J0

(o+)

(2)2L+m n+2+1 )—
dZ( Z) L+m+Ipn

There results,

(22Z 2Z. L. g) ( i)n—m—1$ n 12n—Se ',—nn(1—p)p—L+1

I'(L+iq+1) I'(2L+zrz —22+3)
22L+m—n+3X

1(L+~+1+zp~) r (2I.+2)

X (1+ z&)
—I,—lq —1(1+ +z&) L+In—m+n —2—

dzz
—in (I—p)—1+m (z+ 1)1—m—n

J0

+zg 1
— I ln —1——— 1 zg

— L+iq—m+n —2—
1—

1+p—2$ z 1+p+2$

(L+1+iq)i(zz —212-1)1
xp

X!(2L+2)1

p(z+ 1)
X

z—(1—p+is)/(1+p —is) . 1+p is— (72)

(L+1+i&)&= (L+1+iII)"+(L+1+i&)" 1 Pj

In the limit L,, 2! very large, 2!(1—p) —= $ finite, and
s-+0, the series can be summed if (L+1+iq)2, is
replaced by the first term in the expansion,

X (z+1)' "+"t 1—p+is —z(1+p —is)]

X/1+p+is z(1 p is)] L—+'& m+—" '— (70)

Since there is no pole at the origin and (—z) is taken
real and positive on the negative real axis, this integral
is immediately expressible as a real integral, "viz. ,

(0+)

dz( )

X—1 q—1

+(L+1+iq)"—' Q jpi+, (73)
1

with unity neglected in comparison with L+zq The.
expression (2I.+2)1, is treated similarly, with the result
that

(L zz!)z (L—+i q) —"+ +'—
~ ~ ~

= (—)" '2e "sinhzrpq(1+p —is)—~'&—'—' X 1+
L(1—p)(z —1)

(L iq) z (L—+izl)—

p $- —n+m+1

(74)

X (1+p+Z2)—L+in —m+n —
2~ dZZ

—In(l—P)—1—1+m

0

—p+zs 1 ' —L—',—I—1

X (z+1)1—m—n+1

1+p—zS z

iS i+'~ m+

X (71)
1+p+is

The phase e & is determined by the cut

~
arg[1 p+is z(1+—p is)—] ~ ~&zr. —

The integral (71) is now in a form for confluence to the
classical limit. Equations (70) and (71) are substituted
in (69) and, since (71) converges uniformly in. li for the
classical limit, the summation and integration in (69)
may be interchanged in the limit.

' See, for example, Hankel's contour for the F function, E. T.
Whittaker and G. N. Watson, A Conrse of 3/Iodern Aeatysis
(Cambridge University Press, London, 1945), p. 244.

The second factor on the right in Eq. (74) is a quantum
correction and is neglected in the passage to the clas-
sical limit. In the classical limit the integral becomes

~00 (L z~ ) n+m+1 ~m-
dz( ) =

i i
dzz '&+" 2--

&2L)J0

L+z q
—"+"+'

X (z+1)'-=-~ .—
L—z&)

f'1 —pl 1 ('1 —p)
Xexp (L+zn)

)
)-+(L—in)

~
lz (73)(2)

"It is not obvious that this procedure is valid, but it may in
fact be justifIed by a more detailed argument employing Hankel's
form for the gamma function.

The exponentials result from expanding the factors con-
cerned and approximating by the first term in expan-
sions of the type given in Eq. (73)." If the classical
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variables
1+ (iL/2t) = pe'~

are introduced in Eq. (75), there results

tnco ( ip2t q
n+m+1 co

dz( )=
I I

dzz—'&+n '
&21. &

"1+1
P

e-'~a 0—P)(n —1 n L)=k "—'2" '
-(1+p)'-

rections arising from summing the series [see Kqs. (73)
(76) and (74)).

For the special case nt=n —1, Eq. (72) gives the
result,

X (Z+ 1)I—m—n (Zg18+Z—18)—n+m+1

ipse t'e '~

xexp —
I

z"—z
I

. (77)

y (1+z)2—2n

—iy- —n+m+IM ~e
1+z

ipse (e
—"'

yexp I

—e"z
I (78)2(z )

The substitution z —+ 1/z in the integral is equivalent
to complex conjugation, hence the integral is real. When
Eq. (77) is substituted into Eq. (72) and the limit is
taken for the coefficient, the classical answer is obtained.
Thus,

1 t2kp"—'
lim(m, n; L) =—

I

—
I

e& dzz
—'&+"—'

4 &pq)

I'(L+1+irt)
X des—'«'—»+"—'

r(L+n+iprt) & p

1-—L—ig—1p
X (Z+] )2

—2n

1+p z

p
~ —L+irt—I

z . (82)
1+p

The first-order quantum corrections for this integral
arise from neglect of the second term in expansions of
the form of Eq. (73) in the approximation by ex-

ponentials, and the neglect of unity compared with
L+irt and L—i'. If the first two terms in expansion of

(—1)1(L+i2t+1)1 and of (—1)"(L—i2t+1)1 are kept
one obtains,

t'1- pl '+'" ' (1-
1—

I Iz =exp (L+1—i') I Iz
E1+p) (I+p)

Equation (78) can be put in a more recognizable
form by making the substitution s= e' '~, and noting
that 1.

X 1+——
2

+
e' '~ p [p+cosht+i(p2 —1)i sinht)

and
(1+e' '~)' 2 [p cosht+1]

L+1 i2t—
q

1- L~p 1——

=exp (L+i~-+1) I

k 1.+p) z . E 1+p) z(e'+e 'P) p+cosht+i(p2 —1)' sinht

(1+e' '~) p cosht+1 t'1 —
p~ 1

(Lyi&+ 1) I1- &1+p) z

2

As a result of these considerations, Eq. (78) becomes + (84)X
L+irt+11 t'kq " ' t.+"

lim(nz, n; I)=—
I

—
I

it dte '«' """'+'&—
Thus, it is found that the desired Coulomb integral,
accurate through terms of order (1—p), is given by

[p+cosht+i (p2 1) '*.sinht)—
X (81)

(n 1, n; I.) =k " '2" '—4p ~+'
e-'~~(&—I )[p cosht+1) +" '

-(1+p)'-
I'(L+1+i2J )

X dZ Z
— I(1—p)+n~7—2(Z+ 1)2—2n

I'(L+n+iprt), ~ p

&&exp (I,+1—iq) I Iz+ (L+i2t+
(I+p) &1yp& z

1 z' (I-pi -'
y, 1+-- (L —i~+I) I

2 L—22t+1 ( 1+p)
1 z 2 (1—p)+—— (L+i2t+ 1) I I

(85
2 L+irt+1 &1+p

Here, the substitution t ~ —t results in complex con-

jugation. This integral, to within the factor ~(k/2t)" ',
is the general I'ourier integral over classical orbits of
the multipole matrix elements as given, for example, by
Ter-Martirosyan and by Alder and Kinther. '

The advantage of the procedure outlined above is

that it enables one to obtain easily integral forms for
the first order quantum correction to the classical limit.
In order to avoid undue complication, the quantum
correction is illustrated only for the case m=n —1. It
is clear, however, that the procedure for the general
case m ~&a —1 is the same except for additional cor-
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As it is written, the classical variables $ and e have not
been introduced above, since their introduction com-
plicates the formulas.

For the cases of physical interest, (1—p)/(1+p) is
generally small, 1/20. The difference between
(1—p)/(1+p) and —,'(1—p) is hence insignificant. On the
other hand, g is not too large, since 3 ~&g ~& 8 is usual.
Since the quantum correction is most significant for
the low angular momenta, it is thus seen from Eq. (85)
that the zeroth order (classical) approximation should
be improved by the use of e'=1+ (L+1)'/rj to replace
e'= 1+L'/YP
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Electric Multipoles

Q (/'/; Le)C (L//', Mnzrl')

F,.(rj,,k,r)
Y j "'(t/, &) k '[L(I+1)] ihL(kr)

kyar

F,(8jr,krr)
X(jp VXLY, (66)) Y, {66)). (88)

kyar

The matrix element on the right can be put in an
alternative, more convenient, form by using the expan-
sion for ~ XL and partial integration. One finds that:
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F j.(jj„k,r)
)=[L(L+1)] *'

k2r

X (sp (rhL)Y—r~+ikYr~hLr jp
dr

Hence the reduced matrix element is

~l
Yi . 89

kyar

APPENDIX I. REDUCED COULOMB MULTIPOLE
MATRIX ELEMENTS

Magnetic Multipoles

Q(/'/; Lrr6) C (L//', Mrrrrjs') —=

F j.(jj,,k,r)
Yj "'(t/, &) [L(I.+1)] ihL(L)(kr)

k2r

(2L+ 1) (2/+ 1)
Q(/'/; Le) =

4s-(L) (I+1)(2/'+1)

XC(L//'; 000)(kiks) Lsie

f
X dr F j(rjl klr)F j'(r/2 ksr)d/dr[rhL(kr)]

a6j p

kyar

F j(jji,krr)
X j LYr, (II,6) YP(II6)) (86,). hr, (kr) (k,rF, .(jj„k,r)F j'(rji, kir)

2mc

Introducing the definition of the current operator, in
spherical coordinates, one finds two terms, of which the
hrst is

@see
IL(L+1)] '

2imc

p), rXL F,
X Y&"' 8 "'(L'Y '") Y ).

kyar r'

kyar

The second term has the rXL operator acting on the
Ii~ Y~ ', and can be shown to be equal to the term
above. The angular function LYr, and rXLYL can
be expressed as vector spherical harmonics" and this
facilitates performing the angular integrals.

The result, after some manipulation, is found to be

)j'Asreq (2L+1)(2/+1) (/+1) (2/+3) ' '
Q(/'/; I.m) =

~( irjLc & Q(4s.) 2/'+1

1
XC(L/+1/'; 000)W(LL//+1; 1P)

kgk2

—ksrF j(jja,krr)F j '(Yj2,ksr) . (90)

(-)-.-(p)-(p')-
Fi(n p p'p xy)=p x"y"

(y)„,„~!~!
(-)-'(p)-(p')-

F,(,P,P'; ~,~', z,y) =P x-y-,
(y) (y').m!e!

(92)

(93)

The long wavelength limit for these reduced matrix
elements replaces hz, (kr) by i(2L 1)!—!(kr) ~—LI and
discards the radial current in the electric multipoles.
For the electric quadrupole case we obtain:

Q(/'/; 2e) ~ ik ssre[30(2/+ 1)/4m (2/'+1) ]*'

00

XC(2//'; 000) I r 'drF jF j (91).
kgkg ~p

APPENDIX II

The Appell functions used in this report have the
series definitions:

() (').(p) (p').
F (n,n', P,P'; y; x,y) =Q x'"y". (94)

(~).,„m!~!

r 'drF j(rji, kir)F j (8js,ksr)hL(kr) (87).
Jp

"H. C. Corben and J. Schwinger, Phys. Rev. SS, 967 (1940).
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The series for Ii~ and Ii3 are absolutely convergent
for Ix!, Iy! &1, while F2 is absolutely convergent for
I*I+ I y I

&1.
The confluent function 4'2 is given by the series:

(~)-+-
+2(~;y,y', ~,y) =2

(y)„(y') m!I!

one hnds, using now the series for the 2F~ function, that:

~
—~m'rt 1—p

C(m, 22; I.) =— (k2 —ki) "—'
2 sinh2r2! (1—p)

y '~0—~)

)(Re i™—np
—'~—

The transformations and reductions that are useful
for the present work are

Xexp[iar, (q) ie—r+ (pq)]r (22+ ig (1—p))

F2(n,P,P', e,n; 2:,y) = (1—2;)
—e(1—y)

—e' xF2I L+i2I, —L m —

ipse—

i, L+—1+i21,

xy
x2FiI p,p';~; (96)

(1 g) (1 y)

[This is the reduction used in obtaining Sommerfeld's
integral, Eq. (28).]
F2(e2,P,P'; n, y'; x,y)

=(1—*)-'F [O', P, P;v—';y, (y/1 —)7 (9&)

[This transformation reduces the case with m=22 —1 to
a single contour integral. ]
F2((2q a ) P) P ! (I+A !Xq y)

=(1 y) 'F.—[-,P, P', + ';*, (y/y 1)]—
APPENDIX III

A double series formulation is derived here for
C(m, 22; I) in the general case where m%22 —1.

p
—1 1—p'!

L+m+1

ipse;

—I+iq(1 —p);, I
. (101)'2p' 2)

By using the reduction formulas given in Appendix
II, one can show that in the particular case m=e —1
this reduces properly to a single F2, as given in Eq. (45).

APPENDIX IV

F2(2—22 —X+i2!(1—p), L+m+ 2 n Xjirl, ——
L+m+1 ip2!;?—i2——li+i2!(1—p), 22+i21 (1 p);—
2 (1—P), 2 (1—P)) ~A(2 —~—~+i(;
2 22 A+i $, 2—2+i—$; 22i e$e 'e 22i e-$e'e)—- (102)

where"

A series representation for the integrals in the clas-
sical limit can be obtained by taking the appropriate
limit for A(m, 22;L), B(m,N;L), and C( m, 2;2L), a.s
given in Eqs. (43)—(45), respectively. Consider 6rst
C(m, n; L). In the classical limit, one finds that
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where the parameters of p2 are the same as those oc-
curring in Eq. (102).

To obtain the limiting forms for A(m, 22; I) and
B(m,22; L) it is most expedient to use alternative forms

(100) of Eqs. (43)—(44), which are obtained by Kummer
transformations of fi(v) and f2(w) in the integrands.
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Similarly, the results for 8 are
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The limiting form is then found to be
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The above results show the symmetry between A
and 8, namely that A 8 under the interchange of
(kl, l!1,L1) with (k2,q2, L2). The limiting form of 8 is then
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